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Diurnal urban heat risk assessment
using extreme air temperatures
and real-time population data in Seoul

Cheolhee Yoo,1,2 Jungho Im,3,5,* Qihao Weng,1,2,* Dongjin Cho,3 Eunjin Kang,3 and Yeji Shin3,4

SUMMARY

Previous heat risk assessments have limitations in obtaining accurate heat hazard sources and capturing
population distributions, which change over time. This study proposes a diurnal heat risk assessment
framework incorporating spatiotemporal air temperature and real-time population data. Daytime and
nighttime heat risk maps were generated using hazard, exposure, and vulnerability components in Seoul
during the summer of 2018. The hazard was derived from the daily extreme air temperatures obtained
using the stacking machine learning model. Exposure was calculated using de facto population density,
and vulnerability was assessed using demographic and socioeconomic indicators. The resulting maps
revealed distinct diurnal spatial patterns, with high-risk areas in the urban core during the day and
dispersed at night. Daytime heat risk was strongly correlated with heat-related illness ratios (R = 0.8)
and accurately captured temporal fluctuations in heat-related illness incidence. The proposed framework
can guide site-specific adaptation and response plans for dynamic urban heat events.

INTRODUCTION

Globally, the occurrence, severity, and duration of heat waves are on an unmistakable upward trend, and are projected to intensify signifi-

cantly during the forthcoming century according to climate change scenarios.1–3 Numerous investigations have emphasized that these

extreme thermal events trigger a substantial surge in heat-related fatalities, especially in urban areas.4–6 Unfortunately, most cities worldwide

are unprepared to address the impending risks associated with extreme heat.7

To formulate effective policies and devise location-specific plans for adapting to and responding to heat waves, scientists and planners

must understand the spatiotemporal dynamics of extreme heat risk. This involves understanding three key elements8: hazard (the frequency

and intensity of extreme temperatures), exposure (the magnitude of an individual’s or population’s contact with a risk source), and vulnera-

bility (a specific population group’s inability to tolerate the consequences of a hazardous environment).

The use of heat hazard sources in previous heat risk assessments had several limitations. Numerous studies have used land surface

temperature (LST) data, retrieved from thermal infrared remote sensing as hazard sources.9–11 However, LST is limited because of the

trade-off between spatial and temporal resolutions, which is an obstacle to acquiring high spatiotemporal temperature data.12 In addition,

satellite LST cannot be obtained under cloudy conditions, which can cause difficulties in the timely identification of extreme summer heat

events. It is important to note that LST differs from air temperature, particularly on urban surfaces.13 Because humans perceive temperatures

approximately 1.5–2 m above the ground, air temperature is a more appropriate hazard source than LST. Nevertheless, the number of

weather stations that provide air temperature data within a city is often insufficient to capture the thermal heterogeneity of complex urban

landscapes.14

To calculate exposure and vulnerability, most studies use demographic data based on place of residence.10,11,15–17 In cities, however, the

spatial distribution of the resident population (thede jure population, the number of people officially registered as inhabitants of a given area)

differs from that of the actual real-time population (the de facto population, all people recorded at the time of measurement in a given area)

because of numerous socioeconomic and leisure activities, especially during daytime. Thus, if we evaluate risk based on the de jure

population, the spatial distribution of heat risk cannot accurately reflect the actual exposure or identify the vulnerable groups.

While key components of heat risk—notably hazard and exposure—exhibit daily or hourly variation, many previous studies have used

yearly data as the target temporal scale for heat risk maps.10,11,18,19 In addition, few studies have mapped the heat risk separately for day

and night.10 However, the spatial temperature distributions and population activities within a city change over time.20,21 For instance, building
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materials in urban areas retain heat longer than vegetation,22 resulting in distinct daytime and nighttime thermal spatial distributions.23

Similarly, population activities vary; people often commute from homes to workplaces or schools during the day and stay in residential areas

at night. These patterns further differ between weekdays and weekends.24 Therefore, daily heat risk assessments at different times in urban

areas are vital to help local governments understand the temporal variation in risk and analyze hotspots in detail for specific times, such as

extreme heat events. Consideration of temporal variations in thermal characteristics can allow for realistic and cost-effective action plans in

response to heat risks.

The development of a new heat risk assessment framework, aimed at addressing existing challenges, raises several crucial research

questions.

� Air temperature-based heat hazard: Can we construct an accurate, spatially continuous daily air temperature map in urban areas for

heat hazard assessment, thereby enabling the examination of differences in the spatial and temporal variations of daytime and

nighttime hazards?
� De facto population-based heat exposure: How does a heat exposure map constructed using de facto population data compare in

spatiotemporal distribution with one created using de jure population data?
� Diurnal heat risk map: Can a heat risk map developed based on daily fluctuations in factors such as air temperature and de facto

population effectively represent the risk of heat-related illnesses?

This study focused on Seoul, South Korea. The target spatial scale for the risk map was the dong, the sub-municipal-level administrative

unit of the city. We concentrate on the summer season (July–August) of 2018 in Seoul, which was characterized by an unprecedented heat-

wave of an unusually prolonged duration. The objectives of this research were to (1) develop a framework for mapping daily heat risk in the

daytime and nighttime using indicators closer to reality; (2) analyze the spatial distribution and temporal trends of hazard, exposure, and

vulnerability during the daytime and nighttime; (3) assess the daily heat risk during both daytime and nighttime in Seoul at the dong unit level

and investigate the hotspots of severe heat risk in the city; and (4) validate the produced risk map using heat-related illness data.

RESULTS

Air temperature and hazard mapping

Daily maximum and minimum air temperatures (Tmax and Tmin) were modeled using a stacking ensemble machine learning algorithm (see

method details). Data from a total of 107 weather stations in Seoul (Figure 1A) were used as in situ air temperatures for the modeling.

Figures 2A and 2D show the leave-one-station-out cross-validation prediction performance for Tmax and Tmin, respectively. Our proposed

stacking ensemble algorithm demonstrates very high validation accuracy (R2 = 0.958 and root-mean-square error (RMSE)� 0.62�C for Tmax,

R2 = 0.933 and RMSE �0.77�C for Tmin).

Figure 1. Study area and Local Climate Zone (LCZ) map of Seoul

(A) Location of weather stations in Seoul. Background elevation was obtained from the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM)

with a spatial resolution of 250 m.

(B) The background layer is the 250 m resolution local climate zone (LCZ), which is a standardized classification system that represents the characteristics of urban

forms and functions.25 The LCZ maps for the three cities were adopted from Yoo et al.28
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Based on the developed model, we produced maps of the average Tmax and Tmin for the summer of 2018 and examined the tem-

perature distribution according to the Local Climate Zone (LCZ) classification (Figures 2B and 2C and 2E–2F). The LCZ is suitable for char-

acterizing urban thermal climate.25 Seoul has eleven LCZ classes (Figure 1B): seven urban-type LCZs (three compact-type, LCZ1–3), three

open-type (LCZ4–6 and LCZ 8), and four natural-type LCZs (LCZA–B, D, and G). Tmax and Tmin exhibited divergent spatial distributions in

Seoul. During the daytime, most surface types, except for densely vegetated areas (i.e., LCZ A), experienced significant warming owing to

the predominant influence of incoming solar radiation.26 In contrast, the nighttime conditions displayed rapid cooling of vegetated

regions, while the urban areas maintained elevated temperatures for extended periods, which was attributable to the re-emission of

the heat absorbed by impervious surfaces.27 Consequently, Tmin demonstrated pronounced temperature gradients between urban

and vegetated surfaces, a phenomenon commonly referred to as the urban heat island effect. Furthermore, the compact-type LCZs

(LCZ1–3) generally exhibited higher Tmin values than the other LCZ classes, followed by the open type (LCZ 4–6) and natural types

(LCZ A, B, and D; refer to the boxplots in Figures 2C and 2F). Notably, regions with tall buildings were associated with increased Tmin

values, particularly in the open-type LCZs.

Figures 3A and 3B present the average daily daytime and nighttime hazards, respectively, derived from the cumulative two-day esti-

mations of Tmax and Tmin. During the day, regions with relatively high hazards were more concentrated in the eastern portion of the

city than at night. These disparities could be attributed to an array of meteorological and urban structural factors. For example, the pre-

vailing seasonal westerly winds in summer contribute to the cooling of the western side of the city during the daytime.29 Furthermore, areas

characterized by a substantial proportion of open-type LCZs, situated on the periphery of the city, exhibited comparatively lower hazards,

particularly at night.

The daily hazard devised in this study exhibited noticeable temporal variations, primarily owing to the use of daily air temperatures as

indicators (Figure 3C; August 2018). For instance, during the early days of August (August 2–3), which marked the hottest days of 2018,

the hazard was distinctly high and subsequently diminished toward the end of August (August 27–28; see the red bold line in Figure 3C).

The spatial distribution of daily hazards across the 424 dongs also demonstrated temporal variations (refer to the range of the boxplots in

Figure 3C). Generally, daytime hazards exhibit a narrower range than nighttime hazards.

Figure 2. Estimated air temperatures and their spatial distributions

(A) Density scatterplots of the estimated and observed maximum air temperatures for the leave-one-station-out cross-validation (LOSOCV) results for Tmax. See

also Figure S2.

(B) Spatial distribution of average Tmax.

(C) Boxplots of the average Tmax patterns for each LCZ class.

(D) Density scatterplots of the estimated and observed minimum air temperatures for the leave-one-station-out cross-validation (LOSOCV) results for Tmin. See

also Figure S3.

(E) Spatial distribution of average Tmin.

(F) Boxplots of the average Tmin patterns for each LCZ class. The color scheme in the scatterplots, which transitions from blue to red, represents the increasing

density of the paired samples.
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Exposure and vulnerability maps

Figures 4A and 4B display the average exposure using the de facto population data for daytime (3:00 p.m.) and nighttime (6:00 a.m.), respec-

tively. Notably, there was a pronounced difference in the distribution of daytime and nighttime exposure when considering the de facto pop-

ulation. During the day, regions with a high density of workplaces, such as Jongro 1–4 dong and Myeong-dong in Jongno and Jung-gu

(referred to as A) and Nonhyeon and Yeoksam-dong in Gangnam-gu (referred to as B), exhibited elevated de facto exposure. Conversely,

high exposure regions emerged in the eastern and southwestern parts of Seoul at night. These areas possess a relatively high proportion

of housing as people return home at night. It is worth noting thatde jure exposure (Figure 4C) demonstrated a spatial distributionmore similar

to that of de facto nighttime than daytime exposure.

Figure 4D depicts the daily spatial correlation between the de facto and de jure populations during the day and night. The weekend

and weekday correlations displayed significant differences during the daytime. This may be attributed to people being relatively more

active near their residential areas on weekends. Conversely, there was virtually no correlation during the daytime on weekdays, indicating

that the floating population in a megacity such as Seoul exhibits a markedly different distribution from that of the census population. Both

weekdays and weekends exhibited a substantial correlation at night, with the correlation being marginally more pronounced during the

weekends.

Figure 5 presents the average heat vulnerability for the daytime and nighttime. There were no discernible spatial differences in the

vulnerability maps between daytime and nighttime, in contrast to those of hazard and exposure. Vulnerability displayed a stronger posi-

tive-skewness distribution during both the daytime and nighttime than hazard and exposure (see Figure S1). Specifically, high vulnerability

areas were concentrated in the northeastern part of the city during both the day and night. Region A exhibited very high vulnerability and

exposure (Figures 4A and 5A) during the day. In contrast, Region B displayed the opposite pattern: high daytime exposure (Figure 4A)

but very low vulnerability (Figure 5A). Region B, a part of Gangnam-gu, had a high percentage of relatively young people (both de jure

and de facto, not shown) who are less vulnerable to heat.

Figure 3. Hazard distribution

(A) Map of average daytime hazards, July–August, 2018. Each hazard map was clustered into five grades based on the Jenks natural breaks classification.

(B) Map of average nighttime hazards, July–August 2018. See also Figure S1.

(C) Temporal distribution of boxplots for daily hazards in 424 administrative dongs for daytime (red) and nighttime (blue), August 2018. The daily STD represents

the August average standard deviation of the daily hazard for 424 dongs. The red bold lines in Figure 3C indicate the days with Tmax exceeding 33�C, observed
from the automated surface observing systems (ASOS) in Seoul.
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Heat risk mapping and validation

Finally, we produceddaily daytime and nighttime heat risk estimates by combining the three component layers: hazard, exposure, and vulner-

ability (Figure 6). The spatial distribution of the risk during the day and night exhibited noticeable disparities. This can be attributed to the

distinct distributions of hazards and exposure during the daytime and nighttime, which are the two components that constitute risk. During

the daytime, high-risk and very-high-risk areaswere predominantly concentrated in the central-northern region of the city. Notably, areas such

as Jongro 1–4, Euljiro, and Hoehyeon-dong demonstrated a significantly elevated daytime risk. In this region, high and very high hazard levels

emerged during the daytime (Figure 3A), and it was evident that exposure and vulnerability were also densely concentrated (Figures 4A and

5A). In contrast to those during the daytime, high-risk regions at night were dispersed across the city, including areas such as Gayang 2,

Bugahyeon, and Cheongho 3-dong.

Figure 7 presents the validation results for the spatially normalized heat risk using the average heat-related illness ratio from 2018. The

daytime heat risk map generated by the proposed framework demonstrated a significantly high correlation (R = 0.8) with the heat-related

illness ratio. In contrast, the nighttime heat risk exhibited a relatively low correlation. This finding suggests that the spatial distribution of

heat-related illness occurrence is more closely associated with risk during the day than at night. We also compared our proposed heat

risk framework with a conventional approach that uses only the de jure population to calculate exposure and vulnerability (see STAR

Methods). Our proposed heat risk model displayed superior correlation performance to the risk maps created using only the de jure popu-

lation (R = 0.09 for daytime and R = 0.07 for nighttime).

Table 1 is a contingency table outlining the relationship between the daily number of heat-related illnesses and daily heat risk for

the three representative gu regions in Seoul. Daytime heat risk demonstrated promising performance across all three regions (probability

of detection (POD): 0.96–1, false alarm rate (FAR) < 0.39, critical success index (CSI): 0.61–0.68). Although the performance of nighttime

heat risk was lower than that of daytime, regions such as Dobong-gu—where the highest number of heat-related illnesses occurred in

2018—displayed a relatively strong temporal association with heat-related illnesses, even during the nighttime (POD: 0.95, FAR: 0.34,

CSI: 0.64).

Figure 4. Exposure distribution

(A) Map of average daytime exposure using de facto population, July–August 2018. Each exposuremap was clustered into five grades based on the Jenks natural

breaks classification.

(B) Map of average nighttime exposure using de facto population, July–August 2018. See also Figure S1.

(C) Map of average exposure using de jure population, July–August 2018.

(D) Boxplots of the correlation between de facto and de jure exposure on weekdays and weekends for daytime and nighttime.
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DISCUSSION

The superiority of air temperature-based heat hazard maps

This study produced high-resolution (250m) daily Tmax and Tmin values usingmachine learning techniques. The stacking ensemblemachine

learning method employed showed superior performance to conventional air temperature interpolation methods, such as cokriging and

other single models (i.e., multi-linear regression, support vector regression, and local linear forest; see Figures S2 and S3). In particular,

the stacking-based approach exhibited a significantly improved ability to model the spatial distribution of temperatures compared to the

other single models for both Tmax and Tmin (Table 2). This implies that our air temperature maps can accurately reflect spatial variations

in heat hazards and help monitor temperature differences between daytime and nighttime.

Heat hazardmaps derived from these air temperatures offer several advantages over those derived in previous studies.9,11,15,19,30 By using

air temperature instead of LST as the source of heat hazard, our maps corresponded better to the population’s actual heat exposure. More-

over, previous studies often used LST from a single date30 or long-term average LST,11 making it difficult to capture the temporal variability of

heat hazards. For example, only four Landsat imageswere acquired during the study period (12 July 2018, 13 August 2018, 28 July 2018, and 29

August 2018). However, these images are predominantly obscured by cloud cover. In particular, the two images exhibiting relatively lower

cloud rates, captured on July 28 and August 13, 2018, failed to provide a seamless representation of LST (cloud cover rates of 23% and

47%, respectively). Consequently, applying these LST images to analyze the spatial distribution of heat hazards proved challenging.

Figure 5. Vulnerability distribution

(A) Map of average daytime vulnerabilities, July–August 2018. Each vulnerability map was clustered into five grades based on the Jenks natural breaks

classification.

(B) Map of average nighttime vulnerabilities, July–August 2018. See also Figure S1.

Figure 6. Heat risk distribution

(A) Map of average daytime heat risk, July–August 2018. Each heat risk map was clustered into five grades based on the Jenks natural breaks classification.

(B) Map of average nighttime heat risk, July–August 2018. See also Figure S1. Three representative dongs with the largest heat risks during the daytime and

nighttime are presented in (A) and (B), respectively.
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Furthermore, prior research employing LST data as a heat exposure source encountered limitations in depicting themaximum heat exposure

duration (e.g., 2–3 p.m., the time when maximum air temperatures usually occur) owing to fixed satellite-acquisition times, such as Landsat

LST captured at 10:30 a.m.

Our daily air temperature maps effectively showed the day-to-day variation in daytime and nighttime heat hazards, where high

hazards appeared more prominent on extreme heat days. Using the LCZ and produced air temperatures, we demonstrated that our

hypothesis is valid when the spatial distribution of air temperature varies with the urban structure, and these differences are present

both during the day and at night. We confirmed that these phenomena produced a spatiotemporally heterogeneous heat hazard

map. Overall, the use of air temperature data at high spatiotemporal resolution provides a more relevant assessment of heat hazards

to human health.

The effectiveness of de facto population-based heat risk maps

In this study, we measured a diurnal heat exposure using de facto population data. Many previous studies have calculated heat expo-

sure using de jure population data;9,15,19,30,31 however, according to our findings, de jure population does not accurately reflect the

actual population distribution in the daytime when many people are away from home. Furthermore, our heat risk map enabled the simu-

lation of heat risk changes based on population fluctuations between weekdays and weekends. We found that the floating (de facto)

population during the day in a megacity such as Seoul has a very different distribution from the census (de jure) population, particularly

on weekdays.

Figure 7. Validation of the heat risk map, using the heat-related illness ratios

Scatterplots of spatially normalized average heat risk for July–August 2018 and heat-related illness ratio (%) for 25 gu in Seoul during the daytime and nighttime.

The heat risks calculated with the proposed framework (top) and using only the de jure population (bottom) are compared.
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When the diurnal heat risk map developed in this study was validated using heat-related illness data, it exhibited a higher spatial corre-

lation during the day than at night. The daytime heat risk map incorporated Tmax, which typically occurs at approximately 2–3 p.m. in Seoul,

and daytime de facto population data. This finding aligns with the Korea Centers for Disease Control and Prevention report,32 which indicates

that heat-related illnesses in Seoul frequently occur between 2 p.m. and 3 p.m. (daytime). The daytime heat risk map proposed by our frame-

work effectively represents the daily temporal patterns of heat-related illness cases (Table 2).

Compared to previous heat risk studies that producedmaps on a yearly scale,10,11,18,19 our proposed framework can generate riskmaps on

a daily scale. The validation results shown in Figure 7 and Table 1 suggest that our heat risk maps, especially for daytime, effectively provide

both spatial and temporal trends of heat-related illness occurrences in Seoul. While many heat risk or vulnerability mapping studies have not

been validated owing to a lack of reference data,10,15,18,19,30,31 our study established the reliability of the proposed framework by directly vali-

dating the risk using heat-related illness data.

LIMITATIONS OF THE STUDY

Owing to data acquisition challenges, we used certain factors (i.e., elderly men and women living alone, persons with disabilities, and recip-

ients of basic livelihoods) for vulnerability mapping based on de jure populations. Acquiring these data based on the de facto population

would enable a more realistic heat risk mapping. Future studies should incorporate additional variables related to socioeconomic

vulnerability.

The heat-related illness data used for validation also have limitations. Although the data were obtained from all designated emergency

rooms of hospitals in Seoul, they may not cover all heat-related illnesses in the city, as some patients may have reported to other medical

institutions or not at all. Furthermore, the currently available heat-related illness data have a spatial scale (i.e., gu level) relatively coarse

for the purpose of validating our calculated heat risk at the dong level. This study also merged hazard, exposure, and vulnerability for risk

mapping without a universal rule, leaving the optimization of weights for combining the three components for further investigation.

This case study was conducted in Seoul, South Korea, in 2018. If data are available (e.g., dense weather stations and de facto population)

for other cities, it is recommended that the proposed framework be evaluated inmultiple cities to ensure robust generalization. Future studies

could develop tailored, dynamic risk-governance strategies based on the suggested diurnal heat risk mapping framework in different urban

environments. In addition, the exploration of scenario-based heat risk projections in future research is promising. Once future predictions of

de facto population become attainable, researchers can integrate shared socioeconomic pathway scenario-based vulnerability with

Table 2. Average of the daily spatial correlation results

Tmax Cokriging MLR SVR LLF Stacking

R 0.411 0.645 0.650 0.657 0.703

RMSE (�C) 1.001 0.840 0.834 0.821 0.785

MAE (�C) 0.743 0.645 0.640 0.630 0.594

Tmin Cokriging MLR SVR LLF Stacking

R 0.584 0.741 0.759 0.761 0.782

RMSE (�C) 0.965 0.794 0.770 0.764 0.747

MAE (�C) 0.767 0.608 0.588 0.581 0.565

The correlation coefficient (R), root-mean-square error (RMSE), and mean absolute error (MAE) from leave-one-station-out cross-validation (LOSOCV) results

based on five spatial models of daily Tmax and Tmin during the study period. The best results are highlighted in bold.

Table 1. Contingency table for the daily heat risk (daytime and nighttime) and number of heat-related illnesses

POD FAR CSI

Daytime heat risk

Dobong-gu (90) 1.00 0.39 0.61

Dongdaemun-gu (61) 0.96 0.30 0.68

Yeongdeungpo-gu (51) 0.96 0.34 0.64

Nighttime heat risk

Dobong-gu (90) 0.95 0.34 0.64

Dongdaemun-gu (61) 0.74 0.38 0.51

Yeongdeungpo-gu (51) 0.71 0.45 0.45

Assessment of the three representative gu regions with the largest number of illnesses during July–August 2018. Numbers in parentheses indicate the number of

heat-related illnesses. The thresholds were set to the average value of the daily heat risk and a daily number of heat-related illnesses for each gu.
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representative concentration pathway climate model-based heat hazard projections to provide more comprehensive insights into potential

heat risks.33,34
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Detailed methods are provided in the online version of this paper and include the following:
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

All requests for additional information and resources should be directed to the lead contact, Jungho Im (ersgis@unist.ac.kr)

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data can be obtained from the lead contact, provided the request is reasonable.

The code related to the developed model can be accessed by reaching out to the lead contact.

METHOD DETAILS

Study area and data collection

Study area

Seoul, which is situated in themidwestern region of the Korean Peninsula, is a highly urbanized city with a diverse distribution of building types

(Figure 1). The city extends approximately 60 km inland from the western coast and is bisected by the Han River, with the northern and

southern regions further demarcated by four mountains. Administratively, Seoul is divided into 424 dong districts, which are the smallest

administrative units, and 25 gu districts, intermediary units between the dong and city levels. Categorized as having a humid subtropical

climate under the Köppen-Geiger climate classification system, Seoul experiences hot and humid summers influenced by the East Asian

monsoon. Seoul is a densely populated metropolitan area with a population of approximately 9.5 million residents occupying an area of

605.2 km2. Despite an overall declining population trend since the 1990s, the city has experienced a steady increase in its elderly population,

a demographic group particularly vulnerable to extreme heat during the summer months.35

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

In situ air temperatures from automatic

weather stations

Korea Meteorological Administration (KMA) https://data.kma.go.kr

In situ air temperatures two from

forest meteorological stations

National Institute of Forest Science, South Korea http://mw.nifos.go.kr

Digital elevation model (DEM) USGS https://earthexplorer.usgs.gov

Road data Open Street Map www.openstreetmap.org

Global Human Settlement population

and built-up surface

European Commission https://ghsl.jrc.ec.europa.eu/

download.php

Wind speed Global Wind Atlas https://globalwindatlas.info

Landsat 8 satellite image USGS https://earthexplorer.usgs.gov

De facto population Public data portal, Korea https://www.data.go.kr/

De jure population Seoul Statistical Information System https://data.seoul.go.kr/

In situ air temperatures from

automatic weather stations

Korea Meteorological Administration (KMA) https://data.kma.go.kr

Software and algorithm

MATLAB Mathworks https://www.mathworks.com/

products/matlab.html

Google Earth Engine Google https://earthengine.google.com/

ArcGIS ESRI https://www.esri.com/
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During summer season (July–August) of 2018 in Seoul, the temperature soared to 39.6�C,marking the highest temperature in the 111-year

history of meteorological observations. Furthermore, the city experienced 35 heatwave days—defined as instances when the maximum air

temperature exceeds 33�C for at least two consecutive days—constituting the highest count since 1943. Additionally, Seoul witnessed 26

tropical nights, a record-breaking period since 1973, during which the temperature remained above 25�C throughout the night. In 2018,

the KCDC reported 613 patients suffering from heat-related illnesses in Seoul.32 This is the highest number of cases recorded between

2017 and 2021, and is approximately 25 times greater than the lowest number of recorded cases in 2020. To obtain a sufficient number of

weather stations for accurate air temperature estimations, the spatial extent of the study area included not only the boundaries of Seoul

but also its surrounding regions, as depicted in Figure 1B.

Data collection for air-temperature estimation

We acquired in situ air temperatures from 107 weather stations—1 from ASOS, 41 from automatic weather stations (AWS) operated by the

Korea Meteorological Administration (KMA), 2 from forest meteorological stations operated by the National Institute of Forest Science, and

63 weather stations operated by several local governments—locatedwithin the study boundary (Figure 1B). Tomap extreme air temperatures

in the summer season, the daily maximum and minimum air temperatures (Tmax and Tmin, respectively) were obtained from June 30 to

August 31, 2018.

Multiple datasets from several sources were gathered to produce independent variables (i.e., factors related to air temperature) for air

temperaturemapping. The elevation was derived from the 90m resolution Shuttle Radar TopographyMission (SRTM) digital elevationmodel

(DEM). Road data were retrieved from the Open Street Map. We used 250 m resolution Global Human Settlement population and built-up

surface (GHS-POP and GHS-BUILT, respectively) for information on the population and impervious surface area. A 250 m resolution mean

wind speed for the 10-year period was acquired from Global Wind Atlas.

The clear-sky average daytime LST (DLST) and normalized difference vegetation index (NDVI), built from Landsat 8 satellite data, were

used. Launched on February 11, 2013, Landsat 8 crosses the equator at approximately 10 a.m. local time, with a 16-day revisit cycle. The

30 m resolution Landsat 8 satellite image was downloaded from the United States Geological Survey (USGS) Earth Explorer. Among all

the available clear-sky (< 1% cloud percentage over the study region) Landsat 8 images, eight scenes fromMay to September were collected

to represent the local climatological data in the warm season (the dates are listed in Table S1). DLST and NDVI were derived from Landsat

thermal infrared bands (for DLST) and red and near-infrared bands (for NDVI) usingGoogle Earth Engine.36 After dailymin-max normalization,

we averaged the eight DLST and NDVI images to produce local climatology input factors.

Because of the difficulty in obtaining high-resolution (< 250 m) nighttime LST (NLST), the 250 mNLST data produced by Yoo et al. (2022)37

were used. These 250mNLST data were downscaled fromMODIS Terra daily NLST, which has a 1 km spatial resolution at 10 p.m. local acqui-

sition time. From July to August 2018, we obtained a total of 18 clear-sky NLST data (the dates are listed in Table S2) and averaged them after

daily min-max normalization to obtain the NLST as local climatology data.

Local climate zone (LCZ)

In this study, an LCZ classification system was employed to analyze the heat distribution derived from interpolated air temperatures and to

delineate urban regions for risk-mapping purposes. The LCZ comprises10 urban types (LCZ1-10) and 7 natural types (LCZA-G),38 and the full

name of each LCZ class is shown in Figure S4.We used Seoul’s LCZmapwith 50m resolution, whichwas produced frommultiple sources, such

as Sentinel-2A reflectance, Landsat 8 LST, and building datasets based on the convolutional neural networks (CNNs) classifier by Yoo et al.

(2020).28 Although the LCZ map was produced using satellite data obtained in May 2019, it was assumed that there were no significant LCZ

type changes in 2018 or 2019. Of the 17 standard LCZ classes, 11, including 7 urban types (LCZ1–6 and 8) and 4 natural types (LCZA, B, D, and

G), appeared in Seoul (Figure 1B).

De facto and de jure population data

The de facto population of Seoul was estimated using public big data from the Seoul Metropolitan Government and telecommunication sig-

nals from the Korea Telecom (KT)mobile company. KT is amajor telecommunications company, holding a 26.01% share of themarket in South

Korea as of January 2018. The de facto population data were produced based on the long-term evolution (LTE) signal. The LTE signal is

collected from the nearest base transceiver station approximately every five minutes when the cellular data is ‘‘ON,’’ regardless of cellphone

usage. This LTE-based measurement method solves the limitation of irregular collection in the call detail records (CDR)-based measurement

method, which collects call and text message signals only when they are in use.39 The limitations of reducing the generation of signals at night

and the deviation in personal cell phone usage were also resolved. This LTE-based de facto population estimation is the first of its kind and

can expand the total population of an area of interest using the market share of telecommunications.

The de facto population is based on hourly measurements, and the region covers 19,153 Jipgaegu, the minimum statistical zone unit

established by Statistics Korea to measure and provide statistical information. The de facto population data for dong and gu, which are

hierarchically at a higher level than Jipgaegu, were generated by aggregating the affiliated Jipgaegu data. A detailed procedure for

estimating the de facto population is provided in the Supplementary Information.

Data on the de jure population, the elderly living alone, the disabled, and recipients of the National Basic Livelihood Security system used

in this study were obtained from the Seoul Statistical Information System. The de jure population included the number of Seoul citizens and

foreigners living in Seoul under the Korean Resident Registration Act. Data on the population of elderly people living alone were provided,
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classified by sex, for people over the age of 65 years living alone in Seoul. The population of disabled people represents the number of people

with disabilities registered in autonomous districts, according to the Welfare of Persons with Disabilities Act. The population of recipients of

the national basic livelihood security system is the number by autonomous district of people who cannot maintain living payment under the

National Basic Livelihood Security Act. The de jure population data are renewed quarterly, whereas the data on the other populations are

renewed annually by the dong unit. In this study, we used the de jure population data released for the summer quarter of 2018, whereas

for the other populations, we used the figures released as 2018 statistical data.

Heat-related illness data

The heat-related illness data are provided by the KCDC’s integrated disease and health management system.32,40 These statistics are the

result of monitoring the occurrence of heat-related illnesses such as heat stroke, heat exhaustion, heat cramps, heat fainting, heat edema,

and estimated heat-related disease due to heatwaves in the summer, counted as reports from approximately 500 emergency room-operating

medical institutions nationwide. The heat-related illness data in Seoul were produced from reports of visits to emergency rooms by patients

with thermal diseases at sixty-seven emergency rooms at Seoul medical institutions. The period for collecting and releasing data was daily,

from 20May to 30 September. We used the heat-related illness monitoring-system data from a total of twenty-five gu units in Seoul from July

to August 2018.

Heat risk mapping framework

The overall procedure of the proposed framework for daily heat risk mapping is shown in Figure S5. First, 250 m spatial resolution daily Tmax

and Tmin were produced using a stacking ensemble machine learning spatial modeling technique. Daily heat hazard maps were then

produced by averaging the two-day (i.e., consecutive days) cumulative Tmax (for daytime) and Tmin (for nighttime) only for the areas of

the urban-type LCZ in each administrative dong. Exposure maps were produced by dividing the actual population (3 p.m. during the day

and 6 a.m. at night) by the area of the urban LCZ at the administrative dong levels. Vulnerability maps were produced through factor analysis

using multiple heat vulnerability indicators. Finally, daily heat risk maps were constructed for daytime and nighttime by combining daily

hazard, exposure, and vulnerability, and the validation was performed using heat-related illness data.

Air temperature modeling and analysis

Daily Tmax and Tminmaps were produced usingmachine learning techniques. In situ Tmax and Tmin from the weather stations were used as

dependent variables (see the weather stations in Figure 1). A total of 12 input variables known to be significant whenmodeling urban air tem-

perature were selected.14,41 (Table S3). The input variables were categorized as topographical (DEM and Slope), urbanization characteristic

(Pop, Built, and Road), coordinate (Lat, Lon, and DistC), and climatological (DLST, NLST, NDVI, and Wind) data. Based on the density of the

weather stations (the calculation method is suggested by Nichol andWong42) and the spatial resolution of the input data, the spatial scale for

the output grids of Tmax and Tmin was determined to be 250m. DEM, DLST, andNDVI were thus mean aggregated to a resolution of 250m.

The slope was calculated using DEM. Road density (called Road) at 250 m resolution was obtained by line density using the OpenStreetMap

(OSM) road shapefile. Generally, temperatures in cities tend to be higher closer to city centers. Using Built as a weight field, the distance from

the built-up weighted center (DistC) of the study area was calculated for each 250m resolution grid. As latitude (Lat) and longitude (Lon) have

underlying effects on air temperature, they were also produced at a resolution of 250 m.

Tomodel the air temperatures, this study used stacking ensemblemachine learning based on a two-layer machine-learning structure (Fig-

ure S6). The first layer consisted of several single models. The single models used in this study are recommended for different algorithms.43

We included four different single algorithms: support vector regression (SVR), multi-linear regression (MLR), local linear forest (LLF), and cok-

riging.44–46 Cokriging is a geostatistical approach based on spatial autocorrelation that combines one ormore covariates to predict the target

value of an unsampled location using known samples. For cokriging in this study, DEMwas chosen as a covariable because elevation is closely

associated with air temperature.41 Because several input variables (e.g., DEM, DLST, and NLST) have linear relationships with the target air

temperatures, we selected MLR, LLF, and SVR, where linearity could be considered in the modeling (i.e., a local linear adjustment in LLF and

using the linear kernel in SVR). In the second layer, SVR was used as the meta model. Descriptions of cokriging, MLR, SVR, LLF, and stacking

ensemble machine learning used are presented in the Supplementary Information.

Spatial modeling was performed daily from June 30 to August 31, 2018, and leave-one-station-out cross-validation (LOSOCV) was con-

ducted to identify the performance of each model. The correlation coefficient (R), root mean square error (RMSE), and mean absolute error

(MAE) were used to assess the accuracy. In addition, the spatial distributions of Tmax and Tmin were analyzed based on each LCZ class to

identify the differences between the thermal patterns.

Mapping hazard and exposure

The interpolated air temperatures and LCZ were used to map daily heat hazards. To reflect the heat frequency, we produced two-day cumu-

lative (i.e., consecutive days) air temperatures.47 The cumulative Tmax and Tmin were then averaged for each of the 424 administrative dongs

in Seoul to map the daytime and nighttime hazards. As it is most meaningful to focus on areas where people are densely located, the

temperatures of the urban-type LCZs (LCZs 1–6 and 8) were selectively averaged. The daily hazard maps for daytime and nighttime at the

administrative-dong level were min-max normalized based on all values from July to August 2018.
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Population density is the predominant indicator for exposure.10,17 To map the daily heat exposure, we divided the de facto population of

each dong by the total areas of the urban-type LCZs (LCZ 1–6 and 8). For daytime and nighttime exposures, the de facto population figures at

3:00 p.m. and 6:00 a.m., respectively, were used. These two hours were selected because they are close to the Tmax and Tmin times. To

compare the distributions of the de facto and de jure populations, we also produced an exposure map using the de jure population data

from 2018. As the de jure population figure does not distinguish between day and night, an exposure map was generated for 2018. All expo-

sure maps were min-max normalized based on all the values for the period July–August, 2018.

Mapping vulnerability

Thermal vulnerability greatly depends on demographic and socioeconomic conditions. Some demographic and socioeconomic character-

istics were related to the inability to withstand extreme heat. Eight indicators related to heat vulnerability were obtained based on a literature

review48–52 and the availability of the Seoul database (Figure 1). Here, de facto population data at 3:00 p.m. and at 6:00 a.m. were used as

indicators of daytime and nighttime vulnerability, respectively. Eight indicators (1–8) are used. Four of them (1–4) were based on the de facto

population. For indicators 1–2, we used the percentages of males and females aged > 50 years. There was a sharp increase in heat-related

illnesses in the population aged > 50 years, as reported to the KCDC (2018).32 For indicators 3–4, the ratios of the de facto and de jure pop-

ulation figures for the elderly (over 65 years) for males and females were used.We assumed that a higher value of this ratio was associated with

a greater possibility of physical exposure to heat owing to the different areas of residence and activity.53 The other four indicators (5–8), as key

sources of social isolation, were obtained from de jure population data, as they could not be derived from de facto population data. For in-

dicators 5–7, the percentages of elderlymales and females living alone and those with disabilities were used. These groups lack opportunities

to obtain assistance when extreme heat occurs. For indicator 8, we considered the percentage of basic livelihood recipients. This group is

poorly prepared for extreme heat.

This study used principal component analysis (PCA) to produce daytime and nighttime heat vulnerability maps. PCA has been widely used

in vulnerability mapping because it can reduce the number of correlated variables to a small dimension, helping to identify the latent mean-

ings between the variances of uncorrelated data.48,54,55 PCAwas conducted using a covariancematrix in which the elements were normalized

and standardized, considering that each variable had a different variance and unit. Kaiser-Meyer-Olkin and Bartlett’s tests were then per-

formed to select suitable principal components (PCs) with eigenvalues greater than 1.56 Varimax rotation was performed to interpret and

maximize the selected PCs’ loadings. These rotated PCs were then weighted by the variance explained by each component and aggregated

to produce a combined PC score (i.e., a variance-weighted approach57), which represents heat vulnerability at the administrative dong level.

The resulting vulnerability maps were min-max normalized for each date.

Heat risk mapping and validation

Daily daytime and nighttime heat risks were mapped by combining the three component layers—hazard, exposure, vulnerability—in equal

weights, because there is no standard regarding which component is more important than the others.10,58 When validating the heat risk map,

the administrative dong level heat risk measures were mean-aggregated to the gu level to match the spatial scale of heat risks to the heat-

related illness data. Validationwas implemented on amonthly time scale because the sample size (i.e., heat-related illness) was very small on a

daily scale. Therefore, the aggregated daily heat risk measure was averaged for July–August 2018. The number of heat-related illnesses for

each gu was also averaged from July to August. We divided this average number of heat-related illnesses by the de jure population figure to

produce a heat-related illness ratio (%) for each gu.11 The spatial correlation between the heat risk measure and the heat-related illness ratio

for 25 gu in Seoul was calculated to validate the proposed framework.

We also compared the accuracy of the proposed heat risk map with that of another framework that uses only the de jure population to

calculate exposure and vulnerability (see Figure S7). In addition, temporal validation of the daily heat risk was implemented. First, the three

gu regions with the highest number of heat-related illnesses in the summer of 2018 were selected. The three gu units constituted a relatively

sufficient sample size (> 50 cases per year) to show temporal variation. The average value of the number of daily heat-related illness cases for

each gu and the average value of the daily heat risk were set as thresholds,59 and classification was performed based on a contingency table

(Table S4). The heat risk measures for the three gu were evaluated by calculating the probability of detection (POD; Equation 1), false alarm

rate (FAR; Equation 2), and critical success index (CSI; Equation 3).

POD =
H

H+M
(Equation 1)

FAR =
F

H+F
(Equation 2)

CSI =
H

H+M+F
(Equation 3)
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