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Monocytes are a highly plastic innate immune cell population that displays significant

heterogeneity within the circulation. Distinct patterns of surface marker expression have

become accepted as a basis for distinguishing threemonocyte subsets in humans. These

phenotypic subsets, termed classical, intermediate and nonclassical, have also been

demonstrated to differ in regard to their functional properties and disease associations

when studied in vitro and in vivo. Nonetheless, for the intermediate monocyte subset in

particular, functional experiments have yielded conflicting results and some studies point

to further levels of heterogeneity. Developments in genetic sequencing technology have

provided opportunities to more comprehensively explore the phenotypic and functional

differences among conventionally-recognized immune cell subtypes as well as the

potential to identify novel subpopulations. In this review, we summarize the transcriptomic

evidence in support of the existence of three separate monocyte subsets. We also

critically evaluate the insights into subset functional distinctions that have been garnered

from monocyte gene expression analysis and the potential utility of such studies to

unravel subset-specific functional changes which arise in disease states.

Keywords: monocytes, monocyte subsets, inflammation, gene expression, flow cytometry, next generation

sequencing, microarray, immune response

INTRODUCTION

Monocytes are innate immune cells that account for ∼10% of nucleated blood cells (1, 2). They
play a key role in anti-microbial immunity through direct responses including phagocytosis and
cytokine production in addition to regulating other cells of the innate and adaptive immune
systems (3). Under inflammatory conditions blood monocytes may transmigrate into tissues
and differentiate to replete or supplement tissue-resident mononuclear phagocytic cells (4).
Monocytes also play pathophysiological roles in inflammatory diseases. This is best recognized
in atherosclerosis, which is increasingly considered to be a chronic inflammatory condition
(5). Monocytes adhere to and transmigrate through endothelial cell layers into the vascular
intima, where they internalize modified lipid particles to become foam cells (6). Accumulation
of these cells, accompanied by production of pro-inflammatory and pro-fibrotic mediators
results in atherosclerotic plaque enlargement and/or rupture (7). Given the physiological and
pathophysiological importance of monocytes, a greater knowledge of their roles in health and
disease has the potential to inform development of therapeutic strategies.
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As illustrated in Figure 1, scientific understanding of the
physiology of monocytes in health and their properties in disease
has progressively increased over several decades (2). A key step
along the way was the recognition that monocytes are not
simply a homogenous population but are comprised of distinct
subsets, which may themselves contain further subpopulations.
Development of immunofluorescent flow cytometry in the last
decades of the 20th century (15, 16) was an essential technology
for the recognition of first two (15) and then three distinct
monocyte subsets (Figure 2), defined by relative expression of
CD14 (LPS receptor) and CD16 (Fc gamma receptor III) (24).
Studies differ, however, as to the exact gating strategy used to
separate these three subsets - the separation of intermediate
and nonclassical subsets being particularly variable with no
consensus as to whether a rhomboid or trapezoid strategy
is preferable (illustrated in Figure 2B) (34). Similarly, the
distinction between classical and intermediates (based on the cut-
off between CD16− and CD16+) may vary among individual
studies (Figure 2D). Recent work has now confirmed that
monocytes egress from the bonemarrow as a uniform population
of CD14++CD16− cells a proportion of which subsequently
differentiate to become intermediate and nonclassical monocytes
(35). Despite these advances, questions remain regarding the
number of monocyte subsets (2) and the pathological roles
that individual monocyte subsets play in disease states. With
regard to the number of subsets, some authors have argued that
subpopulations exist within the intermediate subset (30, 31).
In our own work, we have observed that blood intermediate
monocytes can be consistently subdivided into subpopulations
with high- and mid-level expression of the MHC II protein
HLA-DR (Figure 2C) and that the absolute numbers and relative
proportions of the two subpopulations are differentially regulated
in disease states such as obesity and chronic kidney disease
(29, 31). Categorization of CD16+ monocyte subsets based

FIGURE 1 | Developments in the understanding of monocyte biology in the past several decades [1. (8), 2. (9); 3. (10); 4. (11); 5. (12); 6. (13); 7. (14); 8. (15); 9. (16);

10. (17); 11. (18); 12. (19); 13. (20); 14. (21); 15. (22); 16. (23); 17. (24); 18. (25); 19. (26); 20. (27); 21. (28); 22. (29); 23. (30)]. Developments in gene expression

analysis are bolded and these boxes highlighted. HIV, Human Immunodeficiency Virus; ESRD, End Stage Renal Disease.

on expression of the carbohydrate residue 6-sulfo Lac-NAc
(slan) has also been proposed (33). Among the approaches that
are available to resolve questions about monocyte phenotypic
and functional heterogeneity, gene expression studies may be
particularly valuable. It should be noted that a caveat in the
interpretation of gene expression studies is that there is an
imperfect correlation between mRNA and protein levels due
to post-translational modification and other factors (36, 37).
Nonetheless, a number of the studies discussed in this review
have, to some extent, reinforced their mRNA findings with using
additional experimental approaches - an important step in the
interpretation of gene expression data.

Between 2006 and 2014, a relatively large number of
microarray studies generated gene expression data from total
blood monocytes during health or various disease states. The
resulting datasets have been used by Rinchai et al. to generate a
curated compendium of monocyte transcriptional profiles (38).
More recently, however, gene expression analysis techniques have
been applied to purified human monocyte subpopulations. The
overall impact of these studies on our understanding of monocyte
subset biology has not previously been reviewed. In this article,
we focus on the knowledge that has been gained from studies
that have used a range of gene expression analysis technologies
to investigate differences among human monocyte subsets or
have sought to determine subset-specific functions and roles
in disease.

DEVELOPMENT OF GENE EXPRESSION
ANALYSIS TECHNIQUES

Advances in genetic sequencing techniques (summarized in
Table 1) have enabled researchers to define immune cell subtypes
and to accurately assign functional roles by studying cellular
transcriptomic data (43). The “transcriptome” is a quantified
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FIGURE 2 | (A) Tabular summary of the CD14/CD16 phenotypes, typical proportionate distribution in health and evidence for further heterogeneity of the three

currently-recognized monocyte subsets. [1. (30); 2. (31); 3. (32); 4. (25); 5. (33)] (B) Example of variation in distinction of intermediate and nonclassical monocyte
subsets: Flow cytometry dot plots of the three currently-recognized monocyte subsets in peripheral blood mononuclear (PBMC) sample from a healthy adults based

on surface expression of CD14 and CD16 [the monocyte population was generated by sequential gating as previously described (29, 31)]. The border between

intermediate and nonclassical monocytes may be defined by either a rectangular (left dot plot) or trapezoid (right dot plot) region. (C) Example of intermediate
monocyte heterogeneity: In the same sample, two intermediate monocyte subpopulations in blood from a healthy adult distinguished by mid- and high-level of surface

HLA-DR expression as previously described (29, 31). (D) Example of variation in distinction of classical and intermediate monocyte subsets: In the same sample,

setting a low (left dot plot) or high (middle dot plot) threshold for CD16 positivity results in variation in the defined proportions of the classical and intermediate

monocyte subset (bar chart, right). In (B,D), the red lines indicate the part of the gating strategy at which variation may occur.
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TABLE 1 | Summary of genomic sequencing technologies utilized by researchers

cited in this review.

Summary of technique

Sanger Sequencing

(39)

• cDNA amplified using fluorescently labeled nucleic

acid, primers, DNA polymerases

• Amplified cDNA segments separated in capillary

gel

• Fluorescent labels used to sequence segments

Microarray (40) • Microarray chip contains cDNA probes for

transcripts of interest

• Isolated cDNA hybridized to chip

• Microarray chip scanned to quantify

gene expression

Tag-based sequencing

(SAGE)

(41)/Super-SAGE) (42)

• Streptavidin beads used to bind cDNA

• Restriction endonuclease cleaves cDNA, cleaved

cDNA discarded

• Oligonucleotide adaptors added, with binding

site for cleaved sticky end (Adaptor contains an

upstream tag-enzyme binding-site and a primer

site for subsequent steps)

• Complementary strand to cDNA produced until

cleaved by tagging-enzyme (15 b.p. for standard

SAGE)

• Final tags annealed to form a contig—multiple

DNA “tags” separated by a primer and tag-enzyme

binding site

• Contig expanded by bacterial replication and

sequenced

• DNA tags aligned with reference genome

RNA-seq (43) • cDNA isolated and cleaved into fragments

• Fragments sequenced by NGS technologies

• Sequences classified [exonic/junctional/Poly(A)]

and aligned with reference genome

Massive Analysis of

Complementary DNA

Ends (44, 45)

• Combination of tag-based approach and NGS

• cDNA randomly fragmented

• Sequence generated from poly(A) tail on 5′ cDNA

strand

• Contigs assembled, replicated, sequenced and

aligned with reference genome

scRNA-seq (46) • Single cells sorted into individual wells

• Transcriptome for each individual cell generated

separately by NGS methods

measurement of all RNA transcripts present in a cell. Inferences
regarding cellular function may be drawn from quantitative and
qualitative analysis of gene expression (43). Rapid advances in
genetic sequencing technology have reduced costs and increased
scalability of transcriptomic studies (47).

Traditional Sanger Sequencing was initially used to sequence
cellular RNA after conversion to complementary DNA (cDNA)
(39). However, this technique is costly, time consuming and does
not allow the quantity of each RNA transcript to be determined
(43). Microarray analysis was subsequently developed to allow
relative quantification of gene expression (40). This technique
involves hybridization of cDNA generated from isolated cellular
RNA to fluorescently labeled cDNA probes and allows for
comparison of gene expression levels among populations of
cells. Tag-based RNA sequencing techniques provided a further
refinement (41). These approaches [e.g., SAGE (Serial Analysis

of Gene Expression) and Super-SAGE] involve production of
primers which anneal to the 5’ end of RNA transcripts only. A
short piece of RNA or “tag” is sequenced for each RNA fragment
(15 base pairs for traditional SAGE analysis, longer for super-
SAGE) (42) and these tags are then aligned against a reference
genome and gene expression levels are inferred based on the
frequency of each tag. CAGE (cap analysis of gene expression)
is a further variation on tag-based sequencing wherein all tags
produced are from transcription start sites (48).

These techniques facilitated studies of cellular gene
expression, although some limitations remained (43). For
example, microarray data are limited to expression of known
genes and “background noise” which occurs due to non-specific
probe hybridization requires that data are normalized, making
comparisons from different experiments problematic (49). Tag-
based sequencing methods overcame these limitations but are
costly and the full sequencing information of cellular transcripts
remains unknown.

High throughput genetic sequencing methods, also known
next generation sequencing (NGS), generate sequences for
multiple pieces of genetic material simultaneously (50). These
techniques have massively reduced the cost of genetic sequencing
and may be applied to extracted RNA to generate quantitative
transcriptional data (43). This approach, commonly termed
“RNA-seq” has now been applied to many cell types in
both healthy and disease states. Identification of differentially
expressed genes (DEGs) allows comparisons to be made among
different populations of cells or within the same population of
cells isolated under different conditions (51). Other recently-
developed approaches combine high throughput sequencing with
a “tag”-based approach to gene expression analysis. For example,
in massive analysis of cDNA ends (MACE), a short stretch
of cDNA from the 3’ end of each transcript is sequenced.
These sequenced tags are mapped to the reference genome
and gene expression is thus determined. This approach is
cheaper than conventional RNA-seq and may be superior for
the identification of rare transcripts (44, 45). Finally, single-
cell RNA-sequencing (scRNA-seq) represents a still more recent
advance in transcriptomic analysis. Individual cells from within
a population are sorted and their RNA expression quantified
allowing heterogeneity within cell populations to be determined.
This technique may be especially valuable in interrogating
subdivisions within immune cell subpopulations (46).

Large amounts of gene expression data require significant
bioinformatics expertise to interpret appropriately. It should
be emphasized that variations in the bioinformatics analysis
techniques employed by the research groups profiling immune
cell subpopulations may be as important as differences in
the genetic sequencing techniques. An initial step is analysis
of DEGs to identify specific individual genes that are highly
expressed by a group of cells. Additional analysis of the entire
transcriptome, considering the number of DEGs and magnitude
of difference, may be used to determine if groups of cells
are genetically distinct or to compare the degree of difference
among several populations. Multiple studies have compared the
degree of similarity among monocyte subsets by considering
the total number of DEGs among them (26, 27, 52). Other
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techniques used to determine if proposed cellular subpopulations
are truly distinct include principal component analysis (PCA)
and hierarchical clustering. Principal component analysis is
a statistical procedure whereby multiple linear, potentially
correlated variables (e.g., gene expression magnitude) are
converted into non-correlated “components.” This allows data to
be visualized in two dimensions and allows for clusters/groups
of cells to be identified. For example, as described in detail
later, PCA of gene expression data from monocyte subsets
from each of several donors has been used to determine that
the intermediate monocyte subset is genetically distinct from
classical and nonclassical subsets (25). Hierarchical clustering,
is an alternative approach used to analyse the relationships
among cell subpopulations, with the results usually represented
on a dendrogram.

In order to integrate newly-generated data with existing
biological knowledge, various approaches have been used to
determine the functional implications of gene expression data.
Gene set enrichment analysis techniques determine classes
of genes which are highly expressed by a cell population.
For example, publicly available gene ontology (GO) data
may be integrated with DEGs identified to predict biological
processes which differ among the populations of cells under
comparison (26, 27). Pathway Analysis may be performed, using
platforms such as Ingenuity Pathway Analysis (IPA) to integrate
newly-generated data with existing knowledge of cause-effect
relationships, for example to predict upstream regulators or
downstream effects of the observed DEGs (53). Other data
mining techniques such as weighted gene co-expression analysis
(WGCNA) may be used to identify clusters of co-expressed genes
which are up or down regulated (54).

GENE EXPRESSION ANALYSES OF
HUMAN MONOCYTES SUBSETS IN
HEALTH (2007–2012)

Transcriptomic evidence for a “monocyte dichotomy” has
previously been reviewed (23, 55). Anzbazhagan et al. (56)
combined gene expression data from five microarray datasets
(57–60) to determine commonly-identified DEGs and identify
links between functional properties and transcriptional data.
As only one of these papers (26) considered the intermediate
monocyte subpopulation separately, this population could
not be included in the combined review. It was noted
that CD14+/CD16− (Classical) monocytes demonstrate high
expression of genes involved in responses to bacterial infection
and inflammation [e.g., TLR4 (toll-like receptor 4), TREM1
(triggering receptor on myeloid cells-1), CCR2 (chemokine
receptor 2)], genes involved in inflammasome signaling [e.g.,
NLRP3, NLRP12 (NACHT, LRR and PYD domains-containing
proteins 3 &12)] and genes involved in low density lipoprotein
(LDL) uptake [e.g., LDLR (low density lipoprotein receptor)]
(56). In contrast, CD16+ monocytes have high expression
of genes involved in cytoskeletal dynamics [e.g., CDC42EP4
(CDC42 effector protein-4), CKB (creatinine kinase B), EML4
(EMAP-like protein 4)], tissue invasion in inflammation

[e.g., CTSL1 (cathepsin 1)] and genes suggesting terminal
differentiation and cellular maturity [e.g., CDKNIC (cyclin-
dependent kinase inhibitor 1C), HES4 (hairy and enhancer of
split 4)] (56). The authors of the papers used by Anbazhagan
et al. made their raw data publicly accessible in the Gene
Expression Omnibus (GEO) repository allowing a combined
approach to data analysis. Other research groups also reported on
transcriptional differences between CD14+/CD16− and CD16+

subsets but these could not be merged for a single analysis.
Nonetheless, some common findings were described including
higher expression of CCR2 by the classical subset (55) and
cathepsins by the nonclassical subset (55) as well as higher
expression of ITGAM (the gene for CD11b) by the classical subset
(61). In the remainder of this article we will focus on literature
investigating the transcriptional profiles of the three currently
recognized monocyte subsets.

Within a short time-period following the publication of
consensus nomenclature in 2010 (24), three high-quality
studies examined genetic distinctions among the three currently
recognized monocyte subsets (25–27). Importantly, in these
studies (which are summarized and compared in Table 2), the
authors attempted to validate the identified differences in gene
expression with functional experiments. Cros et al. (25) were
the first to purify three monocyte subsets from healthy adults
and to compare gene expression by different subsets using
a microarray approach. Hierarchical clustering and principal
component analysis supported the existing nomenclature as
subsets isolated from each donor clustered together. However,
in this study, Slan expression did not allow discrimination
of genetically-distinct monocyte subpopulations. Of note, the
classical and intermediate subsets were the most closely related
subsets. Gene expression data for murine monocyte subsets
was also generated and, in keeping with previous observations
by Ingersoll et al. (58), the human classical and intermediate
monocyte subsets were found to most closely resemble mouse
Ly6C (Gr1)hi monocytes. Nonclassical monocytes most closely
resembled mouse Ly6Clo monocytes, which had recently been
reported, in mice, to crawl on the vascular endothelium
(62). Given the analogous gene expression profiles of human
and mouse monocytes, the authors designed a number of
experiments to determine if human monocyte functions aligned
with those of their murine counterparts. These experiments
confirmed that human nonclassical monocytes patrol the
vascular endothelium in similar fashion to mouse Ly6Clo

monocytes. Furthermore, classical and intermediate monocytes
phagocytosed latex beads and produced reactive oxygen species
(ROS) and pro-inflammatory cytokines in a similar manner to
mouse Ly6Chi monocytes (25). In summary, this study used gene
expression analysis to cluster human and mouse subsets, thus
predicting functional roles of humanmonocyte subsets and these
predictions were extensively validated by adoptive transfer and in
vitro functional experiments.

Two other studies characterized gene expression profiles
of the three currently accepted monocyte subsets. In contrast
to the study by Cros et al., however, the results reported
from these studies favored a conclusion that intermediate
monocytes are more closely related to nonclassical than classical
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TABLE 2 | Summary of the relevant details of three landmark studies based on gene expression analysis of purified classical, intermediate and nonclassical monocyte

subsets in health.

Cros et al. (25) Wong et al. (26) Zawada et al. (27)

Gene expression

technique

Microarray Microarray SuperSAGE

GEO
E-MEXP-2544

E-MEXP 2545

GSE3081 GSE25931

Most closely related

populations

Nonclassical & Intermediate Classical & Intermediate Classical & Intermediate

Demonstrated functional correlations

Subset Cros et al. (25) Wong et al. (26) Zawada et al. (27)

Classical Cytokine Production: Highest production IL-8,

IL-10, CCL2, CCL3 after LPS stimulation. Also

produce IL-6

Phagocytosis of latex beads

Produced high levels of ROS

Receptor Expression: Highest expression of CD54,

CCR1, CCR2, CXCR1, CXCR2, CXCR4, CD11B,

CD33, CD52L, CD1d, CD9, CD99, CLEC4D,

CLEC5A, IL13Ra1

Cytokine Production: Produce GM-CSF, IL10, CCL2

after LPS stimulation

Receptor Expression: Highest levels of

CD91, CD64, CD11B, CD35

Lowest ROS production

Induction of T-cell proliferation

Intermediate Cytokine Production: Highest production

TNF-α, IL-1ß, and IL-6 after LPS stimulation,

also produced

Phagocytosis of latex beads

Did not produce ROS

Receptor Expression: Highest expression of CD40,

CD80, HLA-ABC, HLA-DR, CD32, CCR5, CD54,

CD163, CLEC10a, GFRa2

Cytokine Production: Intermediate or lowest level

production of all cytokines studied

Receptor Expression: Highest levels of

CD74, HLA-DR, CD202B, CD105

Highest ROS production

Most potent induction of T-cell proliferation

in vitro
Form cellular clusters in an in vitro
angiogenesis assay

Nonclassical Cytokine Production: IL-1R antagonist

production after LPS stimulation

TNF-α and IL-1ß production after viral

stimulation

Did not phagocytose latex beads

Did not produce ROS

Patrolling behavior on endothelial layers

Receptor Expression: Highest expression of

CXC3CR1, CD115, CD97, CD123, CD 294,

P2RX1, Siglec10

Cytokine Production: Highest production of TNF-α

and IL-1ß

Receptor Expression: Highest levels of

CD31, CD43, CD11a, CD47

Intermediate ROS production

Induction of T- cell Proliferation in-vitro

monocytes (26, 27). Zawada et al. used SuperSAGE analysis to
identify DEGs among the three monocyte subsets (27). By this
analysis, intermediate and nonclassical subsets were deemed
most closely related with 559 DEGs compared to 1127 DEGs
between classical and intermediate subsets. Gene ontological
studies were then used to predict biological processes enhanced
in each subset. In vitro experiments relevant to identified
processes were then performed, elegantly demonstrating the
power of gene expression studies to determine cellular function.
For example, intermediate monocytes were shown to have
high expression of MHC-II-restricted antigen processing and
presentation related genes and it was then demonstrated that
these cells are capable of stimulating T-cell proliferation (27).
Expression of genes related to cellular processes including
cell adhesion, oxidative stress and phagocytosis differed across
subsets (27). Production of ROS by unstimulated monocyte
subsets showed a high level of basal production in intermediate
monocytes, mirroring this subset’s high expression of genes
involved in superoxide regulation (27). Across subsets, cell
surface marker expression levels (measured by flow cytometry)
correlated with expression levels of the related genes (27). The
third large study of gene expression profiling of monocyte
subsets by Wong et al. used microarray technology and again
reported that intermediate monocytes are most closely related

to nonclassical monocytes (26). These authors also used gene
ontology analysis to infer biological processes performed by
each subset. Of note, genes involved in cell movement were
highly expressed by the nonclassical subset, in keeping with their
reported patrolling behavior. Similar to Zawada et al., genes
involved in MHC-II processing and presentation were found to
be highly expressed by the intermediate subset and genes for S100
proteins were highly expressed by the classical subset (26).

Taken together, these studies demonstrated that gene
expression analysis is a powerful tool to predict cellular function.
The importance of in vitro experiments to validate functional
predictions based on gene expression data was also illustrated.
Nonetheless, a number of gaps and inconsistencies remain
in fully understanding subset-specific functions. These relate
in particular to the intermediate monocyte subset which is
variously described as most closely resembling either the classical
or nonclassical subset. Other physiological roles including
inflammatory cytokine production and angiogenic capability
have also been assigned to different subsets by different authors.
As described in the Introduction and illustrated in Figures 2B–D,
one issue which may lead to discrepancies among studies is
that the definition of flow cytometry analysis and sorting gates
is not uniformly standardized protocol. The use of different
methodologies, including microarray and tag-based approaches,
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to analyse gene expression is also likely to explain some of the
variation within published literature.

MORE RECENT GENE EXPRESSION
ANALYSES OF HUMAN MONOCYTES
SUBSETS IN HEALTH

In an innovative study, Schmidl et al. investigated differential
gene expression among monocyte subsets (48) and coupled
these profiles with analysis of mechanisms of gene expression
regulation. The authors initially confirmed that the three
recognized monocyte subsets clustered separately on
multidimensional scaling analysis. A total of 10,249 protein-
encoding genes was identified with a higher number of DEGs
between the intermediate and classical monocyte subsets
than between the intermediate and nonclassical. Chromatin
immunoprecipitation sequencing (ChIP-seq) analysis was then
used to identify subset-specific histone modifications (H3K4me1
and H2K27ac) in the classical and nonclassical subsets. Subset-
specific differential CAGE cluster expression was analyzed in all
subsets and was found to correlate with histone modifications.

The authors next sought to identify differentially utilized
transcriptional motifs by performing de novo motif detection
in regions of subset-specific histone modifications or CAGE
cluster expression. The classical monocyte motif signature was
dominated by AP-1 (activator protein 1) and CEBP (CCAAT
enhancer binder protein), the intermediate monocyte subset by
NF-κB (nuclear factor-κB), E-box and MEF2 (myocyte enhancer
factor 2) motifs while the nonclassical signature included
E2F, NRF1 (nuclear respiratory factor 1) and OCT (octamer
transcription factor) motifs. Some of these motifs corresponded
to differential expression of the mRNA for specific transcription
factors. For example, classical monocytes exhibited higher
expression of the FOS transcription factor, a component of AP-1.
Finally, gene ontology analysis yielded findings consistent with
previous work—for example, upregulation of genes associated
with antigen processing and presentation in intermediate
monocytes. This analysis also suggested that classical and
nonclassical monocytes differ in metabolic processes with
upregulation of glycolytic pathways in classical monocytes and
oxidative phosphorylation pathways in nonclassical monocytes.
In addition to confirming that the three monocyte subsets are
genetically distinct, this study pointed to epigenetic regulatory
mechanisms underpinning differential gene expression.

In 2015, Hofer et al. re-examined the use of slan to
discriminate monocyte subsets (33). The authors proposed
that this glycan marker be used to more clearly differentiate
the intermediate and nonclassical subsets - an approach that
could potentially overcome difficulty in standardizing gating
of monocyte subsets. Firstly, a conventional CD14/CD16
based gating strategy was contrasted with a strategy which
distinguished subsets of CD16+ monocytes on the basis of slan
positivity (with slan+ cells corresponding to the conventional
nonclassical subset). Next, MACE analysis was conducted
on monocyte subsets sorted using magnetic column-based
isolation. An observation that MHC-II genes related to antigen

presentation were highly expressed by the intermediate subset
was common to both isolation strategies and consistent with
Zawada et al. (27). In this study, PCA supported the separation of
conventionally-defined intermediate and nonclassical monocytes
as well as separation of CD16+ monocytes on the basis of slan
expression [an observation that diverges from Cros et al. (25)].
It should be noted, however, that while intermediate monocytes
were reliably CD16+Slan−, some cells which would have fallen
within the conventional nonclassical gate were also Slan−. This
study identified DEGs between intermediate and nonclassical
monocytes using a rectangular CD14-based gating strategy and
DEGs between Slan+ and Slan− CD16+ monocytes. More DEGs
(676) were identified using a CD14 based separation than a Slan
based separation (385) and 314 genes were common to both
approaches. A cluster of genes related to antigen presentation
was identified on interaction analysis (33). The dominant GO
term discriminating Slan+ and Slan− monocytes was “regulation
of cytokine production.” Interaction analysis demonstrated that
the Slan+ monocytes highly expressed a cluster of genes related
to Ubiquitin C, which functions in the regulation of diverse
cellular processes.

In 2017, Metcalf et al. compared gene expression profiles
of FACS-purified monocyte subsets from young and older
individuals, using microarray analysis (63). Hierarchical
clustering was employed to examine the aggregation of samples
on the basis of monocyte subset and age of the individuals. While
the three previously-described subsets aggregated together, this
analysis did not discriminate young and older subjects (for any
subset). In this study, classical and intermediate monocytes
were the most closely related subsets on hierarchical clustering
analysis. Further analyses of unstimulatedmonocyte subsets were
performed with combined data for all subjects. The authors first
considered differences between CD16− and CD16+ monocytes
and reported higher expression of transcripts including TNF
(tumor necrosis factor), CX3CR1 (fractalkine receptor) and
IFNG (interferon gamma) for CD16+ monocytes and higher
expression of transcripts including SELL2 (L-selectin), CCR1/2
(CC-chemokine receptors 1 and 2) and TLR2/4/5/6/8 (toll like
receptors 2/4/5/6/8) in CD16− monocytes. Other observations
included that some genes for MHC-II molecules were highly
expressed by both classical and intermediate monocytes while
others were more highly expressed by intermediates only and
that transcripts related to cytoskeletal organization were more
highly expressed by nonclassicals. These findings were broadly
consistent with previous work (25–27). Next, the authors
purified monocyte subsets and stimulated them ex vivo with
pathogen recognition receptor (PPR) agonists [LPS, a TLR4
agonist; CLO97, a TLR7/8 agonist and 5pppRNA, a RIG-1
(Retinoic-acid inducible gene I) agonist]. After stimulation,
each subset retained a distinct gene expression profile, although
the number of DEGs was increased. Gene expression after
stimulation was compared with controls to determine the effect
of stimulation on transcriptomic activity. Taking the studied
subjects as a whole, agonist stimulation resulted in a number
of differences to unstimulated cells. For example, 5’pppRNA-
treated classical and intermediate monocytes upregulated
expression of interferon-related transcripts. Some differences in
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the transcriptional response of monocyte subsets from young
and older subjects were also observed. Most notably, classical
monocytes from older subjects did not upregulate interferon-
related transcripts to the same extent as those from young
subjects after stimulation with 5’pppRNA. This observation was
further validated by demonstrating lower IFN-α levels in the
supernatants of 5’pppRNA-stimulated classical monocytes from
old subjects (63). 5’pppRNA-stimulated classical monocytes
from young adults also had a greater enrichment of transcripts
for costimulatory molecules including CD80 and some cytokines
including IL-15 and CCL19.

Differential expression of microRNAs among the three
currently recognized monocyte subsets has also been reported
(64). In this analysis, the intermediate and nonclassical subsets
were most closely related in terms of miRNA profile. Focussing
on intermediate monocytes, this subset differentially expressed
38 miRNAs known to regulate biological processes including
TLR- and cytokine-mediated signaling, phagocytosis, antigen
presentation and processing and lipid/triglyceride metabolism.
Relative to the other subsets, the most highly-expressed miRNA
wasmiR-6087 and the lowest relative expression was observed for
miR-150p. The functional roles of these specific miRNAs are not
fully understood although mi-R150p may regulate inflammatory
responses (65) and miR-6087 (66) may contribute to angiogenic
potential. Other authors have studied differential expression of
miRNA by the classical and nonclassical subsets but without
including intermediate monocytes in their analysis (67).

As discussed above, single-cell analysis of gene expression
may be a powerful tool to identify previously unrecognized
subpopulations and determine function. For example, Gren et al.
(68) performed gene expression analysis after single cell sorting
of human monocytes. In this work, PCR of 85 genes, rather
than analysis of the whole transcriptome, was used to compare
subsets (68). While clustering of the three recognized subsets
was observed on principal component analysis, the authors also
highlighted that significant intercellular variation existed within
the subsets.

In an extensive 2017 study, Villani et al. used scRNA-seq
and unbiased genetic analysis to identify subpopulations of
monocytes and dendritic cells from healthy human blood (30).
Clusters of cells with similar gene expression patterns were
identified using t-distributed stochastic neighbor embedding
(t-SNE), a machine learning approach that allows visualization of
complex data within a two-dimensional space (69). Using
this approach, the conventionally-defined classical and
nonclassical subpopulations were largely contained within
two major transcriptionally-defined clusters (termed Mono1
and Mono2) that were separate from each other and all
dendritic cell populations. Interestingly, more than half of
the conventionally-defined intermediate monocytes were
also contained within these two major genetic clusters—
predominantly co-clustering with classical monocytes. This
observation suggests that a high proportion of intermediate
monocytes may not be fully distinguishable from classical or
non-classical monocytes at a transcriptional level and fits with
the fact that variations in gating approaches may over- or
under-estimate the frequency of this subset. The remainder of

the conventionally-defined intermediate monocytes, along with
a smaller proportion of the non-classical monocytes, formed two
additional genetically-defined clusters which expressed distinct
transcriptional signatures linked to cell cycle, differentiation and
trafficking (termed Mono3) and cytotoxicity (termed Mono4),
respectively (30).

While these results suggested that intermediate monocytes,
as currently defined, may consist of multiple known and
previously unknown subpopulations, the existence of new
monocyte subtypes within the intermediate gate has since
been called into question (70, 71). In 2019, Zillionis et al.
reported results from an innovative scRNA-seq analysis of
myeloid cells in the peripheral blood as well as in the
tumor tissue of seven individuals with non-small cell lung
cancer (NSCLC) (70). In this study, three genetically-defined
monocyte subsets (Mono1−3) were identified in both blood
and tumor tissue of the human subjects as well as in the
tumor tissue of a mouse model. In both humans and mice,
Mono1 and Mono2 correlated with the classical and nonclassical
monocyte subsets and also closely matched the genetically-
defined Mono1 and Mono2 subtypes reported by Villani
et al. (30). Furthermore, in both species, the third monocyte
population identified by Zilionis et al. (70), Mono3, corresponded
to the (predominantly intermediate) Mono3 cluster from the
study of Villani et al. (30) and was characterized by expression
of a set of neutrophil-associated genes. In other respects,
however, the genetic profile of Mono3 in humans overlapped
with that of CD14+/CD16− monocytes and was suggested by
Zilionis et al. (70) to represent a subpopulation of classical
monocytes. The Mono4 population reported by Villani et al.
(30) was not identified by Zilionis et al. (70) and the authors
proposed that this gene signature may have been derived
from physical doublets with NK cells—a conclusion that was
also reached by Günther and Schultze (71). Although the
studies of Villani et al. and Zillionis et al. differed in that
they analyzed cells from blood samples of healthy volunteers
and cancer patients respectively, (30, 70), it, nonetheless,
remains questionable whether one or more genetically-distinct
intermediate monocyte subsets can be fully distinguished
from classical- and non-classical-type monocytes in single
cell analyses.

To summarize, gene expression analyses since the publication
of a consensus nomenclature for monocyte subsets have
broadly validated the existence of three genetically distinct
monocyte subsets. However, the reported similarity between
subsets varies, most notably with a lack of consensus on
whether the intermediate monocytes most closely resemble
the classical or nonclassical subsets. One explanation for the
discrepancies in regard to intermediate monocytes may lie in
the observations of Villani et al. and others which indicate that
heterogeneity exists within this subset (29–31, 72). Alternatively,
cells defined by flow cytometry as intermediate monocytes
may represent, at least in part, a mix of classical and non-
classical monocytes transitioning between various states of
activation or differentiation without a stable, singular identity.
We propose, therefore, that further attention to heterogeneity
within the intermediate subset will be necessary to fully
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resolve the relationships among the three currently recognized
monocyte subsets.

GENE EXPRESSION ANALYSES OF
MONOCYTE SUBSETS DURING DISEASE
STATES

Changes in immune cell activity occur in disease states,
either as a protective mechanism or as part of the disease
pathogenesis. Alterations to the circulating monocyte subset
profile occur commonly in acute and chronic disease settings. In
particular, absolute or proportional increases in the intermediate
and/or nonclassical monocyte subsets have been repeatedly
reported in diverse conditions including sepsis, HIV, chronic
kidney disease, inflammatory bowel disease, diabetes, obesity
and atherosclerotic cardiovascular disease (28, 73). Whether
individual subpopulations also adopt different functional
activities in disease states is less well understood and gene
expression analysis techniques may be especially valuable for
addressing such questions.

In this regard, some studies have investigated alterations in
gene expression by total blood monocytes in disease states. The
reader is referred to Rinchai et al. for a complete summary
of this literature, a selection of which is discussed briefly here
(38). For example, in HIV, Rempel et al. demonstrated that
monocytes from patients with uncontrolled infection have an
activated phenotype with high expression of genes relating to
immune activation and response to stress (74). In the recent study
of Dobbs et al., monocytes from children with acute malaria were
found to have a different gene expression signature to matching
samples obtained after recovery. This signature consisted of
125 DEGs including higher expression of genes encoding
complement components and proteins related to TLR signaling
during infection (75). Changes in monocyte gene expression
in non-infectious conditions have also been investigated. In
a study by Liu et al., gene expression in monocytes was
correlated with atherosclerotic plaque severity (determined by
coronary artery calcium (CAC) score on computed tomography
or carotid plaque thickness on carotid ultrasound scan) (76).
Expression levels of 13 genes were associated with CAC score
and 2 with carotid plaque thickness. Expression levels of
two genes were associated with atherosclerosis at both sites:
ARID5B (AT-rich interactive domain-containing protein 5B),
a transcriptional co-activator involved in metabolic activities
such as adipogenesis and PDLIM7 (PDZ and LIM domain
protein 7) which promotes mineralization (76). The authors used
WGCNA to identify co-expressed gene network modules, three
of which were associated with CAC score. Notably, one of these
was a cholesterol metabolism transcriptional network including
upregulated genes such as LDLR (low density lipoprotein
receptor) and downregulated genes such as ABCG1 (ATP-
binding cassette sub-family G member 1) expected to result in
increased intracellular cholesterol levels. Next, the association
of DNA-methylation in monocytes with atherosclerosis was
investigated. In this analysis, DNA methylation levels at 31 and
7 sites, respectively, were associated with CAC score and carotid

plaque thickness. Most notably, hypomethylation of one CpG
site within the ARID5B intron (cg25953130) in monocytes was
associated with higher CAC scores and also with ARID5BmRNA
levels. Further in-vivo functional analyses demonstrated that
ARID5B knockdown in a human monocytic cell line (THP-1)
results in altered expression of 2,482 other genes, in reduced IL1A
and IL-1α protein production after LPS stimulation, in reduced
migration toward a CCL2 gradient and in reduced phagocytosis.
The integration of epigenomic and transcriptomic data in this
study provides an elegant example of the use of genetic analyses
to identify and validate disease-associated functional pathways in
purified monocytes from human patients.

Importantly, however, the studies described above considered
monocytes as a single population and studies of subset-specific
changes in monocyte gene expression during disease states
remain infrequent. An example of the potential can be seen in the
previously-described study by Metcalf et al. of the effect of aging
on monocyte subset gene expression profiles (63). Monocytes
from older subjects expressed higher levels of the chemokine
receptor CX3CR1 (63), which mediates trafficking of CD16+

monocytes into tissue (77) and could, thus, contribute to age
related atherosclerosis. Metcalf et al. also observed a weaker
response of classical monocytes from older subjects to viral
agonists, both in terms of mRNA expression and functional
assays (63). These observations were proposed to underly greater
vulnerability to influenza in older adults. Of relevance to current
events, high mortality rates have been seen in the elderly during
the current outbreak of coronavirus disease (COVID-19), which
is caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) (78, 79). The relatively weaker response of
monocytes from older adults to viral agonists reported byMetcalf
et al. (63) could explain this observation although further work
would be needed to determine if it is a contributing factor
to mortality during the pandemic. Although Zillionis et al.
used samples from people with non-small cell lung cancer to
perform sc-RNAseq a comparison with healthy volunteers was
not performed (70).

Still more recent work by Ruiz-Limon et al. (80) determined
monocyte subset gene expression profiles in people with
rheumatoid arthritis (RA), compared to healthy controls. In
this study, CD14+ and CD16+ monocytes were sorted using
magnetic beads (hereafter termed “CD14+ monocytes” and
“CD16+ monocytes”). Gene expression in these monocyte
subsets was then compared by PCR array of 84 genes related
to atherosclerosis and miRNA expression was compared using
a nanostring miRNA array. Although this sorting strategy does
not provide full separation of the three monocyte subsets, it
did allow genetic changes occurring in CD16+ monocytes to
be considered separately. Interestingly, in CD16+ monocytes
isolated from RA patients, 14 genes related to atherosclerosis
were expressed at higher levels and 7 at lower levels than
CD16+ monocytes from healthy controls. These included genes
related to inflammation [e.g., IFNγ (interferon-gamma) and
CCL2 (chemokine ligand 2)] and lipid metabolism LDLR (low-
density-lipoprotein-receptor)]. A greater number of miRNAs had
altered expression in CD16+ monocytes, compared to CD14+

monocytes and Ingenuity pathway analysis linked a number of
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these miRNAs with atherosclerosis-related genes. Significantly,
the levels of a number of highly-expressed mRNAs in both
CD14+ and CD16+ monocytes of RA patients correlated with
atherosclerosis severity, as assessed by carotid intima media
thickness ratio (74). Overall, the study provided evidence that
the known increase in cardiovascular disease associated with RA
may be promoted by activation of distinctive pro-inflammatory
and pro-atherogenic pathways in multiple monocyte subsets.
Finally, a further relevant example comes from the recent work
of Nowlin et al. who utilized a non-human primate model to
determine the effect of acquired immunodeficiency syndrome
(AIDS) on monocyte subset-specific gene expression (52). In
Rhesus macaques infected with simian immune deficiency virus

(SIV), the authors observed that intermediate monocytes more
closely resembled nonclassical monocytes as SIV progressed.
Based on identified changes in genes relating to the adaptive
immune response, it was hypothesized that SIV infection impairs
monocyte ability to regulate T-lymphocytes.

Practical considerations may have contributed to the limited
use of monocyte subset gene expression analysis in patient
cohorts. A relatively large volume of blood is needed to purify
sufficient numbers of infrequent blood leukocyte populations
to allow for RNA sequencing and this may not be practical in
some clinical settings. Purification of subsets from individuals
may also be complicated by changes in surface marker expression
which have been reported in disease states (81) and which could

FIGURE 3 | Summary of evidence from different genetic profiling strategies for the existence of a genetically distinct intermediate monocyte subset with reference to

studies performed since the development of consensus nomenclature in 2010. Several studies using gene expression analyses of sorted populations have confirmed

genetic distinctions between the three populations. Profiling of transcription and enhancer activity and of miRNA profiles has further added to these data. Single cell

analyses of gene expression have also generally supported the existence of three monocyte subsets although results from Zillionis et al. (70) suggest the third

identified population may represent a subpopulation of classical monocytes. The three monocyte subsets also remain genetically distinct after stimulation with

bacterial or viral agonists. mRNA, messenger RNA; NF-κB, Nuclear Factor κB; mi-RNA, micro-RNA.
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affect standard gating approaches. Although gene expression
technologies such as RNAseq are becoming cheaper and now
require smaller amounts of RNA to generate sequencing data
(47), there remain significant cost implications in generating gene
expression data frommultiple purified subpopulations from each
patient and control subject within a study cohort. Acquisition
and complex processing of samples from clinical settings over
prolonged periods of time also pose important logistical and data
analysis challenges. Cryopreservation of cells and subsequent
sorting, as performed by Dobbs et al., may be a valuable approach
to facilitate longitudinal studies (75), although differential effects
of cryopreservation on monocyte subset viability and surface
markers must be carefully excluded. Finally, we emphasize that
careful matching of control subjects (for age and co-morbidity
status) is crucial to avoid confounding in such studies.

CONCLUSION AND FUTURE DIRECTIONS

Studies of gene expression in the last decade have confirmed
the existence of at least three distinct monocyte subsets in
humans and have increased scientific understanding of the
physiological role of each subset. The landmark studies of
Cros et al. (25), Wong et al. (26), and Zawada et al. (27) are
notable for the combined use of gene expression analysis and
complementary in vitro functional studies of purified monocytes
subsets. A more recent application of scRNA-seq raised the
possibility that the intermediate monocyte subset may contain
classical- and non-classical-like monocytes as well other distinct
monocyte subtypes (30). However, the latter observation was not
corroborated by a subsequent single cell transcriptional study
which suggested that a novel fourth monocyte subpopulation
reported by Villani et al. is likely to have been artifactual
and not relevant to understanding intermediate monocytes (70,
71). The work of Metcalf et al. and Ruiz-Limon et al. has
demonstrated that gene expression analysis of each subset may be
used to compare monocyte phenotype and function between two
groups (63). Further carefully-planned use of these techniques
could greatly impact on current understanding of the functional
heterogeneity and plasticity of each monocyte subset as well as
their individual protective and pathogenic roles in many disease
states. Monocyte numbers have been shown to be modified by
therapeutic immunosuppression in autoimmune diseases such as
inflammatory bowel disease (82) and more longitudinal studies

of monocyte subset transcriptomic responses to such therapies
will be of significant value.

It is of interest that, despite the quality of the published studies
described here, no clear consensus has been reached on whether
intermediate monocytes more closely resemble the classical
or nonclassical subsets. While variations in the purification
strategies for intermediate monocytes may explain some of the
differences among reported studies, evidence is accumulating
of other forms of heterogeneity within this monocyte subset
during health (29–31, 72). Figure 3 summarizes key evidence
from profiling studies that monocytes which we currently
define as intermediate based on a limited number of surface
markers constitute one or more distinctive subpopulations
at a genetic/molecular level. It remains unclear, however,
whether intermediate monocytes can be unequivocally resolved
into a stable functional phenotype at the level of single cell
transcriptomes as they appear to have substantial overlap with
both classical and non-classical gene expression signatures.
Wider adaptation and collaborative analysis of single cell gene
expression analyses by the monocyte research community may
be the key to resolving such unanswered questions (71).
More importantly, it may provide a powerful means to reveal
and exploit the dynamic roles of monocyte subsets in the
pathogenesis and prognosis of common, life-limiting diseases.
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