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Abstract

Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of

multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions.

However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-

cell level is currently limited by the number of markers measured simultaneously on a single panel.

Results: To extend the number of markers per cell, we propose an in silico method to integrate

CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we pre-

sent an approach to select the most informative markers from an existing CyTOF dataset to be

used as a shared marker set between panels. We demonstrate the feasibility of our methods by

evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on

two public CyTOF datasets. We illustrate that by computationally extending the number of markers

we can further untangle the heterogeneity of mass cytometry data, including rare cell-population

detection.

Availability and implementation: Implementation is available on GitHub (https://github.com/tabde

laal/CyTOFmerge).

Contact: a.mahfouz@lumc.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-dimensional mass cytometry by time-of-flight (CyTOF)

(Bandura et al., 2009) allows the simultaneous measurement of over

40 protein cellular markers (Spitzer and Nolan, 2016). Several stud-

ies have illustrated the value of using such a large number of

markers to provide a system-wide view of cellular phenotypes at the

single-cell level (Amir et al., 2013; Chevrier et al., 2017; Lavin et al.,

2017, 2015; Newell et al., 2012, 2013; van Unen et al., 2016; Wong

et al., 2016).

Despite the 3-fold extension in the set of markers profiled with

CyTOF compared to flow cytometry (FC), technical challenges in

designing CyTOF panels limit the number of markers profiled per

panel currently to about 40 markers (Bendall et al., 2012). In many

cases, the number of proteins required to describe the heterogeneity

of cells far exceeds the number of markers that can be measured

using a single CyTOF panel (Bendall et al., 2011; Chevrier et al.,

2017). To overcome the limitation in the number of markers that

can be measured simultaneously, a sample can be split into multiple

tubes which are subsequently measured using different CyTOF
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marker panels (Lee et al., 2011; O’Neill et al., 2015; Pedreira et al.,

2008). Including a shared marker set between all panels allows the

combination of measurements from all panels to produce an

extended marker vector for each cell. However, there are currently

no computational methods available to integrate measurements

from multiple CyTOF panels.

An implicit combination approach, proposed by Bendall et al.

(2011), allowed the visualization of 49 markers, measured using

two CyTOF panels sharing 13 markers. After clustering cells from

one panel based on the set of shared markers, they overlaid the

unique markers of the second panel over the obtained clusters

according to the similarity between cells based on the shared

markers set. This approach, however, does not explicitly merge the

measurements from both panels since the clustering step is per-

formed only on cells from one panel using the shared markers.

Therefore, this approach is prone to misidentify small subpopula-

tions of cells (as we will show later in Section 3.4).

In the field of FC, two approaches have been proposed to inte-

grate measurements from multiple FC datasets. A nearest-neighbor

algorithm was used to integrate measurements from multiple FC

panels assuming that each cell is almost identical to its nearest-

neighbor cell, measured with a different panel, based on the overlap-

ping markers, which we denote as the first-nearest-neighbor

imputation (Costa et al., 2010; Pedreira et al., 2008; van Dongen

et al., 2012). However, the first-nearest-neighbor approach is noise-

sensitive and can produce false combinations between cells from dif-

ferent panels resulting in artificial clusters (O’Neill et al., 2015). Lee

et al. (2011) proposed to overcome this limitation by incorporating

a clustering step based on the shared markers before merging the FC

measured panels, followed by enforcing the imputation of the miss-

ing markers from the same cluster, which we refer to as cluster-

based imputation. However, the larger number of unique markers

per panel in the case of CyTOF, compared to FC, can result in a

large number of undiscovered clusters if cells are clustered only

using the set of shared markers (as we will show later in Section

3.2). An alternative approach is to divide the space of shared

markers in each panel by binning biaxial scatter plots of marker

pairs, each having a preset number of cells. Bins are then matched

across the measured panels, and the missing markers are imputed

per bin (O’Neill et al., 2015). Although feasible for FC data, apply-

ing this method to CyTOF data, which has many more possible

shared markers and many more cells, is computationally prohibitive.

Moreover, the imputation strongly depends on the binning and

matching step in a complex high-dimensional space.

We propose a method, CyTOFmerge, that does not depend on a

priori clustering or partitioning and extends measurements per cell.

Our CyTOF data merging approach is based on the k-nearest-neigh-

bor algorithm which avoids the noise sensitivity problem by relying

on a relatively large number of neighbors. In addition, we propose a

method to select the most informative markers from one CyTOF

panel, in order to be used as shared markers with other panels. This

is particularly important given that the imputation strongly depends

on the set of shared markers. By merging measurements from mul-

tiple CyTOF panels, we increase the number of markers per cell

allowing for a deeper interrogation of cellular composition.

2 Materials and methods

2.1 Approach
Given that the maximum number of markers on a single CyTOF

panel is N, the goal of our study is to integrate measurements from

two CyTOF panels, panels A and B, given that both panels share at

least m < N markers. The remaining slots (N�m) on each panel can

be used to measure markers that are unique to each panel. Both pan-

els A and B measure parts of the same sample. Relying on the simi-

larities between cells in both panels based on the shared marker set

m, we can impute markers that were not measured on panel A using

the measurements from panel B, and vice versa. The resulting

merged dataset extends the number of markers per cell to 2N�m,

on which clustering and cell populations identification can be

applied (Fig. 1). We defined a cell population as group of cells

Fig. 1. CyTOFmerge pipeline: split the sample, stain each partial sample with a different marker panel and apply CyTOF to obtain the panels’ measurements. Both

panels A and B share a set of markers m (green). L1 (red) are unique markers of panel A, and L2 (blue) are unique markers of panel B. Both panel measurements

are combined to obtain an extended markers measurements per cell, which is input to downstream computational analysis as, e.g. clustering in a t-SNE mapped

domain shown here
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having similar protein marker expression, these cells can represent

either cells with the same type and/or state, according to which pro-

tein markers are used (Wagner et al., 2016).

A major challenge in this approach is to determine the shared

markers (m), i.e. which markers can preserve the heterogeneity of

cell populations. To address this problem, we propose a data-driven

approach (Supplementary Fig. S1). Briefly, for each value of m, we

use a dimensionality reduction technique to select the best set of

markers preserving the high-dimensional structure of the data.

By simulating the scenario shown in Figure 1, the quality of an im-

putation is evaluated using several quantitative scores capturing

clustering and neighborhood preservation, from which the minimum

number of shared markers can be deduced. Full details of the selec-

tion process are described in Section 2.6.

2.2 CyTOF datasets
In this study, we applied our methods to the publicly available

HMIS and Vortex datasets. The HMIS dataset profiled the human

mucosal immune system by measuring Peripheral Blood

Mononuclear Cells (PBMCs) and intestine tissue samples from the

duodenum, rectum and fistula (van Unen et al., 2016). Using a

CyTOF panel with N ¼ 28 surface protein markers, a total of �5.2

million cells positively expressing CD45 (immune cell marker) were

analyzed (3.6 million PBMCs and 1.6 million intestine tissue cells),

which they down sampled to �1.1 million cells, randomly distrib-

uted over all PBMC and tissue cells. The marker panel included lin-

eage markers used to differentiate between major types of immune

cells, and non-lineage markers used to distinguish between different

subgroups (states) of cells within each lineage. Cells were globally

clustered into six main lineages: B cells (�93 000), CD4þT cells

(�230 000), CD8þT cells (�460 000), CD3-CD7þInnate lymphoid

cells (ILCs) (�95 000), Myeloid cells (�117 000) and TCRcd cells

(�88 000). Each lineage was subsequently clustered independently,

resulting in 119 subgroups across all six lineages, including small

clusters representing rare cell populations.

The Vortex dataset is a publicly available mass cytometry data

for 10 replicates of mice bone marrow cells (Samusik et al., 2016).

A total of �840 000 cells were measured using a CyTOF panel of

N ¼ 39 markers. Three cytometry experts provided a consensus

clustering of 24 clusters for only �510 000 cells. Prior to any proc-

essing, measured marker expressions were transformed using hyper-

bolic arcsin with a cofactor of 5 for both datasets.

2.3 Simulating two overlapping panels
We simulated the scenario of having two overlapping panels by splitting

the original dataset (Do) into two datasets, DA and DB, each measured

using a different (simulated) CyTOF panel (Supplementary Fig. S1).

Both panels share m markers, and the remaining N�m markers from

the original panel were randomly divided between the two simulated

panels. The first simulated panel (A) contains mþL1 markers, whereas

the second panel (B) contains mþL2 markers, where L1þL2 ¼ N�m.

Each of the two panels measures half the number of cells in the original

dataset (randomly chosen without replacement), i.e. the panels measure

non-overlapping cells from the original dataset.

2.4 Data imputation
Data in both simulated CyTOF panels is imputed using the k-near-

est-neighbor algorithm. For each cell measured by panel A, we find

the k-most-similar cells measured by panel B using the m shared

markers. Then, for each cell measured by panel A, the values of the

missing markers (L2) are imputed by taking the median values of

those markers from the k-most-similar cells measured by panel B,

resulting in imputed dataset Di
A. The same procedure is used to im-

pute the values of the missing markers L1 from panel A to cells

measured with panel B, resulting in imputed dataset Di
B. The origin-

al dataset is reconstructed (Di) by concatenating the two imputed

datasets (Di
A and Di

B), and thus has the same number of cells and

the same number of markers N as the original dataset, albeit partly

imputed (Fig. 1 and Supplementary Fig. S1).

2.5 Selection of m shared markers
Given a dataset with a panel of N markers, we follow three steps to

choose the m shared markers that can be used to design follow up

panels for a deeper interrogation of cells (Supplementary Fig. S1):

Removing correlated makers. Pearson correlation over all cells in

the original dataset between each pair of markers is calculated. If

the absolute value of the correlation of two markers is larger than a

specified cutoff (here we use 0.7 and 0.8 as cutoffs, for the HMIS

and Vortex datasets, respectively), we remove the marker which has

the lower variance across all cells.

Dimensionality reduction. To reduce the number of markers we

exploited three different dimension reduction techniques: (i) princi-

pal component analysis (PCA); (ii) Auto Encoder (AE) and (iii)

Hierarchical Stochastic Neighboring Embedding (HSNE).

Using PCA (Shlens, 2005), the importance of a marker is based

on its contribution (i.e. loading factor) to the first m principal com-

ponents, as follows:

ip ¼
Xm
q¼1

b2
pq� kq (1)

where ip is the importance of marker p, bpq is the loading of marker

p to the q-th principle component, kq is the variance explained by

the q-th principle component. All markers are sorted on their im-

portance and the m most important markers are chosen.

An AE neural network (Hinton and Salakhutdinov, 2006) with

one hidden layer containing m nodes is trained for a maximum of

50 iterations (using the Matlab toolbox for Dimensionality

Reduction, drtoolbox: https://lvdmaaten.github.io/drtoolbox/) until

the output of the trained AE is similar (mean squared error <0.75

for all values of m) to the original input data. We then calculate the

variance of all AE output markers, sort them and select the m

markers with the highest variance.

Using HSNE (Pezzotti et al., 2016; Van Unen et al., 2017), we

project the cells using five hierarchical layers. We represent the data-

set using only the landmark cells in the top layer. On these landmark

cells we apply the PCA-based reduction scheme to select the m

markers.

Selecting m out of the original N markers. Using one of the di-

mension reduction schemes, we select the top-m markers to be used

as shared markers. Based on the simulated datasets, we impute the

missing markers in each dataset, which we compare to the original

dataset using three quantitative scores introduced in the following

section. By evaluating those scores over varying values for m, we

make a choice for the most suitable value of m.

2.6 Comparing two datasets
To evaluate the quality of the imputed dataset (Di) compared to the

original dataset (Do), we use three different scores: (i) how well the

clustering is preserved (cluster score); (ii) how close the same cells in

the different datasets are to each other (distance score) and (iii) how

well the neighborhood of each cell is preserved (nearest-neighbor

score). These scores are defined as follows:
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Cluster score. We used the adjusted Rand-index to express the

correspondence between two clustering. Briefly, it calculates the

fraction of pairs of cells that end up in the same (or different) cluster

in both clusterings, corrected for the random chance to end up in the

same cluster (which is different for differently sized clusters). The

final value is between 0 and 1. As clustering more than a million

cells is too time consuming, we used an approximate cluster score

for experiments where we varied either the number of shared

markers (m) or neighbors used to impute (k). For these experiments,

we did not cluster the imputed data Di but determined the cluster

label of the imputed cell by a majority vote of the k-most-similar

cells in the original dataset Do. The approximate cluster score is

then the fraction of cells where the estimated cluster label was the

same as the cluster label of the original cell:

Approximate
Cluster Score

¼ number of cells having matched cluster labels

total number of cells

(2)

Distance score. To evaluate how similar the measurements of

cells across two datasets are, we calculate the Euclidean distance, in

the full marker space, between the measurements of a cell ci
n, the n-

th cell in the imputed dataset Di, and the corresponding cell co
n, the

same (n-th) cell in the original dataset Do. This is done for all cells,

and from that the median distance (md) is taken. To make the score

independent of the scale of the original dataset Do, we compare this

median distance (md) to the average distance (ad) between all pairs

of cells within the original dataset Do, as follows:

Distance Score ¼ ðad � mdÞ
ad

(3)

Nearest-Neighbor score. To evaluate the preservation of the

neighborhood of cells across datasets, we measure, for each cell co
n,

the Euclidean distance in the full marker space to the nearest-neigh-

boring cell (dn) in the original dataset Do, and the distance between

both representations of that cell, co
n and ci

n, in the original Do and

imputed Di datasets (dp). The local neighborhood is preserved when

the imputed version of the cell ci
n is closer to co

n than its nearest

neighbor in the original dataset Do, i.e. dp < dn. The nearest-neigh-

bor score is then the fraction of cells for which this holds.

NN Score ¼ number of cells where ðdp < dnÞ
total number of cells

(4)

We used the base 2 logarithm of the Jensen–Shannon divergence

(JSD) to quantify the similarity between the distributions of a mark-

er in the original and imputed dataset, resulting in values between

zero (identical distributions) to one (totally disjoint distributions).

The JSD between two distributions PðxÞ and QðxÞ is:

JSD ¼ 1

2

X
x

P xð Þ log2

P xð Þ
M xð Þ

� �
þ 1

2

X
x

Q xð Þ log2

Q xð Þ
M xð Þ

� �
(5)

M xð Þ ¼ 0:5�ðP xð Þ þQ xð ÞÞ (6)

2.7 Finding clusters
We clustered both datasets, HMIS and Vortex, with Phenograph, a

neighborhood graph-based clustering tool designed for automated

analysis of mass cytometry data (Levine et al., 2015a). Phenograph

is applied to the original and imputed datasets, using the R imple-

mentation with default settings (number of neighbors ¼30).

More fine-grained cluster annotations for the HMIS datasets are

acquired using Cytosplore (www.cytosplore.org), a tool specifically

designed for the analysis of mass cytometry data (Höllt et al., 2016;

Van Unen et al., 2017). Briefly, cells are embedded into a 2D map

using t-Distributed Stochastic Neighbor Embedding (t-SNE)

(Pezzotti et al., 2017; van der Maaten and Hinton, 2008), and subse-

quently clustered using a density-based Gaussian Mean Shift algo-

rithm (Comaniciu and Meer, 2002) using a relatively small density

kernel (r ¼ 20–23), resulting in over-clustering of the data. Clusters

are then manually merged when they have highly similar marker ex-

pression profiles (median value of each marker per cluster).

3 Results

3.1 Selecting the set of shared markers
To determine the shared markers that can be used to combine two

CyTOF datasets, we simulated the scenario of having two overlap-

ping panels with different sets of shared markers m, on which we

applied our data imputation approach with different number of

neighbors k (Supplementary Fig. S1). We investigated how the im-

putation of the two panels is influenced by: (i) the dimension reduc-

tion technique used to select the shared markers, (ii) the data

(lineages) used to select the markers, (iii) the number of shared

markers (m) and (iv) the number of nearest neighbors used during

imputation (k).

In the HMIS dataset, the method used to select the shared

markers has limited influence on the results. Figure 2 shows which

markers are selected by the different marker selection schemes

(PCA, AE and HSNE) when changing the number of selected shared

markers (m) from 4 to 25 and applied on the 5.2 million cells. In the

preprocessing step, CD8b and CD11b were removed from the selec-

tion as they are highly correlated with CD8a and CD11c (correl-

ation of 0.843 and 0.705, respectively), leaving 26 markers to

choose from. There are small differences in the selection profiles be-

tween the three methods, with a maximum of two mismatches. For

14 < m < 17, the same set of shared markers is selected by all three

methods. In terms of computation time, PCA outperforms the AE

and the HSNE (100� and 480�, faster on the same machine,

respectively).

We checked whether the marker selection procedure is influ-

enced by the type of cells. Therefore, we applied the PCA-based

marker selection on PBMCs and tissue cells independently.

Supplementary Figure S2 shows that there is little difference in the

selected set of markers when using the PBMC, tissue or

PBMCþtissue samples.

Next, we assessed the quality of the subsequent imputed dataset

for each lineage individually, as well as all six lineages together, for

m ¼ 4–25 and k ¼ 50. For all three evaluation scores, the perform-

ances improve when the number of shared markers increases

Fig. 2. Shared markers for the HMIS dataset. The selected markers that can

best represent the dataset using (A) PCA, (B) AE and (C) HSNE (marker order-

ing is based on the PCA selection profile, black is selected, white is not

selected)
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(Supplementary Fig. S3A–C). All performance scores seem to satur-

ate at m ¼ 16 (Supplementary Fig. S4A–F), i.e. they exceed 80% of

the maximal score. Table 1 shows the values of the three quality

measures at m ¼ 16, for each individual lineage and the six lineages

together.

A common measure to assess the quality of imputation is to in-

vestigate the correlation between the original and imputed values.

However, this approach turned out not to be appropriate for our

data since many markers are being expressed only in a specific popu-

lation of cells. As a result, the correlation is relatively high for

markers that are high expressed over multiple cell populations

(Supplementary Figs S5 and S6), but the correlation is low for cell-

population specific markers (such as, e.g. the CD123 marker which

is high expressed only in the CD4þT cells lineage). These cell-

population specific markers are imputed correctly (low values for

most cells and higher values for the cell-population specific cells),

but the noise on the abundant low values dominates, causing a low

correlation. Consequently, we decided not to use the correlation as a

quantitative score to evaluate how well an imputed dataset resem-

bles an original dataset.

We further investigated the distribution of the non-shared

(imputed) marker by comparing the distributions of the original val-

ues with those of the imputed values for each non-shared marker per

cell population, and quantify the similarity using the JSD (Section

2.6). Across all the 12 non-shared markers, we obtained low JSD

values (<0.2) showing a high similarity between the original and

imputed values (Supplementary Fig. S7A). The imputation process

does exclude the outlier values, as we use the median value from the

50 most similar cells, which results for some markers, in ‘com-

pressed’ distributions as compared to the original ones

(Supplementary Fig. S7B and C).

Next, we investigated the effect of the choice of the number of

neighbors (k) used when applying the k-nearest-neighbor imput-

ation. Supplementary Figure S4A–F shows the approximate cluster

score for k ¼ {1, 10, 50, 100, 200, 250, 300, 500, 1000}, with

k ¼ 50 clearly showing the highest performance across all lineages,

even over different numbers of shared markers.

We observed similar results when applying all these analyses to

the Vortex dataset: (i) small differences between PCA, AE and

HSNE when m is ranging from 4 to 38 (Supplementary Fig. S8), (ii)

improving and saturating performance scores with increasing num-

ber of shared markers (Supplementary Fig. S3D) and (iii) highest

performance when k ¼ 50 is used during imputation

(Supplementary Fig. S4G). The saturation for the number of shared

markers occurs at m ¼ 11, with the approximate cluster score, dis-

tance score and nearest-neighbor score being 95.3, 84.0 and 82.1%,

respectively.

3.2 CyTOFmerge reproduces original cell populations

and outperforms FC imputation methods
To demonstrate the feasibility of our computational method to com-

bine data measured from multiple CyTOF panels, we investigated

the quality of the clustering of the imputed dataset. First, the origin-

al 1.1 million cells HMIS dataset was clustered on the full marker

space using Phenograph, resulting in 52 clusters of cells divided into:

6 B cell populations, 8 CD4þT cell populations, 15 CD8þT cell

populations, 6 CD3-CD7þ ILC populations, 7 Myeloid popula-

tions, 5 TCRcd cell populations and 5 unknown populations

donated as Others (Supplementary Fig. S9). These 52 clusters are

used as a baseline for comparison with the imputed datasets.

We applied the panel combination and imputation method using

k ¼ 50 and m ¼ 16, thus imputing 12 markers (6 unique markers

for panel A, and 6 unique markers for panel B). The imputed dataset

was clustered on the full marker space using Phenograph, resulting

(coincidentally) in 52 clusters with slight variation in the number of

clusters per cell lineage (Supplementary Fig. S10A). To evaluate the

imputation, we matched the imputed clusters to the original clusters

using the maximum pairwise Jaccard index. The cluster matching

shows that all imputed clusters match to original clusters within the

same lineage (Supplementary Fig. S10B). Next, we calculated the

adjusted Rand-index representing how similar both clusterings are

(Table 2).

To compare with the first-nearest-neighbor approach proposed

by (Pedreira et al., 2008), we applied the imputation method using

k ¼ 1, using the same set of 16 shared markers. Phenograph cluster-

ing of that imputed dataset on the full marker space resulted into 53

clusters (Supplementary Fig. S11) with a lower performance com-

pared to CyTOFmerge using k ¼ 50 (Table 2).

Next, we compared the performance of CyTOFmerge to that of

the cluster-based imputation method proposed by Lee et al. (2011).

In this approach, clusters are first determined using the shared

markers followed by imputation of the unique markers in each panel

within the same cluster. We clustered the cells using the 16 shared

markers for the entire dataset using Phenograph and obtained 42

cell clusters, 10 clusters less than the original dataset clustering

(Supplementary Fig. S12). When comparing with the original clus-

tering (Table 2), we observed a relatively large drop in the adjusted

Rand-index. Hence, clustering based on the shared markers only

could not identify a large part of the original clustering using all

markers. However, when we performed the combination of the two

Table 1. Evaluation scores for the 16 selected shared markers for

the 1.1 million cells HMIS dataset

Approximate

cluster score (%)

Distance

score (%)

Nearest neighbor

score (%)

CD4þT cells 92.3 84.3 94.5

CD8þT cells 91.9 83.9 93.1

B cells 91.8 82.0 92.8

CD3–CD7þcells 89.3 83.4 92.6

TCRcd cells 86.2 84.1 94.7

Myeloid cells 86.2 80.4 82.5

All cells 89.4 87.4 91.9

Table 2. Comparison between CyTOFmerge and FC merging meth-

ods on the 1.1 million cells HMIS dataset

Adjusted

Rand-index

Distance

score

Nearest neighbor

score

CyTOFmerge — — —

HMIS, m¼ 16, k¼50 0.81 87.4% 91.9%

Vortex, m¼11, k¼50 0.90 84.0% 82.1%

First-nearest-neighbor — — —

HMIS, m¼16, k¼1 0.77 83.5% 75.6%

Vortex, m¼11, k¼1 0.93 77.9% 51.6%

Shared markers clusters — — —

HMIS, m¼16 0.68 n.a n.a

Vortex, m¼11 0.79 n.a n.a

Cluster-based imputation — — —

HMIS, m¼16, k¼50 0.80 87.4% 91.8%

Vortex, m¼11, k¼50 0.84 84.0% 82.1%

n.a¼not applicable.
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panels using the cluster-based imputation, we obtained comparable

performance with CyTOFmerge (Supplementary Fig. S13, Table 2).

We also tested CyTOFmerge on the Vortex dataset, using

m ¼ 11 shared markers and k ¼ 50, now imputing 28 markers (14

unique per panel). Phenograph clustering of the original dataset

gave 31 clusters (Supplementary Fig. S14), while clustering the

imputed dataset resulted in 28 clusters (Supplementary Fig. S15).

The adjusted Rand-index was relatively high, i.e. 0.90 (Table 2).

Next, we applied first-nearest-neighbor approach, and we clustered

the resulting imputed dataset resulting in 29 clusters. The first-

nearest-neighbor has slightly higher adjusted Rand-index compared

to CyTOFmerge, however, we observed a large drop in the distance

and the nearest-neighbor scores (Table 2). Moreover, confirming

our previous observation, the clustering of the shared markers only

produces 23 clusters, 8 clusters less than the original dataset clusters,

with a relatively large drop in the adjusted Rand-index when com-

pared to the original clustering. Finally, the cluster-based imputation

method produces 29 clusters. Compared to CyTOFmerge, the

cluster-based imputation method shows comparable distance and

nearest-neighbor scores, but lower adjusted Rand-index (Table 2).

To obtain a baseline evaluation for the imputed data clustering

performance, we permutated the non-shared markers across all cells,

while keeping the shared markers values the same. Next, we clus-

tered this permuted dataset in the full marker space using

Phenograph and compared the clustering result with the original

dataset clustering. The permuted dataset clustering had an adjusted

Rand-index of 0.56 6 0.02 and 0.50 6 0.01 (across 10 different

random permutation), for the HMIS and Vortex datasets, respect-

ively. These results show that random estimation of the non-shared

markers decreases the clustering performance compared to cluster-

ing using the shared markers only, i.e. adding more dimensions does

not improve the clustering performance. This also implies that

CyTOFmerge adds real structure by providing good estimation for

the non-shared markers, leading to an improved clustering.

3.3 Reproducible cell populations at a deeper

annotation level using CyTOFmerge
We proceeded by evaluating the quality of CyTOFmerge when using

a fine-grained clustering to investigate whether rare (small) cell pop-

ulations could be identified from the imputed data. As a baseline for

comparison, we clustered the six immune lineages from the original

1.1 million cells HMIS dataset individually, on the full marker space

using Cytosplore, resulting in 121 clusters in total, including: 17

CD4þT cell populations, 21 CD8þT cell populations, 16 B cell pop-

ulations, 34 TCRcd cell populations, 24 CD3-CD7þILC popula-

tions and 9 Myeloid cell populations (Fig. 3A, Supplementary Fig.

S16A). The imputed dataset (with m ¼ 16) was similarly clustered

using Cytosplore into the same number of populations (121) for the

six immune lineages (Fig. 3B, Supplementary Fig. S16B).

The clusters from the imputed dataset were correctly matched to

the baseline clusters for all 121 cell populations across the six line-

ages, including large clusters as well as small rare clusters, such as:

population 16 and 17 in the CD4þT Cells (Fig. 3A and B), popula-

tion 21 in the CD8þT Cells, population 16 in the B Cells, populations

3 and 34 in the TCRcd Cells and populations 23 and 24 in the CD3-

CD7þCells (Supplementary Fig. S16A and B). The imputed expres-

sion profiles of the 121 populations are remarkably similar (average

correlation of 0.998) to the expression profiles of the corresponding

baseline clusters (Supplementary Fig. S17A and Fig. 3D, respectively).

Also, the Jaccard index showed a clear diagonal between the original

and the imputed clusters (Supplementary Fig. S18).

To gain more insight into the distribution of the original cluster

labels in the imputed space, we colored each cell in the imputed data

according to baseline cluster they belonged to. Figure 3C and

Supplementary Fig. S16C show that the imputed measurements for

each cell are indeed faithfully reconstructed, i.e. after mapping them

they are distributed similarly as in the original data.

More quantitatively, the imputation had an overall adjusted

Rand-index of 0.81 for all the 121 cell populations. Per individual

lineage, the adjusted Rand-index varied between 0.77 and 0.83 for

the different lineages (Table 3). Since we rely on Gaussian Mean

Shift clustering in the t-SNE space, part of the error in clustering the

imputed data is caused by the stochastic nature of the t-SNE algo-

rithm (due to random initializations). The clustering reproducibility

between two t-SNE mappings of the original data (Table 3,

Supplementary Fig. S19) varied between 0.82 and 0.96, with vari-

ance estimates (when repeating the procedure 10 times) in the order

of 8e–5 (Table 3, for Myeloid and TCRcd cells). Hence, the quality

of the imputed clustering is close to the quality of repeated t-SNE

mappings, with a difference of 0.06 in the adjusted Rand-index for

all cells.

To further evaluate the effects of imputation on downstream

analysis, we compared the population frequencies of the 121 cell

populations, estimated using both the original and the imputed

datasets. The result shows that population frequencies are

accurately estimated from the imputed data as compared to the

original data, with an overall correlation of 0.985 (Supplementary

Fig. S17B).

Fig. 3. Clustering of the original and the imputed datasets. (A–C) t-SNE maps

showing the different identified populations in the CD4þT Cells lineage. (A)

Shows the populations of the original data. (B) The populations of the

imputed data (for m ¼ 16, L1 ¼ 6 and L2 ¼ 6). (C) The mapping of the original

clusters labels on the t-SNE map of the imputed data. (D) Heatmap of markers

expression for the 121 characterized immune cells populations of the original

dataset for m ¼ 16. Black-to-yellow scale shows the median arcsinh-5 trans-

formed values for the markers expression. Markers colors indicate whether a

marker is shared between panels or unique to a single panel, during panels

combination (red is shared, green is unique to panel A, blue is unique to

panel B)
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3.4 Imputation improves the differentiation of cell

populations
We have shown that from the imputed data similar clusters of cells

can be found as when using the original data. But, can we find clus-

ters from the imputed data that we cannot find in the two separate

panels? Hereto, we overlaid the original cluster labels of the HMIS

TCRcd lineage populations onto t-SNE maps constructed using:

(i) only the 22 measured markers of a panel (16 sharedþ6 unique

markers), (ii) the original 28 measured markers and (iii) the imputed

dataset (16 sharedþ6 uniqueþ6 imputed). This was done for both

panels A and B separately (Figs 4 and 5, respectively).

For panel A, populations 6 and 8 are merged in one cluster when

we map the data using only the 22 panel markers (Fig. 4A), whereas

the original and imputed data separate those two clusters (Fig. 4B and

C, respectively). To better understand this behavior, we overlaid the

expression of the markers across the t-SNE map (Fig. 4D). CD8b has

higher expression (mean6std ¼3.205 6 0.797) for cells in cluster 6 as

compared to cluster 8 (0.584 6 0.663) and is missing in panel A, hence

resulting in not being able to separate clusters 6 and 8. For the imputed

data, the missing marker for panel A is imputed by its measurements

on panel B, with which both clusters can indeed be separated (Fig. 4C).

Likewise, for the data from panel B, clusters 12 and 31 are

merged in one cluster (Fig. 5A), because NKp46 is missing on panel

B (Fig. 5D) with cells having a higher expression in cluster 31

(2.728 6 0.712) compared to 12 (0.505 6 0.586). Also, clusters 7

and 14 are merged due to the lack of the TCRcd marker (Fig. 5D).

For both situations, the clusters are separated when the data from

panel B is imputed with data from panel A (Fig. 5C).

Similar observations can be made for the other lineages

(Supplementary Figs S20–S24). For example, for both the CD8þT

(Supplementary Fig. S20) and Myeloid (Supplementary Fig. S21) lin-

eages, the CRTH2 marker makes a difference between clusters based

on one panel-only data compared to data from combined panels.

For some lineages, the clustering based on individual panels does,

however, closely match the clustering on the original data. Either

the missing markers are not important (e.g. CD11b in panel A of the

CD8þT cells, Supplementary Fig. S20), or they are important but

highly correlated with one of the shared markers (e.g. CD14 in panel

B of the Myeloid cells, Supplementary Fig. S21, has a similar expres-

sion to CD38).

Table 3. Adjusted Rand-index of the imputed data at m ¼ 16 and

for repeated t-SNE mappings of the original data

Imputed data t-SNE rerun

CD4þT cells 0.78 0.86

CD8þT cells 0.79 0.84

B cells 0.83 0.85

CD3–CD7þcells 0.78 0.82

TCRcd cells 0.7768e�5 0.8961e�4

Myeloid cells 0.8267e�5 0.9666e�5

All cells 0.81 0.87

Fig. 4. Marker panel extension impact on the identification of distinct popula-

tions in the TCRcd immune lineage—panel A. (A) The Reduced t-SNE map

using only 22 markers. (B) The original t-SNE map using the original 28

markers. (C) The imputed t-SNE map using 28 markers of which 6 are

imputed from panel B. All three maps are colored with the original population

labels. (D) Shared and missing markers expression profiles are shown on the

original t-SNE map. The map border color indicate whether a marker is

shared between panels or unique to a single panel (red is shared, green is

unique to panel A, blue is unique to panel B and thus missing markers for

panel A).The color bar shows the arcsinh-5 transformed values for the

markers expression

Fig. 5. Marker panel extension impact on the identification of distinct popula-

tions in the TCRcd immune lineage—panel B. (A) The Reduced t-SNE map

using only 22 markers. (B) The original t-SNE map using the original 28

markers values. (C) The imputed t-SNE map using 28 markers of which 6 are

imputed from panel A. All three maps are colored with the original popula-

tions labels. (D) Shared and missing markers expression profiles are shown

on the original t-SNE map. The map border color indicate whether a marker

is shared between panels or unique to a single panel (red is shared, green is

unique to panel A and thus missing markers for panel B, blue is unique to

panel B).The color bar shows the arcsinh-5 transformed values for the

markers expression
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To quantitatively assess the ability to differentiate between cell

populations based on different sets of markers, we tested the ability

of a two-class Linear Discriminant Analysis classifier (Abdelaal

et al., 2019), to differentiate between populations 6 and 8 in the

TCRcd cells. We evaluated Linear Discriminant Analysis’ perform-

ance using only the 16 shared markers, all 28 markers from the

TCRcd imputed data and all 28 markers from the TCRcd original

data. We obtained the highest performance using all markers from

the original data, with an accuracy of 95.74 6 0.70%. The lowest

performance was obtained when using only the 16 shared markers

(accuracy¼ 70.37 6 1.07%). Using all markers from the imputed

data resulted in an accuracy of 83.46 6 1.13%, which is less than

the original data, as expected, but showing a strong improvement

over the shared markers. This confirms our previous conclusion that

the imputation improves over the shared markers, despite the fact

that the imputation relies on the shared markers. We obtained simi-

lar results for populations 12 and 31, and populations 7 and 14

(Supplementary Fig. S25).

4 Discussion

We demonstrated the feasibility of combining data from different

CyTOF panels with a set of shared markers in common. We showed

that by imputing data, the heterogeneity of the data can be better

captured than with the individual panels separately. Also, we pre-

sented a data-driven approach to select the set of shared markers

that are most informative to be used to align panels.

The selected set of shared markers can capture the underlying

structure of the data. For example, from the HMIS dataset we saw

that for small values of m, the selected shared markers include CD3,

CD4 and CD8a which separate the main CD4þ and CD8þT cells

immune lineages from the rest of the cell populations. As m

increases, the selection algorithm starts to include markers that dif-

ferentiate the different populations within a single lineage. Our se-

lection approach relies on the variation in expression across cells. As

a result, CD45, an essential marker which is positively expressed

across all immune cells, is never selected due to its low variance.

To assess the quality of imputation, we relied on three scores

that capture the cluster and neighborhood concordance between the

imputed and original data. For the HMIS dataset, we observed

prominent discordance when a low number of shared markers is

used (m < 12), mainly due to exclusion of key lineage specific

markers within the set of shared markers resulting in imputation

failures. The number of shared markers to properly align panels

does depend heavily on the complexity and heterogeneity of the

data. For the HMIS dataset, studying PBMCs and tissue samples

from patients with three different inflammatory bowel diseases as

well as controls, 16 shared markers were needed. Whereas for the

Vortex dataset, that replicated mouse bone marrow samples, 11

markers were sufficient. On the other hand, we saw that for both

datasets we can capture and reconstruct all cell clusters, despite their

number and sizes, suggesting that the imputation is not biased to-

ward the clustering. Although the performances do differ for differ-

ent settings of the number of shared markers (m) and number of

neighbors used during imputation (k), they are not sensitive to the

exact setting, illustrating the robustness of CyTOFmerge.

Note that during the shared maker selection procedure we repre-

sented highly correlated markers by only one representative marker.

We made this choice because highly correlated markers will get the

same importance by the PCA selection scheme, and thus might be

selected together. Selecting a highly correlated marker as an

additional shared marker will, however, not add any information to

the shared makers, while, at the same time, occupying a marker slot

in the panel. To reduce this redundancy and free as many slots as

possible on the panel we made the choice to represent highly correl-

ate makers with only one marker. Clearly, the choice for the thresh-

old plays an important role as when the correlation is lower the

markers will also add more distinct information.

We have shown that by imputing more markers, it is possible to

better differentiate between cell populations, but on the other hand,

the imputation of markers does affect the quality of the downstream

analysis when compared to non-imputed data. We saw that cluster-

ing of the imputed data is not perfectly similar to the original data

(adjusted Rand-index <1). Indeed, this is affected by the homogen-

eity of the dataset, as we saw higher performance for the Vortex

datasets compared to HMIS (Vortex being more homogenous).

Generally, the number of shared markers will affect the downstream

analysis, i.e. increasing the number of shared markers will increase

the quality of the imputation, and the downstream analysis will

more faithfully resemble analyses done on non-imputed data. But

that will also restrict the number of unique marker slots available on

each panel. Using less shared markers will increase the number of

unique markers, which in turn will increase the capacity to capture

more heterogeneity, but at the expense of imputation quality. This

trade-off is being influenced by the local structure (homogeneity) in

the data, which is, unfortunately, hard (or even impossible) to pre-

dict beforehand, in general.

Compared to FC methods, CyTOFmerge outperformed the first-

nearest-neighbor method, and achieved comparable performance

with the cluster-based imputation. The later shows that the pre-

clustering step of the shared markers is unnecessary, as the imput-

ation through the entire data using CyTOFmerge produces similar

results. Further, we demonstrated that by imputing more markers,

we obtained better differentiation between different cell popula-

tions. However, the imputation depends on how similar cells are in

the shared markers space, indicating that the variation between pop-

ulations that can only be differentiated based on imputed (non-

shared) markers is to some extent retained in the shared markers.

To practically apply CyTOFmerge, we recommend the following

steps: (i) collect the samples and divide them in two parts. (ii)

Design the first marker panel according to the biological question

one wants to be answered. The marker panel would probably con-

tain lineage markers, to differentiate between the major cell types,

and cell state markers, for more detailed subtyping, and intracellular

markers of interest (Bendall et al., 2011). (iii) Stain the first part of

the samples with the designed marker panel and measure the sam-

ples with CyTOF. (4) Apply the marker selection pipeline on the

measured dataset using the first panel and obtain the most inform-

ative markers (i.e. shared markers). (5) Include those shared markers

while designing the second panel of marker. (6) Add extra state or

intracellular markers of interest to the second panel. (7) Stain the se-

cond part of the samples with the second marker panel and measure

the samples with CyTOF. (8) Apply the imputation algorithm to all

samples, combining both datasets from both panels, and create the

imputed dataset in which each cell is represented by the unique

markers from each panel (one of which is imputed), as well as the

shared markers.

Importantly, we have shown that by combining panels a richer

protein profile of cells can be acquired with which it becomes pos-

sible to find both abundant as well as rare cell populations. This

opens possibilities to merge even more panels based on a common

shared marker set as there is no fundamental limit to restrict to the

combination of two panels.

4070 T.Abdelaal et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz180#supplementary-data


Funding

This work was supported from the European Commission of a H2020 MSCA

award under proposal number [675743] (ISPIC).

Conflict of Interest: none declared.

References

Abdelaal,T. et al. (2019) Predicting cell populations in single cell mass cytome-

try data. Cytom. A, 1–13.

Amir,E.D. et al. (2013) viSNE enables visualization of high dimensional

single-cell data and reveals phenotypic heterogeneity of leukemia. Nat.

Biotechnol., 31, 545–552.

Bandura,D.R. et al. (2009) Mass cytometry: technique for real time single cell

multitarget immunoassay based on inductively coupled plasma

time-of-flight mass spectrometry. Anal. Chem., 81, 6813–6822.

Bendall,S.C. et al. (2011) Single-cell mass cytometry of differential immune

and drug responses across a human hematopoietic continuum. Science, 332,

687–696.

Bendall,S.C. et al. (2012) A deep profiler ’s guide to cytometry. Trends

Immunol., 33, 323–332.

Chevrier,S. et al. (2017) An Immune Atlas of Clear Cell Renal Cell

Carcinoma. Cell, 169, 736–749.

Comaniciu,D. and Meer,P. (2002) Mean shift: a robust approach toward

feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24, 603–619.

Costa,E.S. et al. (2010) Automated pattern-guided principal component ana-

lysis vs expert-based immunophenotypic classification of B-cell chronic lym-

phoproliferative disorders: a step forward in the standardization of clinical

immunophenotyping. Leukemia, 24, 1927–1933.

Hinton,G. and Salakhutdinov,R.R. (2006) Reducing the dimensionality of

data with neural networks. Science, 313, 504–508.
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