Chapter 5
Sociality, Parasites, and Pathogens
in Bats

Quinn ML.R. Webber and Craig K.R. Willis

Abstract Little is known about the ecology of many of the parasites and pathogens
affecting bats, but host social behavior almost certainly plays an important role in
bat-parasite dynamics. Understanding parasite dynamics for bats is important from
a human public health perspective because of their role as natural reservoirs for
recent high-profile emerging zoonotic pathogens (e.g. Ebola, Hendra) and from a
bat conservation perspective because of the recent emergence of white-nose syn-
drome (WNS) in North America highlighting the potential population impacts of
parasites and pathogens. Although some bat species are among the most gregarious
of mammals, species vary widely in terms of their social behavior and this variation
could influence pathogen transmission and impacts. Here, we review the literature
on links between bat social behavior and parasite dynamics. Using standardized
search terms in Web of Science, we identified articles that explicitly tested or
discussed links between some aspect of bat sociality and parasite transmission or
host population impacts. We identified social network analysis, epidemiological
modeling, and interspecific comparative analyses as the most commonly used
methods to quantify relationships between social behavior and parasite-risk in bats
while WNS, Hendra virus, and arthropod ectoparasites were the most commonly
studied host-parasite systems. We summarize known host-parasite relationships in
these three systems and propose testable hypotheses that could improve our
understanding of links between host sociality and parasite-dynamics in bats.
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5.1 Introduction

Parasitism is ubiquitous in nature. Parasites affect fitness of their hosts and thus can
shape host population dynamics. Defined broadly, a parasite is any organism that
grows, feeds, and/or is sheltered at the expense of another organism (i.e. the host).
Parasites can be categorized into different ways but one common approach is to
differentiate microparasites, which are typically unicellular or multicellular microbes
(e.g. bacteria, prions, viruses, protozoans, fungi) with short generation times and a life
cycle that occurs entirely on/in the host, from macroparasites which are multicellular
parasites with longer generation times and more complex life cycles that may include
multiple host species (Table 5.1; Anderson and May 1979; Hudson et al. 2002). Many
microparasites can be pathogenic and cause identifiable disease in their hosts with
recognizable physiological or behavioral signs or symptoms (Table 5.1). For exam-
ple, Batrachochytrium dendrobatiidis is a fungal microparasite of amphibians that
infects keratinized tissues, thickens the epidermis, and eventually causes mortality, all
of which are identifiable signs of the associated disease, chytridiomycosis (Voyles
etal. 2009; Rosenblum et al. 2010). Macroparasites tend to result in chronic infections
of their definitive hosts, decrease host fecundity, and usually cause morbidity rather
than mortality (Hudson et al. 2002). Experimental infection of great tits (Parus major)
with the hen flea (Ceratophyllus gallinae) resulted in reduced reproductive success via
increased nest failure during incubation and the nestling period (Fitze et al. 2004).
Parasite dynamics and impacts are often quantified using two metrics: intensity (i.e.
load) and prevalence. Intensity quantifies the number of infections per individual host
within a given population, while prevalence is measured as a proportion of infected
individuals within a sample from a given host population (Table 5.1). Understanding
variation in parasite prevalence and intensity can thus be important for making
inferences about the evolution of social behavior and the potential fitness conse-
quences associated with parasite infection.

Although empirical data from wild host populations are surprisingly scarce, host
behavior is considered an important predictor of parasite intensity, prevalence, and
impacts (Moore 2002). A longstanding hypothesis in parasite ecology predicts an
influence of the host social system, and the duration and frequency of social con-
tacts within host populations, on parasite prevalence or intensity (Loehle 1995;
Altizer et al. 2003). Social systems, defined as groups of conspecifics that regularly
interact more frequently with one another than with members of other groups,
represent the highest level of sociality, while social organization and social structure
describe the size, composition, and spatiotemporal distribution and cohesion of
social systems (Table 5.2; Whitehead 2008). Social systems can be further subdi-
vided into two categories: colonies and aggregations, and this distinction is
important for understanding host-parasite dynamics in bats. Colonies are groups of
individuals that may or may not be genetically related but which exhibit
non-random patterns of association, and frequent close contact with each other
(Kerth 2008). It is often assumed that groups of bats roosting in a common structure
represent a colony but often such groups may not meet the colony definition and,
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Table 5.1 Summary and definitions of commonly used terms associated with parasitism

Term Definition Source
Host An animal or plant on which a parasite lives. Martin (2010)
Reservoir host Hosts that do not exhibit clinical disease as a result of Nunn and

(ecological definition)

infection.

Altizer (2006)

Reservoir host
(medical definition)

Hosts that serve as a source of infection and potential
reinfection of people and sustain parasite populations when
humans are not available.

Martin (2010)

Parasite
(ecological definition)

Any organism that lives on and draws nutrients from
another living organism (the host), usually to the host’s
detriment.

Nunn and
Alitzer (2006)

Parasite
(medical definition)

An organism that grows, feeds, and is sheltered on
(ectoparasite) or in (endoparasite) a different organism
while contributing nothing to survival of its host.

Martin (2010)

Microparasite Pathogens, or disease-causing microbes (viruses, bacteria, | Anderson and
protozoa, fungi). May (1979)
Macroparasite Multicellular parasites (helminthes, arthropods, most May and
ectoparasites) Anderson
(1979)
Disease Pathology caused by infection, including outward physical | Nunn and

(ecological definition)

signs and internal or behavioral changes.

Alitzer (2006)

Disease
(medical definition)

A disorder with a specific cause (may or may not be
known) and recognizable signs and symptoms.

Martin (2010)

Pathogen Disease-causing agent. Nunn and
Alitzer (2006)
Virulence Disease-induced host mortality and/or reductions in Nunn and

(ecological definition)

fecundity

Alitzer (2006)

Virulence
(medical definition)

The disease-producing (pathogenic) ability of a
microorganism.

Martin (2010)

Infection

Invasion of the body by harmful organisms (pathogens),
such as bacteria, fungi, protozoa, or viruses.

Martin (2010)

Prevalence

A measure of morbidity based on current levels of disease
in a population; measured as a proportion (i.e. number of
infections divided by number of individuals).

Martin (2010)

Intensity

A measure of morbidity based on current levels of disease
in a population; measured as an absolute number (i.e. the
total number of infections).

Martin (2010)

Epidemiology

The science concerned with the study of the factors
determining and influencing the frequency and distribution
of disease in a defined human or animal population.

Martin (2010)

instead, represent aggregations. Aggregations are defined as assemblages of indi-
viduals that happen to occur in a shared environment at the same time, perhaps due
to an attraction to that environment rather than social bonds with other individuals
(Table 5.2). Variation in social dynamics within and between colonies and aggre-
gations can mediate host-parasite dynamics (Webber et al. 2016).
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Table 5.2 Summary and definitions of commonly used terms associated with socioecology and
personality in the context of host—parasite interactions of bats

Term Definition Source
Social The composition of groups and the spatial distribution of Whitehead
structure individuals. (2008)
Social Size, sexual composition, and spatiotemporal cohesion of a Whitehead
organization society. (2008)
Social Set of conspecific animals that interact regularly and more so | Whitehead
system with each other than with members of other such societies. (2008)
Society A group of individuals belonging to the same species and Wilson

organized in a cooperative manner. (1975)
Colony Characterization of roosting associations of bats, which may Kerth

or may not maintain body contact with each other in a (2008)

communal roost. ‘Colony’ is commonly used for females
breeding communally in maternity colonies.

Aggregation | Anonymous assemblage of individuals at the same place. Bats | Kerth
in aggregations show no social bonds and do not engage in (2008)
cooperative or other affiliate social interactions.

Gregarious An individual’s tendency to associate with conspecifics. Godde et al.
(2013)

Sociability An individual’s reaction to the presence or absence of Réale et al.
conspecifics. Sociability ranges along a continuum and (2007)

sociable individuals tend to seek the presence of conspecifics
while unsociable tend to avoid conspecifics.

Activity The general level of activity of an individual. Réale et al.
(2007)

Exploration An individual’s reaction to a novel object or situation. Réale et al.
(2007)

Relationships between host social systems and parasite dynamics are complex,
but several mechanisms are predicted to influence these patterns and are likely
important for bats. For example, hosts that occur in large, high-density colonies are
predicted to have more frequent interactions resulting in more opportunities for
parasite transmission (Stanko et al. 2002; Tompkins et al. 2011). Dense aggrega-
tions may result in contacts that are fewer and shorter in duration than those
occurring in colonies, but are still likely to provide more opportunities for parasite
transmission than might occur for solitary bats or those in very small colonies. This
variation in host density also has the potential to influence one of the most fun-
damental parameters of disease ecology, the basic reproduction number or basic
reproductive ratio (Rp). Ry is an important metric of parasite fitness typically
defined, for microparasites, as the number of secondary infections caused by an
infectious individual in an entirely susceptible population or, for macroparasites, the
number of female larvae established from a single female worm (Hudson et al.
2002). When R, > 1 infection persists within the host population and when Ry < 1
infection cannot become established (Perkins et al. 2003). Variation in social
behavior can impact R if certain individual hosts disproportionately infect a large
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number of conspecifics, and thus inflate Ry above the persistence threshold of one
(Lloyd-Smith et al. 2005). Although empirical data from numerous vertebrates (e.g.
ungulates: Ezenwa 2004) and invertebrates (e.g. bees: Otterstatter and Thomson
2007) support theoretical relationships between parasitism and sociality, there are
few data for most host—pathogen systems involving wild mammals, including bats.

Bats are among the most ecologically diverse of mammals with an enormous
range of social systems (Kunz and Lumsden 2003; Kerth 2008; Johnson et al.
2013). For example, colony or aggregation sizes of bats range from completely
solitary to millions of individuals, while social systems range from small, closed
societies with potentially long-term social bonds (e.g. Thyroptera tricolor: Chaverri
2010) to enormous, likely passive aggregations of individuals attracted to
high-quality habitats (e.g. Myotis lucifugus during autumn swarming: Fenton 1969).
Social behavior in bats presumably evolved in response to the costs and benefits
associated with close conspecific contact. Benefits of social roosting may be
numerous and include social thermoregulation, cooperative behavior, and infor-
mation transfer. Many temperate bats rely on social thermoregulation to decrease
energy expenditure during periods of energy limitation, such as pregnancy and
lactation (e.g. Eptesicus fuscus: Willis and Brigham 2007), while some tropical
species also appear to exploit social thermoregulation (e.g. Uroderma bilobatum:
Lewis 1992). The evolution of cooperative behavior in bats was likely facilitated by
strong female philopatry and stable group structure (Emlen 1994). Vampire bats
(Desmodus rotundus) are well known for their cooperative behavior (i.e. reciprocal
altruism) and females rarely transfer between groups (Wilkinson 1987; Carter and
Wilkinson 2013). This combination suggests an evolutionary scenario, where stable
group structure ultimately led to selection favoring cooperative behavior.
Information transfer about predation risk (e.g. Kalcounis and Brigham 1994) and
high-quality foraging sites (e.g. McCracken and Bradbury 1981) are also commonly
cited as potential benefits of sociality for bats.

Despite these potential benefits of social behavior, risk of infection with micro-
and macroparasites is thought to represent a potentially pronounced fitness cost of
being social (Coté and Poulin 1995). This cost is illustrated most obviously by the
recently emerged infectious disease white-nose syndrome (WNS), which is caused
by the fungal microparasite Pseudogymnoascus destructans (Blehert et al. 2009).
WNS has resulted in catastrophic declines of temperate hibernating bats in North
America (Frick et al. 2010) and prompted urgent conservation and management
attention (Foley et al. 2011; Fenton 2012). P. destructans is an invasive pathogen
that appears to have evolved with bats from the old world, where it does not cause
mortality of infected hosts, and to date, is known to occur on at least 15 hibernating
bat species (Puechmaille et al. 2011; Zukal et al. 2016). P. destructans grows in
exposed skin of the muzzle, ears, and wing membranes of bats during hibernation
(Blehert et al. 2009; Warnecke et al. 2012). For North American species, infection
with P. destructans causes an increase in energy expenditure (Verant et al. 2014)
and arousal frequency (Boyles and Willis 2010; Reeder et al. 2012; Warnecke et al.
2012) which lead to premature depletion of fat stores during hibernation. Although
the mechanism inducing increased energy expenditure and arousals by infected bats
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is still not fully understood (for review see Willis 2015), variation in social behavior
could mediate fungal transmission and growth, especially since affected species
tend to hibernate in large colonies or aggregations in caves or mines. Understanding
host-parasite dynamics in the context of social behavior for WNS is therefore
important from a conservation perspective.

In addition to serious conservation threats for some species, bats also appear to be
reservoir hosts for a number of emerging infectious diseases (EIDs) of public health
concern (Luis et al. 2013; Plowright et al. 2015). Reservoir hosts tend not to exhibit
clinical disease as a result of infection (Baker et al. 2013) and reservoir host pop-
ulations may therefore provide large pools of infected hosts that could facilitate
spillover events to heterospecifics, including humans, livestock, or pets (Luis et al.
2013; Plowright et al. 2015). Interestingly, their apparent ability to tolerate infection
with a wide diversity of viral parasites is one factor supporting the recent hypothesis
that bats are ‘special’ with respect to their propensity to host zoonotic microparasites
(Luis et al. 2013; Brook and Dobson 2015). The recent identification of a number of
viral, protozoan, and bacterial microparasites in bats supports this hypothesis and has
prompted significant analysis and discussion about bats as natural hosts to
microparasites associated with EIDs of humans or livestock (Hayman et al. 2013;
Luis et al. 2013; Olival and Hayman 2014; Veikkolainen et al. 2014). For example,
recent evidence suggests that bats host more zoonotic viruses per species compared
to rodents, and human encroachment into bat habitats, particularly in the tropics,
could facilitate spillover events (Daszak et al. 2000; Luis et al. 2013). Several
hypotheses have been proposed to explain the apparent zoonotic potential of bats.
Enormous variation in body temperature (T;,) and metabolic rate (MR) between rest
and sustained flight in many heterothermic bats could reduce fitness or pathogenicity
for many viral parasites (O’Shea et al. 2014). Interestingly, widespread torpor
expression in bats appears to reduce the likelihood of hosting zoonotic viruses,
possibly because viral replication decreases as a result of reduced T, and MR during
torpor (Luis et al. 2013; Stawski et al. 2014). This hypothesis suggests physiological
tolerance as a mechanism allowing bats to serve as reservoir hosts, but evidence
linking host sociality as an additional mechanism is limited (Hayman et al. 2013).

Despite the fundamental evolutionary importance, and conservation and public
health significance of bat-parasite interactions, studies of the influence of bat
sociality on parasite transmission and acquisition are limited, especially for
microparasites. Here, we review the literature on relationships between social
behavior of bats and their associated parasites. First, we provide an overview of the
tools, techniques, and methodologies that have been used to quantify relationships
between sociality and parasitism in bats, as well as relevant techniques that have
been used for other vertebrates and which could be applied to bats. Second, we
summarize the role of sociality in three relatively well-studied bat-parasite systems:
WNS, Hendra virus (HeV), and arthropod macroparasites. Finally, we propose
testable hypotheses and observational and experimental studies important for
understanding the influence on parasite dynamics of two important concepts in
behavioral ecology of bats: fission—fusion social organization and individual
behavioral tendencies (i.e. personality).
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5.2 Tools, Techniques, and Methodologies

We conducted an extensive search of the literature and compiled a list of articles
based on combinations of key word searches on Web of Science. We searched the
term “Chiroptera” and “bat” with every possible combination of social*, gregari-
ous*, colony, aggregation, fission—fusion (i.e. a common type of bat social system,
see below), viral, pathogen, disease, ectoparasite®, endoparasite®, parasite*,
infection* and epidemiology*. Our initial search yielded 223 unique articles but we
eliminated articles that did not explicitly quantify or discuss a link between some
aspect of sociality and parasite risk. This left only 35 articles that fully satisfied our
search criteria. Four of these used comparative analyses to examine effects of
species-specific socioecological traits on parasite risk (Table 5.4), 15 addressed
sociality in the context of microparasites (Table 5.4), and 16 addressed sociality in
the context of macroparasites (Table 5.5).

The studies we identified employed a range of methodologies to quantify links
between sociality and parasite risk (Tables 5.3, 5.4 and 5.5). Methods included
social network analysis (n = 3), epidemiological modeling (n = 5), and inter-
specific comparative analyses (n = 4). Details about the underlying theory and the
implementation of these methods is available elsewhere (e.g. social network anal-
ysis: Croft et al. 2008; epidemiological modeling: May 2006; comparative analyses:
Garland et al. 2005), and here we focus on the progress that has been made to date
in identifying knowledge gaps where future research on bat-parasite dynamics
could be focused.

Table 5.3 Summary of published articles using phylogenetically corrected comparative analyses
to test the effects of species-specific socioecological traits on parasitism in bats

Number Location Metric of Social aspect Analysis Source
of bat species parasitism
(families)
33 (7) Southeast | Viral Categorical metric | Phylogenetic least 1
Asia richness, ecto- | of colony size and | squares (PGLS)
and roost type comparative analysis
endoparasite
richness
33 (5) Global Viral richness | Colony size and PGLS comparative 2
population analysis
genetics (Fsr)
66 (8) Global Viral richness | Life-history traits: | PGLS comparative 3
nonsignificant analysis
15 (6) Africa Viral richness | Colony size and PGLS comparative 4
roost type: analysis
nonsignificant

[1] Gay et al. (2014), [2] Turmelle and Olival (2009), [3] Luis et al. (2013), [4] Maganga et al. (2014)
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5.2.1 Social Network Analysis

Social network analysis is based in mathematical graph theory and has been widely
applied in human sociobiology, since the 1950s (e.g. Cartwright and Harary 1956;
Wasserman and Faust 1994). For studies of wildlife, network analysis was first applied
in primate sociobiology (e.g. Sade and Dow 1994), and has recently been applied more
broadly to many other taxa (e.g. Fewell 2003; Hamede et al. 2009; Drewe 2010),
including bats (for review see Johnson et al. 2013). Networks consist of nodes (indi-
viduals or locations) and edges (interactions between nodes) through which a variety of
individual and group level metrics can be quantified (Wey et al. 2008). The roles and
importance of individuals or locations can then be assessed based on these metrics (see
Croft et al. 2008 for review). For example, individuals with certain combinations of
traits can influence network dynamics by potentially acting as intermediaries connecting
smaller subgroups within larger groups (Wey et al. 2008; Krause et al. 2010). In
addition, bipartite networks (or two-mode networks) can be constructed to assess
associations between individuals and ecologically relevant locations (e.g. a population
of organisms and their nesting sites). Network metrics are especially useful because they
can be used as predictor variables for relevant-dependent variables (e.g. infection status
or parasite intensity) in standard statistical models (e.g. general linear models). Network
analysis has allowed disease ecologists and parasitologists to make important strides
quantifying how non-random social interactions affect parasite transmission and
dynamics (for review see Godfrey 2013).

Network analyses have become increasingly popular for studies of bats (Johnson
et al. 2013). For instance, network analyses have been applied in a bat-habitat man-
agement context by identifying critical roosting locations that serve as ‘hubs’ within a
roost network and simulating the consequences of removing those key sites for sta-
bility of the social group (Rhodes et al. 2006; Silvis et al. 2014). Network analyses
have also been used to identify and quantify fission—fusion behavior within bat
colonies (Fortuna et al. 2009; Patriquin et al. 2010; Kerth et al. 2011; Johnson et al.
2012). In the context of disease ecology, so far only two studies have connected social
networks with epidemiological models to make inferences about host—pathogen
dynamics (e.g. Fortuna et al. 2009; Webber et al. 2016). Fortuna et al. (2009) showed
that giant noctule bats (Nyctalus lasiopterus) form highly modular, fission—fusion
colonies, and used an epidemiological model, parameterized using network metrics,
to show that this arrangement reduces the spread of information or disease within the
population because the colony was effectively segregated into modules divided
among many roost trees (n = 73 trees for 25 bats: Fortuna et al. 2009). For big brown
bats (Eptesicus fuscus), Webber et al. (2016) recently showed that network structure
depends on the habitat context. Although tree-roosting E. fuscus reuse tree hollows
between years (Willis et al. 2003), they frequently switch roosts within years (on
average every 1.7 days: Willis and Brigham 2004) and rarely return to the same roost
within a given summer. In building roosts, however, E. fuscus switch much less
frequently and commonly return to the same roost repeatedly within the same year
(Ellison et al. 2007; Webber et al. 2016). Webber et al. (2016) applied epidemiological
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models to social networks constructed based on these patterns of roosting behavior in
forests versus buildings and found that parasite dynamics should vary between these
habitat contexts with more rapid pathogen dissemination within building roosting
colonies.

Constructing epidemiological models from empirical data undoubtedly improves
inference for predicting epidemic outcomes, but as yet there are no studies that
quantify real-world relationships between the social behavior of bat hosts and their
parasites to test predictions of epidemiological models (Table 5.3). Although this
form of data collection can be labor-intensive and potentially expensive (Craft and
Caillaud 2011), there are numerous examples of network analysis being used to
integrate information on host-contact patterns and parasitism in systems with highly
gregarious hosts. For example, network analysis elucidated the role of meerkat
(Suricatta suricata) allogrooming as a predictor for the prevalence of Myobacterium
tuberculosis, the microparasite that causes tuberculosis (Drewe 2010). Quantifying
association patterns of meerkats was largely conducted via focal animal observation,
a type of data collection that is nearly impossible for free-ranging bats. Thus,
advances in technology, such as passive transponders (PIT tags), data-logging
telemetry, and/or proximity data loggers may be useful for quantifying association
patterns and constructing social networks for bats with implications for epidemiol-
ogy and disease ecology (e.g. Willis and Brigham 2004; Patriquin et al. 2010; Kerth
et al. 2011; Johnson et al. 2012).

5.2.2 Epidemiological Modeling

Although empirical data are sparse, host-parasite dynamics, and the impacts of
parasites on host populations have a rich theoretical history founded on Anderson
and May’s (1979) seminal models. Their classic microparasite epidemiological
model conceptualizes host population dynamics in terms of susceptible (S), exposed
(E), infected (I), and resistant/recovered (R) population pools, and these pools can
be combined in a range of ways depending on the nature of host—pathogen inter-
actions in the wild (e.g. SI, SIS, SIR, SEIR models). In a standard SIR model,
individuals transition from S to I as a function of transmission rate () and from I to
R as a function of survival of infection (v), while birth (a), and death rates (b,
a + b for infected hosts) of each pool drive overall population dynamics (Fig. 5.1;
Anderson and May 1979). Since being developed, SIR epidemiological models
have been widely used to infer microparasite impacts on host populations for
humans (e.g. Anderson and May 1982), wildlife (e.g. McCallum et al. 2009) and
plants (e.g. Gilligan et al. 1997).

Although appropriate for modeling the impacts of many infectious diseases (e.g.
measles, whooping cough: Anderson and May 1992), classic SIR models com-
partmentalize individuals into broad categories which may fail to capture variation
in aspects of host biology that could influence parasite dynamics and impacts
(Keeling and Eames 2005). For example, classic SIR models often assume that
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individual hosts in the population associate at random but, particularly for highly
social species, non-random association patterns are far more likely in nature.
Incorporating network structure into epidemiological models eliminates
random-mixing assumption of classic SIR models by assigning each individual a
finite number of permanent or temporary contacts between which transmission can
occur (Keeling and Eames 2005; May 2006). Implications for network epidemio-
logical modeling include the ability to identify highly connected individuals that
may be involved in a disproportionate number of transmission events (e.g.
super-spreaders: Lloyd-Smith et al. 2005) and weakly connected individuals that
may benefit from lower risk of infection. Epidemiological models informed by
variation in social connectedness can be highly effective for predicting pathogen
dynamics (Lloyd-Smith et al. 2005) but, as noted above, so far only two studies
have applied these methods specifically to bats (Fortuna et al. 2009; Webber et al.
2016). However, to our knowledge no study has explicitly tested model predictions
on a natural bat-parasite system in the wild.

An alternative to network epidemiological models informed by short-term (i.e. one
season) association data, is the use of long-term population data for model parame-
terization. These data ideally include information on changes in population or colony
sizes and changes in population demographic structure and/or vital rates. Most often
for bats, long-term field data on colony size and population connectivity, in combi-
nation with laboratory data on immune physiology have been used (Table 5.4; George
et al. 2011; Plowright et al. 2011). For example, field and laboratory data were
combined to model ecological factors driving HeV spillover events occurring in
Australia from flying foxes (Pteropus sp.) to horses and predicted that decreased
migratory behavior of the host increased host density in urban areas, which con-
tributed to the duration and intensity of HeV outbreaks (Plowright et al. 2011, see
below). Similarly, mark-recapture data, combined with birth and death rates of dif-
ferent demographics, have been used to parameterize models of rabies dynamics
(Georgeetal. 2011). Rabies in E. fuscus is highly seasonal, with peaks in prevalence at
maternity colonies (i.e. during June and July) after parturition when pups provide a
supply of immunologically naive hosts (George et al. 2011). Thus, the chance of
spillover is greatest during the post-parturition period when females roost in large
colonies and the influx of juveniles in the population increases overall prevalence.

These studies highlight the value of predictive models incorporating the behavior
of bats to make predictions about parasite dynamics, with potential implications for
human public health. However, even models which incorporate host ecology and
behavior (e.g. habitat selection) do not typically account for variation in social
behavior which could also play an important role (Moore 2002). For microparasites,
the two most likely parameters influenced by variation in social behavior are trans-
mission rate () and the survival and subsequent reproduction of infected individuals
(Fig. 5.1). For example, recent appreciation of individual differences in host behavior
has led to the realization that homogenous mixing or so-called ‘mass action’ trans-
mission may not reflect the dynamics of most host-parasite systems (McCallum et al.
2001; Moore 2002; Barber and Dingemanse 2010). Despite this realization, though,
for many host—pathogen systems, estimating 3 can be difficult and modeling studies
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Fig. 5.1 Flow chart of the original compartment model of microparasite impacts on host
populations based on population pools of susceptible, infected, resistant individuals (modified
from Anderson and May 1979). Hosts shift from susceptible to infected as a function of
transmission rate () and infected to resistant as a function of survival of infection (v), while birth
(a) and death (b, a + b for infected hosts) rates drive population dynamics. Variation in host social
behavior could impact B (¢), which mediates the number of infected individuals as well as the
subsequent fitness of infected individuals via reproductive rate (¢)

tend to rely on some plausible range of values for 3 (e.g. Griffin and Nunn 2012). For
some microparasites, however, it may be possible to experimentally manipulate
transmission and determine [ empirically. For example, a basic pairwise experiment,
where pairs of individuals (one infected, one susceptible) are housed together could
help to determine the proportion of contacts that result in transmission, and narrow the
range of plausible B values. Incorporating empirically derived data on association
patterns of individual bats into epidemic models could help to improve our predictions
of potential epidemic scenarios. These analyses (i.e. informed by empirical data) are
still relatively scarce for bats (Table 5.4), but recent interest in host-parasite inter-
actions and social network analysis provides an excellent opportunity to connect real
data with model predictions.

5.2.3 Interspecific Comparative Analyses

Comparative analyses provide insight into potential species-specific variation in
evolutionary adaption (i.e. changes in response to natural selection) within a group
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of organisms (Garland et al. 2005). From the perspective of parasites, a host is
effectively a habitat, which means principles of community ecology, and biotic and
abiotic characteristics of the “host ecosystem,” can be used to explain patterns of
parasite community composition (Morand and Poulin 1998). Thus, in contrast to
intraspecific analyses which typically assess variation in prevalence or intensity of
infection among individuals, comparative studies typically examine interspecific
variation in parasite species richness among host species because intensity and
prevalence are unlikely to be comparable in terms of their impacts, across different
host and parasite species. In most cases, comparative studies of parasite species
richness “correct for” host phylogeny. Two closely related species are more likely
to share similar functional traits compared to two more distantly related species
because of their more recent evolutionary history (Ives and Garland 2010). More
parasites are also likely to have been identified for host species that have been
well-studied so, in addition, most comparative studies also account for publication
bias by including the total number of publications on a given host species as a
covariate in statistical models, or by using residuals of a linear regression between
number of publications and parasite species richness as the response variable (e.g.
Nunn et al. 2003; Lindenfors et al. 2007; Turmelle and Olival 2009).

To date, relatively few studies have used comparative analyses to test effects of
social behavior on parasite species richness in bats and, so far, most have focused
on viruses with one quantifying macroparasites (Table 5.3). In contrast, studies of
primates, the best-studied mammalian taxon in terms of relationships between
social behavior and parasite richness, focus on a wider breadth of parasites (i.e. ecto
and endoparasites as well as bacterial and viral pathogens: Nunn et al. 2003; Vitone
et al. 2004; Griffin and Nunn 2012). For bats, colony size appears to be one of the
most important predictors of viral richness, and epidemiological and evolutionary
theory predict that highly colonial bat species should harbor greater parasite
diversity, because of increased opportunities for parasite reproduction and evolution
(Altizer et al. 2003). However, observed relationships have not always followed this
pattern for bats (Turmelle and Olival 2009; Gay et al. 2014). Turmelle and Olival
(2009) found no effect of colony size on viral richness in bats but, rather, identified
species’ conservation status and global Fgr (i.e. population genetic structure) as the
most important predictors. On the other hand, among Southeast Asian bats, Gay
et al. (2014) found a negative relationship between colony size and viral richness,
which contradicts epidemiological theory (Loehle 1995). One potential limitation of
these results could be that the authors used a categorical metric of population size
(i.e. small, medium or large), which likely underrepresents the complexity of social
behavior (Gay et al. 2014). Alternatively, in the case of Gay et al.’s (2014) results, it
could be that bats in large colonies express immune or behavioral traits that provide
protection from increased parasite risk in that social context.

Although they have still not been widely used, in our view comparative studies
have great potential to help understand how bat social behavior influences parasite
diversity and co-evolves with parasites, in part because bats are so diverse and exhibit
a wide range of social and mating systems. For example, promiscuous bat species
should host a greater number of parasite species compared to harem-breeding and
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monogamous bats because, independent of colony size or density, polygynandrous
species presumably come in contact with a greater number of conspecifics during
mating compared to polygynous species, which likely has implications for
host-parasite coevolution. However, it is important to note that mating systems vary
considerably among bats (McCracken and Wilkinson 2000) and other aspects of bat
social systems (e.g. degree of fission-fusion or roost fidelity: see below) likely co-vary
with mating system and are equally important as predictors of parasite richness. Thus,
we recommend that future studies attempt to include more detailed information on bat
social systems in comparative analyses. For example, a meta-analysis of primate
social structure showed that differences in social network modularity (i.e.
sub-grouping within a larger group) in 19 species led to differences in disease
dynamics among species (Griffin and Nunn 2012). Although it may not be possible to
include such detailed social association data for bats at present, as more social network
studies accumulate, we recommend the use of network metrics as predictor variables
of parasite richness in comparative analyses. Species-specific data on typical contact
rates among individuals and demographics, and between sympatric species, as well as
data on dispersal patterns and group stability within bat species (e.g. fission-fusion)
would also be valuable as predictor variables to better understand how host social
traits in bats influence their parasite ecology and evolution.

5.3 Examples from the Field: White-Nose Syndrome,
Hendra Virus, and Arthropod Ectoparasites

Although very different in terms of their ecology and population impacts, based on our
literature review, the relationship between bat sociality and parasite impacts and
dynamics has been relatively well-studied for three sets of parasites: P. destructans,
the cold-tolerant fungal pathogen of bats that causes WNS; HeV, which can lead to
potentially fatal zoonotic disease in humans and horses; and the many species of
arthropod ectoparasites which have been relatively well-studied because they can be
easily sampled from bats captured in the field. We also identified four articles which
addressed the relationship between rabies, or European Lyssavirus, and bat social
behavior (Table 5.4), but rabies in bats has been the focus of a number of reviews (e.g.
Messenger et al. 2003; Kuzmin and Rupprecht 2006; Rupprecht et al. 2011; O’Shea
et al. 2011) so here we focus on less well-characterized bat-parasite interactions.

5.3.1 Host Sociality and Phenology in Bat WNS

WNS is an EID of urgent conservation concern because it is causing staggering
rates of mortality among hibernating bats in eastern North America (Blehert et al.
2009; Frick et al. 2010; Wilder et al. 2011; Langwig et al. 2012; Frick et al. 2015).
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Despite its recent emergence (2006-07), however, WNS is among the most
well-studied microparasites of bats in the context of social behavior. Interestingly,
one of the hallmark behaviors observed for P. destructans infected bats, both in the
wild and in the laboratory, is a reduction in clustering behavior as WNS infection
progresses over the course of hibernation (Langwig et al. 2012; Wilcox et al. 2014).
This phenomenon could lead to increased energy expenditure or evaporative water
loss which has implications for survival and potentially future reproduction (Willis
et al. 2011; Boratynski et al. 2015). Reduced clustering could be part of a stereo-
typed behavioral response by animals to infection, known as “sickness behavior”
(Hart 1988), which could either reduce the likelihood of becoming infected, or
reinfected, by sick individuals in the hibernaculum or reduce the likelihood of
infecting susceptible individuals, which could be important for inclusive fitness if
bats cluster with kin during hibernation (Wilcox et al. 2014; Bohn et al., in review).
In the laboratory, transmission occurs via direct physical contact and there is no
evidence of airborne transmission (Lorch et al. 2011), while environmental trans-
mission in the wild likely contributes strongly to infection dynamics because
P. destructans can survive in hibernacula in the absence of bats (Verant et al. 2012;
Hoyt et al. 2015). Although the most adversely affected bat species tend to associate
with large numbers of conspecifics throughout the year, transmission appears to
occur almost exclusively within hibernacula during autumn and throughout the
winter (Langwig et al. 2015).

Variation in sociality within and between bat species appears to influence
host-parasite dynamics in WNS. In the context of host density, there are two theories
relevant to the relationship between transmission and host-parasite dynamics. First,
density-dependent transmission predicts that host infection scales as a function of
host density so that, at low host density, pathogen transmission declines, and a given
pathogen fades out (Greer et al. 2008). Second, frequency-dependent transmission
predicts that host infection is driven by the total number of interactions among
infected and susceptible individuals in the population, regardless of population
density, so that when host density is low, a given pathogen can persist (Greer et al.
2008). Interestingly, the relationship between WNS transmission and host density
during hibernation appears to be species-specific. Among relatively solitary species
(i.e. Perimyotis subflavus and Myotis septentrionalis) that hibernate individually or
in small clusters, aggregation size (i.e. the numbers of bats in the hibernaculum) best
predicted the number of surviving bats within a given hibernaculum, with larger
aggregations experiencing faster apparent declines (Langwig et al. 2012). This
observation is consistent with density-dependent transmission models. In contrast,
for species that vary more widely in aggregation size (i.e. M. lucifugus and M.
sodalis), mortality was equally severe across a range of aggregation sizes (Langwig
et al. 2012), which is consistent with frequency-dependent transmission models.
This suggests that differences in species-specific social behavior during hibernation
can modulate WNS transmission and infection.

Unlike other infectious diseases of bats (e.g. rabies: George et al. 2011)
demographic structure in the active season does not appear to drive WNS dynamics.
Healthy M. lucifugus emerge from hibernation over an approximately eight-week
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period in spring (Norquay and Willis 2014; Czenze and Willis 2015). Females tend
to emerge prior to males, with the females in the best condition emerging first. This
is presumably because larger fat reserves allow females to cope with potentially
inclement weather, but also initiate reproduction earlier by exploiting warmer,
passively heated maternity roosts, and occasional warm nights with flying insects
available (Norquay and Willis 2014). However, bats infected with P. destructans
tend to emerge from hibernation much earlier than healthy bats presumably because
their fat stores are depleted. Moreover, bats that survive hibernation with WNS
often have severe wing damage in spring and individuals with the most damaged
wings tend to have the smallest energy reserves (Fuller et al. 2011). For many
diseases, an influx of immunologically naive hosts (i.e. juveniles) leads to a dra-
matic increase in prevalence immediately following reproduction due to vertical
transmission from mothers to offspring. In WNS, however, seasonal dynamics of
the disease are driven by dramatic seasonal changes in host physiology, specifically
sustained low body temperature during hibernation (Warnecke et al. 2012; Langwig
et al. 2012, 2015). For P. destructans-infected bats in spring and early summer, an
increase in body temperature limits infection and transmission despite the fact that
females tend to aggregate in potentially large maternity colonies (Langwig et al.
2015).

Although transmission likely does not occur readily for females at maternity
colonies, high mortality rates during hibernation may decrease the number of
potentially reproductive females that form maternity colonies (Langwig et al. 2015).
Therefore, normal benefits incurred from colonial roosting, such as social ther-
moregulation, may be dramatically reduced for WNS-surviving bats, which could
have additional negative impacts on survivors. For example, the energetic costs of
wound healing may be significant for infected individuals upon emergence from
hibernation (Fuller et al. 2011) and the decreased availability of social ther-
moregulation and increased likelihood of roosting solitarily may further increase
energetic expenditure (Wilcox and Willis 2016). Therefore, for species affected by
WNS, the lack of potential colony members, and thus potential for social ther-
moregulation, during spring and early summer could ultimately result in decreased
survival and reproduction (Langwig et al. 2015).

In addition to influencing transmission of P. destructans, theory predicts that
population size influences risk of extinction (de Castro and Bolker 2005). Using
counts of bats during winter hibernaculum surveys as a proxy for population size,
Frick et al. (2015) showed that, for five of six WNS-affected species, probability of
local extinction from a given hibernaculum decreased as population size increased.
This suggests that host aggregation and social behavior could influence risk of
extinction from WNS. One possible mechanism is that larger populations have
greater flexibility to cope with decreases in population numbers, and are thus less
likely to face declines below population thresholds where extinction becomes
inevitable.

Interestingly, social behavior may also help to explain differences in the con-
sequences of P. destructans infection for European versus North American bats.
Prior to the emergence of WNS, hibernating aggregations of affected North
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American species were approximately tenfold higher, on average, than colony sizes
of ecologically similar European species (Frick et al. 2015). However, after WNS
emergence, colonies of affected North American species have declined precipi-
tously and appear to be stabilizing at sizes similar to those of European bats (Frick
et al. 2015). This suggests the possibility that European colony sizes could have
been larger in the past and similar to pre-WNS colony sizes in North America
(Frick et al. 2016). Taken together, empirical data from North America and infer-
ences from Europe suggest that WNS could select against larger colony sizes (Frick
et al. 2016) resulting in remnant colonies which are, on average, smaller and less
social than pre-WNS colonies. We suggest that future studies attempt to quantify
social tendencies at the individual and population levels for pre- and post-WNS
infected populations to assess the impact of this conservation pathogen for social
evolution in bats.

5.3.2 Anthropogenic Changes to Flying Fox Socioecology:
Implications for HeV

In Australia, bats from the genus Pteropus are reservoir hosts for HeV, a recently
emerged zoonotic virus from the family Paramyxoviridae. Flying foxes are only
briefly infectious with no clinical disease but shed HeV in urine, saliva, feces, and
placental fluids (Halpin et al. 2011). HeV is lethal to horses and humans, and
transmission presumably occurs when horses ingest food or water contaminated by
bats (Plowright et al. 2008). Horses appear to act as amplifier hosts (Daszak et al.
2006), as all human cases have been directly traced back to an infected horse (Field
et al. 2012). Although, spillover events from flying foxes to horses are complex and
few data exist linking individual social tendencies of the bats to HeV transmission,
host socioecology likely mediates host—pathogen dynamics for this zoonotic disease.

Colony/aggregation sizes of Pteropus species can range from as few as 10,000
individuals in P. alecto maternity colonies to millions of individuals for P. scapulatus.
Based on experimental data and closely related human paramyxoviruses (e.g.
measles), HeV may require large host population sizes to provide enough susceptible
individuals for persistence because of a relatively short infectious phase and life-long
host immunity (Daszak et al. 2006). Historically, naturally occurring nectar resources
in native forests supported large, seasonally-migrating flying fox populations (Eby
1991; Plowright et al. 2015) but human-mediated habitat alterations have resulted in
patchily distributed natural food resources, which were already ephemeral in nature
(i.e. seasonally produced nectar). Therefore, flying foxes have begun to colonize
urban and periurban areas to exploit highly abundant, consistently available anthro-
pogenic food resources, such as fruiting trees planted in gardens or horse paddocks
(Eby et al. 1999). In many cases, urban bats do not migrate because food resources are
consistently available, which increases the likelihood of HeV-positive bats coming in
contact with horses (Plowright et al. 2011). Therefore, recent emergence and spillover
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of HeV in Australia appears directly linked to increases in the size and abundance of
urban bat colonies as well as reduced migratory behavior (Plowright et al. 2015).
Although urban bat aggregations appear to remain relatively large throughout the
year, temporal dynamics of HeV are at least partially mediated by host socioecological
traits such as colony size and migration (Plowright et al. 2011).

5.3.3 Host Colony Size and Arthropod Ectoparasites
in Female Temperate Bats

As noted above, social group size has been identified as a potentially important
predictor of parasitism, with larger groups generally hosting more parasites (Coté
and Poulin 1995; Rifkin et al. 2012; Patterson and Ruckstuhl 2013). Among
temperate bats, sexual segregation and variation in social group size between sexes
appears to be among the most important mediators of ectoparasitism. Adult males
tend to roost individually or in small groups, while females form maternity colonies
(Kunz and Lumsden 2003). For males, parasitism tends to remain low-throughout
spring and early summer and as the mating season progresses ectoparasite preva-
lence and intensity increases (Webber et al. 2015a). Most studies investigating the
link between colony size and ectoparasitism in bats have found the predicted
positive relationship (e.g. Lugcan 2006; Reckardt and Kerth 2009; Encarnacao et al.
2012), although this is not always the case (e.g. Zhang et al. 2010; Postawa and
Szubert-Kruszynska 2014). One explanation for lack of correlation between group
size and ectoparasitism at female colonies in some studies may be linked to vari-
ation in host association patterns and roost selection/ephemerality. For instance,
bamboo shoots used as roosts by flat-headed bats (Tylonycteris pachypus and
T. robustula) are highly ephemeral and likely contribute to frequent roost-switching
(Lewis 1995) as well as variation in group size and composition (Zhang et al.
2010). Frequent roost switching breaks up social contacts that could favor direct
host-host transmission of ectoparasites. Meanwhile, because some ectoparasites
rely on stable roost structures for a portion of their reproductive cycles, bats that use
ephemeral roosts rarely come in contact with ectoparasites that rely on a stable roost
for reproduction (Lewis 1995), which could supersede the theoretical relationship
between colony size and parasite risk.

Although, social contacts among females help to explain observed patterns of
ectoparasitism at maternity colonies, social organization (i.e. composition of
groups) can also mediate ectoparasitism. Most females present at maternity colonies
are either pregnant or lactating and links between temporal variation in social
organization (i.e. transition from pregnancy to lactation) and ectoparasitism are
supported by co-evolution of some host-ectoparasite reproductive cycles (Christe
et al. 2000). For example, reproductive cycles of some mite species respond to
pregnancy hormones of their female hosts (Lourengo and Palmeirim 2007). Once
pups are born there is also a pulse of mites, which results in significant vertical
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transmission from adult females to juveniles (Christe et al. 2000; Lugan 2006).
Lactating females may also tolerate significant ectoparasite burdens. During lac-
tation, females may have less energy available to mount behavioral (i.e. grooming)
or immunological responses to infection (Zuk and McKean 1996; Christe et al.
2000). Thus, while females are lactating and pups are non-volant, ectoparasite
prevalence, and intensity can be exceptionally high. However, once pups have been
weaned and are volant, they tend to be more heavily parasitized than females until
the colony disperses because they presumably have a naive immunoresponse and
less-experience grooming (Christie et al. 2000; Czenze and Broders 2011).
Although ectoparasitism tends to increase with colony size, juveniles are usually the
most infected hosts at maternity colonies. Adult females still face significant
ectoparasite burdens, while ectoparasitism for adult males generally increases
throughout swarming as conspecific contact rates increase (Webber et al. 2015a).

Many bat ectoparasites are also vectors for bacterial pathogens (e.g. Bartonella sp.,
Veikkolainen et al. 2014). Transmission of bacterial or viral pathogens via ectopar-
asite vectors among bat hosts could be influenced by sociality, especially for highly
gregarious females at maternity colonies. In theory, the same principles which reg-
ulate host—pathogen dynamics should also apply to host—vector—pathogen dynamics,
where the duration and frequency of host-host contact facilitates ectoparasite trans-
mission, which in turn facilitates vector-based pathogen transmission. For instance,
recent empirical evidence suggests that wing mites (Spinturnix sp.) can transmit
P. destructans propagules among hibernating bats in Europe, a chain of transmission
which is facilitated by direct host-host contact (Lucan et al. 2016). We suggest that
more future studies quantify links between host sociality, vector ectoparasites, and
vector-borne bacterial, viral, and fungal pathogens.

5.4 Future Directions and Testable Hypotheses

Progress has been made in identifying relationships between some aspects of
sociality and parasitism in bats, but much more empirical data from wild and
captive bats of more species is certainly needed. We propose a series of testable
hypotheses and possible experimental and observational studies about the role of
bat sociality in parasite dynamics. We focus on two aspects of sociality which have
been relatively little-studied for bats in the context of parasitism: fission—fusion
dynamics and consistent individual differences in behavior or personality.

5.4.1 Fission-Fusion Dynamics

Fission—fusion is the temporary splitting and reforming of colonies, where lack of
consensus, or even conflict, result in temporary fission, but the cost of remaining
apart is greater than subsequent fusion (Sueur et al. 2011). Within maternity
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colonies, females exhibit fission—fusion sociality (e.g. M. bechsteinii: Kerth and
Konig 1999; Nyctalus lasiopterus: Popa-Lisseanu et al. 2008) and change roosts
every few days but not all members of the group will move together, resulting in
variable group size and composition (e.g. Patriquin et al. 2010). Fission—fusion
sociality and frequent roost switching by forest-living bats may have evolved as a
mechanism to avoid parasites (Reckardt and Kerth 2007; Bartonicka and Gaisler
2007), although a trade-off between the costs of parasitism and benefits of
remaining loyal to high-quality roosts likely exists. Empirical data have linked
fission—fusion behavior to ectoparasite avoidance (e.g. Reckardt and Kerth 2007)
and some theoretical modeling also supports this hypothesis (Kashima et al. 2013).
However, there are currently no studies investigating microparasite transmission
within fission—fusion societies. We hypothesize that the relationship between fis-
sion—fusion dynamics and parasite risk and impacts will vary depending on the
mode of transmission for a given type of parasite. We expect that for most
microparasites and some ectoparasites (e.g. Basilia nana: Reckardt and Kerth 2007)
that require direct contact between hosts for transmission, fission—fusion dynamics
could serve to disrupt parasite transmission. Bats that display fission—fusion
behavior typically switch roosts every 1-2 days (Willis and Brigham 2004) and
data from M. bechsteinii suggest that bats are able to detect roosts that have recently
been occupied by other bats (Reckardt and Kerth 2007). Thus, when bats switch
roosts they appear to select sites that have not been occupied recently which could
help them avoid infested roosts. In contrast, we expect that for macroparasites with
alternative transmission strategies, such as mobile ectoparasites (e.g. crawling or
flying), fission—fusion dynamics are likely to be less effective as a parasite-
avoidance strategy. In fact, theory predicts that bats would be more likely to avoid
mobile ectoparasites if they remained in a single, large group because of
encounter-dilution effects (Coté and Poulin 1995; Rifkin et al. 2012). We suggest
studies employing social network analysis of wild bats, combined with estimates of
micro- and macroparasite prevalence, and intensity to disentangle relationships
between host social behavior, including fission—fusion dynamics, and the ecology
of parasite transmission (for review see Godfrey 2013).

5.4.2 Consistent Individual Differences in Behavior

Animal personality refers to consistent individual differences in behavior that are
stable within an individual across time and situations (Sih et al. 2004; Wolf and
Weissing 2012). Recently, personality has become more widely appreciated as a
possible explanatory variable for a number of ecologically relevant traits including
juvenile development (Stamps and Groothuis 2010), energy expenditure (Careau
et al. 2008) and social structure (Krause et al. 2010; Wolf and Krause 2014). Because
personality influences non-random association patterns observed within social
groups (Krause et al. 2010), between-individual variation in personality traits are
expected to influence parasite transmission patterns within and between groups
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(Barber and Dingemanse 2010; Kortet et al. 2010). In general, the most active,
exploratory or sociable (see Table 5.2 for definitions) individuals are expected to
face greater risk of transmitting and/or acquiring parasites (Barber and Dingemanse
2010; Kortet et al. 2010). Despite enormous recent interest in animal personality
among behavioral ecologists, evolutionary physiologists, and conservationists (for
review see Sih et al. 2004; Réale et al. 2007; Careau et al. 2008; Wolf and Weissing
2012), there are currently only three published studies examining effects of per-
sonality on any ecological trait in bats (Menzies et al. 2013; Kilgour and Brigham
2013; Webber et al. 2015b). These studies highlight that individual bats, like many
other vertebrates exhibit differences in personality but there is clearly room for much
more research on personality in bats, especially in the context of parasite dynamics.

We propose a series of hypotheses that would help to understand relationships
between personality and parasite prevalence/intensity and transmission in the
context of sociality. As for the implications of fission—fusion dynamics described
above, these hypotheses vary for contact-mediated micro- and macroparasites
versus mobile macroparasites with host-seeking behavior. First, we hypothesize a
relationship between individual sociability and parasitism for contact-mediated
parasites. Theory predicts a positive relationship between host sociability and
parasite risk, because the most sociable individuals are the most highly connected
group-members within the social network and may therefore be exposed to, and
themselves transmit, a disproportionate number of infections (Barber and
Dingemanse 2010). By contrast, for parasites with active host-seeking behavior,
individual activity and exploration may be most important because less active or
exploratory individuals may be easier targets for mobile macroparasites. Webber
et al. (2015b) identified the expected negative relationship between the prevalence
and intensity of fleas (a relatively mobile ectoparasite) and the activity component
of personality for female, but not male M. lucifugus, which highlights the potential
complexity of these relationships. Personality may have had a larger effect on
females because females may be selective with their mating partners, so if less
active females mate with fewer males they may retain a higher proportion of fleas,
which would otherwise be transmitted during mating (Webber et al. 2015b). We
suggest that future studies attempt to disentangle relationships between contact
versus mobile parasites and sociability, activity, and exploration components of
personality in bats.

5.5 Conclusion

Studies of host-parasite dynamics in bats are important from both a conservation and
human public health perspective and, as we describe above, the implications of bat
social behavior for parasite risk can be dramatic. Based on our review of the literature,
we identified social network analysis, epidemiological modeling (often, though not
always, parameterized using empirically-derived data), and phylogenetically-informed
comparative analyses as the methods most commonly used for quantifying links
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between sociality and parasitism in bats. In general, these studies suggest complex
relationships and studies aimed at fully elucidating these links may require integration
of techniques and data collection from multiple disciplines (e.g. behavior, ecology,
epidemiology, parasitology, and physiology/immunology).

We also found that, despite its recent emergence, WNS is already among the
best-studied pathogens of bats in the context of sociality perhaps, in part because
researchers who focus on bats have brought behavioral and ecological expertise to
bear on this important conservation problem. The link between host social aggre-
gation and HeV is also well established, again likely because of perceived societal
importance, in this case due to the public health implications of a zoonotic
pathogen. Relationships between bats and their ectoparasites have also been rela-
tively well studied, perhaps partly because ectoparasites are relatively easy to
quantify when bats are in the hand. Ectoparasite studies have identified links
between parasite risk, colony size, and fission—fusion dynamics which have broad
implications for understanding how sociality affects host—parasite interactions in
bats. A few studies have also begun to understand bats in the context of individual
animal personality. In general, however, we advocate for more research on bat
parasites in the context of socioecology, especially for bat and parasite species
which have received little attention to date.
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