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Abstract

Pediatric nonalcoholic fatty liver disease (NAFLD) affects 1 in 10 children in the US, increases 

risk of cirrhosis and transplantation in early adulthood, and shortens lifespan, even after 

transplantation. Exposure to maternal obesity and/or a diet high in fat, sugar and cholesterol is 

strongly associated with development of NAFLD in offspring. However, mechanisms by which 

“priming” of the immune system in early life increases susceptibility to NAFLD are poorly 

understood. Recent studies have focused on the role “non-reparative” macrophages play in 

accelerating inflammatory signals promoting fibrogenesis. In this Commentary, we review 

evidence that the pioneering gut bacteria colonizing the infant intestinal tract remodel the naïve 

immune system in the offspring. Epigenetic changes in hematopoietic stem and progenitor cells, 

induced by exposure to an obesogenic diet in utero, may skew lineage commitment of myeloid 

cells during gestation. Further, microbial dysbiosis in neonatal life contributes to training innate 

immune cell responsiveness in the gut, bone marrow, and liver, leading to developmental 

programming of pediatric NAFLD. Comprehensive understanding of how different gut bacteria 

and their byproducts shape development of the early innate immune system and microbiome will 

uncover early interventions to prevent NAFLD pathophysiology.
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Pediatric NAFLD and Why It Is a Pressing Issue

Nonalcoholic fatty liver disease (NAFLD), a spectrum of pathologies ranging from simple 

steatosis to fibrosis and cirrhosis, is the most common cause of chronic liver disease, 

affecting over 80% of adults with obesity [1], one third of obese children ages 3–18 in North 

America [2] and ~10% of the general pediatric population [2]. NAFLD in children 

progresses more rapidly than in adults [3–7], often leading to cirrhosis and transplantation in 

early adulthood [6]. Half of children presenting with NAFLD have already progressed to the 

more serious form of nonalcoholic steatohepatitis (NASH) at time of diagnosis [2,8,9] and 

their survival, even after transplantation, is shortened when compared with the general 

population [5]. Maternal obesity is a significant risk factor for pediatric NAFLD [10,11]. 

However, a major limitation in this field is the lack of fundamental understanding as to how 

maternal diet and/or obesity sets liver physiology and development of the immune system, 

beginning early in life, on a course toward NAFLD.

NASH is characterized by inflammation, oxidative stress, mitochondrial dysfunction, 

elevated levels of pro-inflammatory cytokines and fibrosis. Data from our studies in a 

nonhuman primate model of maternal obesity [10,12–18], combined with findings from 

other studies in mice [19] and humans [20], indicate that risk factors for NAFLD begin in 
utero, altering tissue function at the cellular and molecular levels. Persistence of liver 

steatosis and inflammation in juvenile animals switched to a healthy diet at weaning 

suggests that developmental changes have permanent epigenetic effects which alter 

metabolic outcomes and increase vulnerability to accelerated fibrosis in offspring [10,11,21]. 

DNA methylation, covalent modification of histones, and the expression of non-coding RNA 

are epigenetic phenomena found in livers from children [22–25], adults [26–33], and rodents 

[34–39] with NAFLD (reviewed recently by Campisano, et al.[40]). Still, insights into the 

mechanisms by which maternal diet and obesity prime the immune system toward 

inflammation and liver damage are lacking.

In NAFLD, portal infiltration of macrophages is an early event predicting disease 

progression, and occurs in the steatotic liver before inflammation or fibrosis develops [41]. 

Hepatic inflammation is driven, in part, by activated endogenous liver macrophages (Kupffer 

cells), innate immune cells arising from fetal liver, and from infiltrating monocyte/

macrophages arising from bone marrow precursors [42,43]. Kupffer cells and monocyte/ 

macrophages can either promote hepatic inflammation and fibrosis (M1-like, pro-

inflammatory) [10,44–54], or resolve inflammation and prevent progression to fibrosis (M2-

like, pro-restorative/reparative) [55]. In children with NASH, numerous activated 

macrophages are found in the spaces between damaged hepatocytes [56]. We (and others) 

have shown that mice exposed to a maternal “Western-style” diet (WD) have increased pro-

inflammatory macrophage activation in the liver and accelerated hepatic fibrosis as adults 

[57]. Further, our published data in a nonhuman primate model demonstrated increased 

expression of pro-inflammatory cytokines (IL1B and TNFA) in hepatic macrophages 

isolated from 1-year-old offspring born to WD-fed mothers and weaned to a chow diet [14]. 

Whether maternal diets during gestation or lactation alter the fate of developing macrophage 

precursors remains an important unanswered question.
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Gut Microbial Dysbiosis in Early Life Influences the Developing Immune 

System

Evidence suggests maternal and postnatal factors that impact the developing infant gut 

microbiome include maternal diet [58], infant diet in early life [59], antibiotic use, and 

delivery by Caesarean section [60,61]. Studies in animals [62–65] and neonates [66,67] 

demonstrate that “pioneering” gut bacteria in early life profoundly shape development of the 

innate and adaptive branches of the immune system, with persistent effects on immune 

function later in life [68,69]. Because both the gut microbiome and gut immune cells 

develop and mature during the neonatal period [70,71], even a brief disruption to the 

microbial community structure during this window can induce immunological changes that 

persist into adulthood [69]. For example, Olszak, et al. showed colonizing neonatal - but not 

adult - germ-free mice with pioneering microbes protects from immune cell-mediated 

pathology in adulthood [69]. Together, these studies demonstrate the critical importance of 

initial colonizers to the gut microbiome – immunity axis [72].

Most microbiota-driven immune alterations are assumed to be postnatal effects induced by 

the neonate’s own microbiota [73–75]. However, detection of bacteria in the placenta, 

amniotic fluid, and meconium suggests the possibility of fetal colonization during gestation, 

which alters development of the naïve fetal innate immune system [76] and impacts 

maturation of the hematopoietic system [77]. Gomez de Agüero, et al. showed this by 

transiently colonizing germ-free pregnant dams with Escherischia coli, which led to 

enhanced ILC3 and F4/80+ CD11c+ mononuclear cell populations in the gut of neonates, 

reprogrammed intestinal transcriptional profiles, and increased expression of genes involved 

in metabolism, oxidative stress, and innate immunity [78]. Moreover, bacterial colonization 

in early life influences immune development in primary lymphoid organs beyond the gut, 

including in the bone marrow [77]. Gut microbial and non-microbial ligands, including 

short-chain fatty acids (SCFA) and bile acids, induce a memory response in innate cells 

mediated by pattern recognition receptors (PRRs), which recognize microbe- or pathogen-

associated molecular patterns (MAMPs or PAMPs) [79]. Pattern recognition receptors 

include families of Toll-like receptors (TLRs) and nucleotide-binding oligomerization 

domain (NOD)–like receptors (NLRs). Microbe- and pathogen-associated molecular pattern 

recognition via these PRRs affects differentiation and function of myeloid and lymphoid 

lineage immune cells [80–82], inducing both myeloid bias in long-term hematopoietic stem 

cells within the bone marrow [83] and immune memory in differentiated descendents [84]. 

Lipopolysaccharide (LPS), a canonical ligand for TLR, dose- and duration-dependently 

induces tolerance or potentiates innate immune memory [85]. LPS isolated from E. coli has 

immunostimulatory activity leading to endotoxin tolerance, which is inhibited by LPS from 

Bacteroides [86], supporting the hypothesis that in early life, the abundance ratio of 

Enterobacteriaceae to other commensals critically regulates immune development and health 

in later life.

In addition to bacteria, bacteria-derived dietary metabolites transfer from mother to fetus, 

affecting immune development. In mice, feeding pregnant dams dietary fiber or acetate 

alone protected offspring from allergic airway inflammation [87] and maternally-derived 
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SCFAs played a role in Foxp3+ regulatory T cell generation in the neonatal thymus [88]. 

Maternal gut bacterial products other than SCFAs may have effects on programming 

immunity in the offspring. Metabolites including taurine, polyamines, retinoic acid, and 

indoles (byproducts of tryptophan catabolism) have roles in maintaining immune 

homeostasis, gut barrier integrity, and arginine levels, as well as regulating the 

inflammasome [89].

Enterobacteriaceae are an important family of Gammaproteobacteria, a class of aerobic, 

LPS-producing pioneering microbes that are abundant in the stool from full-term, vaginally-

delivered newborns [90]. E. coli and Enterobacter, facultative anaerobic pioneering bacteria, 

rapidly grow and metabolize lactose from breast milk to acetate and other SCFAs and create 

a reduced acidic environment. This environment is favorable for later colonization by 

slower-growing, anaerobic acidophiles such as Bacteroides, Bifidobacterium, and 

Clostridium [91,92], which consume most of the available sugar and excrete large amounts 

of acetate and other SCFAs [93]. Unlike in adults, early exposure to Enterobacteriaceae in 

newborn rodents and humans provides LPS-driven inflammatory challenges important for 

training or “priming” the early immune system, and protecting against excessive 

inflammatory, autoimmune, and metabolic disorders later in life. LPS/endotoxin binds to 

receptors on innate immune cells, including TLR4, and modulates the host innate immune 

response though mechanisms such as endotoxin tolerance or trained immunity [94–96]. 

Subtypes derived from specific Bacteroides species exhibit lower endotoxicity than LPS 

isolated from other enteric bacteria [97]. Immune sequelae linked to early life dysregulation 

of the Enterobacteriaceae to Bacteroidetes balance were recently described in human infants. 

Vatanen, et al. elegantly showed Bacteroides species, in the microbiota of infants from 

countries with high susceptibility to allergies and type 1 diabetes (T1D), produced an LPS 

subtype that inhibited immunostimulatory activity of E. coli LPS in vitro, compared with 

those infants colonized predominantly by Enterobacteriaceae. In vivo, intraperitoneal 

injection of E. coli-derived LPS led to endotoxin tolerance in immune cells and delayed 

onset of T1D in a mouse model, whereas LPS from Bacteroides was not protective [86].

The impact of maternal obesity on pioneering bacteria in infants was studied by Lemas, et 

al. [98] who found reduced abundance of Gammaproteobacteria in stool from 2-week-old 

infants born to obese mothers, when compared with microbiota from infants born to normal 

weight mothers [99]. Soderborg, et al. colonized germ-free mice with microbes from infants 

born to obese mothers, and these mice, when challenged with a short-term postnatal WD, 

exhibited elevated markers of inflammation and endoplasmic reticulum stress in liver, as 

well as accelerated obesity and NAFLD. Moreover, these animals exhibited dampened LPS-

induced inflammation in bone marrow-derived macrophages (BMDMs) and impaired 

phagocytosis [99]. A unique feature of pediatric NAFLD is the predilection for children to 

deposit fat and develop inflammation in the periportal region vs. the more classic perivenular 

distribution seen in adults [4,100]. This difference is poorly understood, but clinically 

relevant because periportal inflammation is associated with advanced liver disease [101]. 

Germ-free mice colonized with microbiota from infants exposed to maternal obesity showed 

histological evidence for increased periportal inflammation, even while consuming a control 

chow diet [99]. These provocative findings suggest a mechanistic role for the early life gut 
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microbiota in priming innate immune dysfunction prior to the development of childhood 

obesity.

Dietary Exposures and Epigenetic Rewiring Skew Hematopoiesis to 

Promote Chronic Inflammation

The fetal liver is the major hematopoietic organ of the developing immune system. During 

gestation, the fetal liver is seeded with monocytes, which are progenitors of liver resident 

Kupffer cells [102,103], and hematopoietic stem and progenitor cells (HSPCs) which 

migrate to the bone marrow, where most stay for the remainder of life [104]. HSPCs in the 

bone are capable of producing all blood cells of the lymphoid (adaptive immune) and 

myeloid (innate immune, erythroid, platelets) lineages, including monocytes and their 

macrophage descendants. HSPC-derived monocytes in the fetal liver give rise to Kupffer 

cells, which maintain self-renewing capabilities throughout life [102,105]. By contrast, 

infiltrating tissue macrophages differentiate from monocytes that are continuously generated 

from HSPCs in the marrow and recruited to the liver by damage signals (monocyte/

macrophages) [106]. Diet-induced gut microbial dysbiosis shapes development and function 

of the immune system, in part by regulating the differentiation of HSPCs [107]. Intriguingly, 

maternally-derived HSPCs have been detected in cord blood [108]. Whether these maternal 

cells, programmed by a poor diet, seed the fetal bone marrow and educate the developing 

immune system, or whether an obesogenic maternal diet and resultant gut microbial 

dysbiosis directly program neonatal HSPCs to promote NAFLD are questions warranting 

further research.

Myeloid cells (monocytes/macrophages), innate lymphoid cells (including NK cells), and 

bone marrow progenitors [109] exhibit innate immune memory. This memory involves 

epigenetic rewiring after an initial inflammatory insult and a rapid, non-specific enhanced 

response to subsequent exposures [109]. Microbial signals, including peptidoglycans [110], 

Bacillus Calmette-Guérin [111], and β-glucan [83], alter epigenetic modifications in HSPCs, 

induce long-lasting changes in cellular lineages, and stimulate inflammatory priming of 

differentiated myeloid cells [77]. The induced memory may persist from weeks to months 

[112,113]. In fetal mice, exposure to maternal WD remodels fetal liver HSPCs to exacerbate 

the inflammatory immune response, skew commitment to the myeloid lineage, and favor 

differentiation at the expense of self-renewal [114]. Later-life consequences of this early 

adaptation can be observed in adult WD-fed mice, where HSPCs are biased toward the 

myeloid lineage and generate a large pool of pro-inflammatory cells [115]. Moreover, in 

response to short-term post-natal WD exposure, Christ, et al. found upregulation of genes 

involved in cellular proliferation, skewing of granulocyte-monocyte progenitors toward the 

monocytic cell lineage, and increased availability of enhancer regions (including TLR4) 

[116].

In our mouse model of maternal WD, we showed elevated fumarate in liver macrophages 

and BMDMs from adult offspring of obese pregnancy [117]. This metabolic change triggers 

epigenetic remodeling toward a pro-inflammatory phenotype. Innate immune memory is 

characterized by a potentiated response to inflammatory stimuli, accompanied by a 
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metabolic shift to aerobic glycolysis and a dysfunctional TCA cycle, termed “metabolic 

reprogramming” [118]. Metabolic and epigenetic reprogramming occurs in myeloid cells 

[119,120], including HSPCs [83] and their descendants, and alters transcription of genes in 

inflammatory, immune, and metabolic pathways [116]. TCA cycle intermediates, such as 

succinate and fumarate, promote expression of genes supporting the pro-inflammatory (M1-

like) macrophage phenotype through stabilization of hypoxia-inducible factor-1α [121–123] 

and histone acetylation of glycolytic enzyme genes, including hexokinase 2 and lactate 

dehydrogenase [124]. Moreover, α-ketoglutarate increases expression of genes promoting a 

reparative (M2-like) phenotype through epigenetic regulation [125,126].

Finally, Wang, et al. showed that DNA hypermethylation at the peroxisome proliferator-

activated receptor γ1 promoter in adipose tissue macrophages suppressed the ability of these 

cells to adopt an alternatively activated, reparative phenotype (characterized by elevated 

“M2” markers such as ARG1, MRC1, and CLEC10A). Moreover, failure to adopt an M2-

like phenotype was associated with weight gain and insulin resistance in mice fed a chronic 

high-fat diet [127]. These studies suggest that HSPC immunometabolism, even in early life, 

contributes to programming adult metabolic disease when dysregulated by exposure to an 

obesogenic maternal diet. It will be important for future work to determine whether similar 

mechanisms act in bone marrow and the liver.

In conclusion, pediatric NAFLD is a growing problem worldwide with a complex 

pathophysiology. Therefore, it is critical to elucidate factors driving development of the 

neonatal immune system, particularly in bone marrow and liver, to determine how maternal 

obesity alters infant immunity and drives development of pediatric NAFLD. Mechanistic 

studies, including perinatal maternal or infant supplementation with specific bacteria, could 

identify bacterial strains or metabolic functions responsible for pro-inflammatory priming of 

the early innate immune system. Going forward, it will be important to advance our 

knowledge on how the immune system senses changes in early dietary metabolite 

composition to either initiate an appropriate inflammatory response or promote 

inflammatory pathophysiology, such as NAFLD. We must 1) determine whether dietary 

metabolites other than maternal SCFAs are transferred to the fetus in utero, or to offspring in 

early life, and characterize metabolite effects on development of the immune system in the 

fetal liver and/or offspring bone marrow; and 2) evaluate the impact of maternal metabolites 

on colonization and development of the infant intestinal microbiota and test if these early 

bacteria exert life-long epigenetic changes in HSPCs and their macrophage descendants, 

accelerating disease pathophysiology. Comprehensive understanding of how maternal diet 

and obesity influence development of the innate immune system continues to be a major 

challenge. But, hopefully, this work will lead to early interventions to prevent numerous 

metabolic diseases associated with inflammation, including obesity, cardiovascular disease, 

and NAFLD pathophysiology in children.
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Figure 1: 
Early pioneering bacteria induce metabolic reprogramming of innate immunity and increase 

susceptibility to pediatric NAFLD in offspring. Maternal Western-style diet, high in fat, 

sugar, and cholesterol, alters initial bacterial colonization in infants. By reshaping the ratio 

of dominant bacterial species in the gut during early life, the composition of the 

lipopolysaccharide (LPS) pool, bacterial metabolites, short-chain fatty acids (SCFA), 

microbe-associated molecular patterns (MAMPs) and pathogen-associated molecular 

patterns (PAMPs) are also varied. These altered microbial signals induce expansion of 

hematopoietic stem and progenitor cells, myeloid lineage skewing, and inflammatory 

polarization of monocyte/macrophages recruited to the steatotic liver. Therefore, a shifted 

ratio of Enterobacteriaceae to acidophilic commensals, such as Bacteroides or 

Bifidobacterium, may mediate susceptibility to NAFLD in childhood and accelerate disease 

progression through “training” of innate immune cells. This figure was generated with the 

assistance of BioRender (www.biorender.com).
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