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Abstract: Recent studies have linked the activity of ER aminopeptidase 2 (ERAP2) to increased efficacy
of immune-checkpoint inhibitor cancer immunotherapy, suggesting that pharmacological inhibition
of ERAP2 could have important therapeutic implications. To explore the effects of ERAP2 inhibition
on the immunopeptidome of cancer cells, we treated MOLT-4 T lymphoblast leukemia cells with a
recently developed selective ERAP2 inhibitor, isolated Major Histocompatibility class I molecules
(MHCI), and sequenced bound peptides by liquid chromatography tandem mass spectrometry.
Inhibitor treatment induced significant shifts on the immunopeptidome so that more than 20% of
detected peptides were either novel or significantly upregulated. Most of the inhibitor-induced
peptides were 9mers and had sequence motifs and predicted affinity consistent with being optimal
ligands for at least one of the MHCI alleles carried by MOLT-4 cells. Such inhibitor-induced peptides
could serve as triggers for novel cytotoxic responses against cancer cells and synergize with the
therapeutic effect of immune-checkpoint inhibitors.

Keywords: aminopeptidase; antigenic peptide; antigen presentation; adaptive immunity; major
histocompatibility molecules; proteomics; immunopeptidome; inhibitor

1. Introduction

Cancer actively tries to evade the human immune response through the process
of immunoediting [1]. Thus, clinical interventions that re-program the immune system
to better detect and eradicate cancer can be invaluable assets for the treatment of the
disease. In such an approach, the use of immune-checkpoint inhibitors (ICI) in cancer
immunotherapy has demonstrated impressive successes that are changing the landscape of
cancer treatment [2]. Unfortunately, the clinical success of ICI therapies is often limited to a
subset of patients [3], and recent efforts have focused on determining the causes for such
resistance [4]. Recently, the antigen presentation pathway has emerged as a key regulator
of response to ICI therapies [5].

Cytotoxic T-lymphocytes can kill cancerous cells after recognizing small peptides de-
rived from cancer-specific antigens. These small peptides, called antigenic peptides if they
elicit an immune response, are presented as a complex with major histocompatibility com-
plex class I molecules (MHCI, also called human leukocyte antigens, HLA, when referring
to the human genes) on the cell surface and are produced by complex proteolytic cascades
inside the cell [6]. The sum of the presented peptides is called the immunopeptidome
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and represents the proteome status of the cell [7]. Intracellular aminopeptidases such as
endoplasmic reticulum aminopeptidase 1 (ERAP1) and endoplasmic reticulum aminopepti-
dase 2 (ERAP2) play important roles in the generation of antigenic peptides and indirectly
regulate adaptive immune responses [8]. They achieve this by either trimming elongated
precursors down to the optimal length for MHCI binding (usually nine amino acids long),
or by over-trimming antigenic peptides to lengths too short for MHCI binding, effectively
destroying them. Both ERAP2 and its homologous ERAP1 have been shown to regulate the
cellular immunopeptidome [9]. In particular, ERAP2 has been shown to underlie changes
in peptidomes of particular HLA alleles related to predisposition to inflammatory autoim-
munity, [10–13], although its role on regulating the global immunopeptidome has not been
thoroughly studied. Accordingly, high ERAP2 expression levels have been associated with
predisposition to inflammatory autoimmunity [14], suggesting that antigen processing
by ERAP2 could be a key regulator of cellular antigenicity in human disease [15]. This
was recently demonstrated for the homologous enzyme, ERAP1, in the case of Psoriasis,
since reduced ERAP1 activity resulted in the reduced generation of an autoantigenic pep-
tide that sustains cytotoxic T cell activity against melanocytes in patients [16]. ERAP1,
being the dominant aminopeptidase that generates antigenic peptides, has already been
recognized as a potential therapeutic target in cancer immunotherapy [17,18]. However,
recent results have highlighted that ERAP2 may have an even greater impact on the efficacy
of ICI immunotherapy. Impressively, reduced ERAP2 expression levels due to common
genetic polymorphisms have been recently shown to predict survival in patients treated
with ICI immunotherapy in 24 out of 24 cancer types examined [19]. Accordingly, ERAP2
has been shown to be upregulated in several cancers [20]. Therefore, it is possible that
pharmacological inhibition of ERAP2 could enhance the efficacy of cancer immunotherapy
and extend it to more patients.

Inspired by these findings, several studies have explored the development of ERAP2
inhibitors, although their effects on cellular models is currently lacking [21]. In this study,
we utilized compound DG011A (described as compound 6g in [22]), to our knowledge
the most potent and selective inhibitor of ERAP2 described, to explore changes in the
immunopeptidome of the MOLT-4 T lymphoblast leukemia cell line. Although inhibitor
treatment had only a minor effect in MHCI expression on the cell surface, it induced a
significant immunopeptidome shift, leading to the presentation of many new peptides that
have the potential to be immunogenic. Our work suggests that, in cancer cells, ERAP2
plays important roles in limiting presentation of cancer antigens and thus pharmacological
inhibition by DG011A or similar inhibitors may be a viable approach to modulating the
cancer immunopeptidome for immunotherapy applications.

2. Results and Discussion

Phosphinic pseudopeptides can act as transition state analogues and are potent in-
hibitors of several members of the oxytocinase sub-family of M1 aminopeptidases. During a
previous SAR study, compound DG011A (described as compound 6g in [22]) was identified
to be a potent inhibitor of ERAP2 with good selectivity versus the homologous ERAP1 [22].
Indeed, DG011A inhibits the trimming of the fluorigenic substrate Arg-AMC by ERAP2
with an IC50 = 89 nM, while it inhibits the trimming of the fluorigenic substrate Leu-AMC
by ERAP1 with an IC50 = 6.4 µM, a 72-fold difference (Figure 1A). To evaluate the effect
of this compound on the immunopeptidome of cancer cells, we selected the MOLT-4 T
lymphoblast leukemia cell line because it has a good basal level of expression of ERAP2
(Figure S1). In addition, expression levels of ERAP1 are much lower than ERAP2 in MOLT-
4 cells, making ERAP2 the dominant aminopeptidase in the ER and thus facilitating the
observation of changes in the immunopeptidome after ERAP2 inhibition (Figure S1). At
the same time, co-expression of ERAP1 and ERAP2 in MOLT-4 cells (both enzymes are
expressed in most cancer cell lines [20]) allows us to discern the effects of ERAP2 in the
immunopeptidome in more native conditions in which ERAP1 is also a contributing factor.
DG011A demonstrated no apparent toxicity on MOLT-4 cells as evidenced by the MTT as-
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say, for concentrations up to 100 µM (Figure 1B). Treating MOLT-4 cells with 1 µM DG011A
for 48 h resulted in only a small decrease in cell-surface staining of MHCI, suggesting that
the inhibitor does not abrogate overall antigen presentation by the cell (Figure 1C,D).
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Figure 1. Activity of the phosphinic inhibitor DG011A. Panel (A), titration of DG011A inhibits ERAP2
with a 70-fold higher potency than ERAP1. Panel (B), DG011A shows no toxicity versus MOLT-4
cells up to 100 µM as measured by the MTT assay. Panel (C), representative FACS traces used for the
quantitation of the presence of HLA molecules (stained by the W6/32 antibody) on the surface of
MOLT-4 cells incubated with 1 µM DG011A. Panel (D), quantitation of the geometric mean of the
signal from the FACS experiments.

To analyze the effects of the compound on the immunopeptidome of MOLT-4 cells, the
cells were cultured in the presence of 1 µM compound, grown to 0.5 × 109 cells, harvested
and the MHCI-peptide complexes isolated by affinity chromatography using the pan-
HLA monoclonal antibody W6/32 as previously described [23]. Eluted peptides from the
MHCI complexes were sequenced by LC-MS/MS. Overall, we performed three biological
replicates of each condition (with and without the inhibitor) and each was analyzed in
three technical replicates, bringing the total to nine replicates for each condition. The
unfiltered lists of identified peptides, along with relevant identification parameters, are
shown in Table S1. A scatterplot of identified peptides comparing the relative signal
intensity between the two conditions is shown in Figure 2A. Most peptides lie in the
diagonal, suggesting that they are detected in similar amounts irrespective of the presence
of the inhibitor. Still, a significant number of peptides lie outside the diagonal, indicating
that they are either up- or down-regulated by the inhibitor. Several peptides were also
detected uniquely in a single condition (indicated on the edges of the plot near each
axis). A heatplot of all measured signals is shown in Figure 2B. The heatplot suggests
a good degree of reproducibility between replicates. Interestingly, a cluster of peptides,
upregulated by the inhibitor, is evident (in the top right section of the plot), suggesting that
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the presence of the inhibitor induced the presentation of many peptides. To take advantage
of our replicate measurements to enhance the statistical robustness of the comparison, we
limited further comparisons to peptides that were detected to change with a p value < 0.05
as shown in the Volcano plot in Figure 2C. Overall, we identified 1394 peptides of which
1040 were unchanged by the inhibitor, 72 were down-regulated by more than five-fold and
282 were novel or upregulated by more than 5-fold (Figure 2D). These results suggested
that the inhibitor had a significant effect on antigen presentation and induced or enhanced
the presentation of many peptides on the cell-surface. This result is overall consistent with
the proposed role of ERAP2 in complementing ERAP1 in shaping the immunopeptidome,
primarily by destroying some antigenic epitopes [15].
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Figure 2. Effects of the DG011A on the immunopeptidome of MOLT-4 cells. Panel (A), scatterplot
of the signal of detected peptides isolated from the HLA molecules of MOLT-4 cells under control
conditions or after incubation with DG011A. Each circle represents a unique peptide sequence.
Circles along the diagonal represent peptides unchanged between the two conditions and circles in
the region close to each axis represent peptides detected only in a single condition (either control or
inhibitor). Panel (B), heatplot showing the distribution of detected peptide signals (log10) in both
conditions for each of the replicates measured (three biological replicates, each measured in three
technical replicates, totaling 9 measurements per condition). Panel (C), volcano plot, indicating the
statistical significance of the observed differences between the two conditions. Each circle represents
a unique peptide sequence. The middle section represents peptides detected in both conditions but at
different intensities and the outermost sections peptides detected in only a single condition. Peptides
that fall within the green- and cyan-colored regions have a p value of <0.05 and are considered
statistically significant. Panel (D), Venn diagram summarizing the observed numerical shifts of the
immunopeptidome of MOLT-4 cells after incubation with DG011A.

Peptide length is a very important parameter for binding onto MHCI due to the
size restrictions of the peptide binding groove; most peptides presented by MHCI are
11 residues or shorter [24]. To examine if the ERAP2 inhibitor had any effect on the length
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of presented peptides we plotted the distribution of peptide lengths for the peptides that
were unaffected by the inhibitor and the peptides that were induced by the inhibitor
(Figures 3A,B and S2). Peptides that were not affected by the inhibitor were predominantly
9mers, as expected based on the length preferences of MHCI alleles, although a small
number of longer peptides were also detectable (Figure 3A). Similarly, peptides that were
up-regulated by the inhibitor also were predominantly 9mers, but included a few additional
longer peptides. Still, there was no clear shift in peptide length, as seen previously when
using an ERAP1 inhibitor [23]. This observation is consistent with the known molecular
mechanisms of these two enzymes, since ERAP1 has been shown to trim many peptides
based on their length by using a distinct regulatory site [25,26], whereas ERAP2 does not
appear to share the same property [27]. Rather, the presence of some additional elongated
longer peptides induced by the inhibitor is likely the result of a reduced aminopeptidase
activity in the ER.
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Figure 3. Effects of the inhibitor DG011A on the length and affinity of peptides presented by MOLT-4
cells. Panel (A), distribution of lengths of peptide eluted from the MHC class I molecules on the
surface of MOLT-4 cells that are unaffected by the presence of the inhibitor. Panel (B), same as in panel
A but for peptides that were induced by the inhibitor. Panel (C), distribution of predicted affinities
of each identified peptide for the HLA alleles present in MOLT-4 cells (HLA-A*01:01, HLA-A*25:01,
HLA-B*18:01, HLA-B*57:01, HLA-C*06:02, HLA-C*12:03) [28]. Each circle denotes a unique peptide
sequence. Peptides are grouped as in Panel (A).

To validate that the detected peptides are indeed HLA ligands and presented by one
of the HLA-alleles present in MOLT-4 cells [28], we utilized the HLAthena prediction
server [29] to rank the peptides with a length of 8–12 residues (based on the length limita-
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tions of the prediction server) for binding to one of the alleles HLA-A*01:01, HLA-A*25:01,
HLA-B*18:01, HLA-B*57:01, HLA-C*06:02, HLA-C*12:03 (Figure 3C). Peptides marked with
a rank below 2.0 are considered HLA-binders (cyan region in Figure 3C). More than 80%
of the peptides identified to be common in both conditions were predicted to be binders
for at least one of the HLA alleles in MOLT-4 cells, whereas more than 75% of the peptides
induced by the inhibitor were also predicted to be binders. This result both validates our
isolation and detection protocols, but also suggests that the vast majority of the peptides
that are up-regulated by the inhibitor are indeed presented by MHCI and therefore have
the capacity to become immunogenic. To further validate this result, we analyzed the
sequence of the 9mer peptides that were common in both the control and inhibitor con-
ditions or were induced by the inhibitor, using the GibbsCluster-2.0 Server [30] in order
to reveal sequence patterns. Two major clusters were evident from the analysis and are
depicted in Figure 4. Comparison of these clusters to known peptides that bind to one
of the MHCI alleles expressed by MOLT-4 cells (extracted from http://hlathena.tools/
(accessed on 27 December 2021) [29], Figure S3) indicated that the two clusters found for
the common (unaffected) peptides likely represent peptide presentation by HLA-A*25:01,
HLA-B*18:01 and HLA-C*18:03 (Figure 4A) and HLA-A*01:01 and possibly HLA-B*57:01
(Figure 4B) respectively. Similarly, the two main clusters found for peptides that were in-
duced by the inhibitor, likely represent presentation primarily by HLA-A*25:01 (Figure 4C)
and HLA-A*01:01 (Figure 4D) respectively, although peptides presented by HLA-B*18:01
and HLA-C*06:02 is also likely. Interestingly, inhibitor-induced peptides appear to be
more biased towards HLA-A*25:01, hinting that this allele may tend to present peptides
that are more sensitive to over-trimming by ERAP2, which are spared in the presence of
the inhibitor.

In summary, we present evidence that a recently developed ERAP2 inhibitor, with
good selectivity versus ERAP1, has the capability to regulate the global immunopeptidome
of a cancer cell line and to induce the presentation of many new peptides that are good
MHCI ligands and therefore have the capacity to be immunogenic when presented in an
immunocompetent host. Our results accentuate one of the proposed biological roles of
ERAP2, specifically its ability to destroy antigenic peptides and thus limit presentation
of some cancer antigens. Based on our findings, we propose that chemical inhibition of
ERAP2 activity can spare the destruction of MHCI ligands that can then become antigenic
and enhance the immunogenicity of cancer cells. Our study, however, also carries some
important limitations: while the observed results are consistent with ERAP2 inhibition,
unknown off-target effects of the inhibitor could also, indirectly, exert effects on the im-
munopeptidome. Furthermore, the generality of the observed effects on other cancer cells
is currently unknown and could heavily depend on the role of ERAP2 antigenic peptide
trimming in the cells examined and as a result could be limited to cells that express high
levels of ERAP2. Lastly, our approach did not address the relative contribution of ERAP1
and ERAP2 in shaping the immunopeptidome in this system. Besides these limitations, we
provide proof-of-concept of the importance of pharmacological manipulation of ERAP2
enzymatic activity on antigen presentation even in the presence of the homologous ERAP1.

The over-expression of ERAP2 in cancer is likely an immune-evasion mechanism and
therefore the pharmacological restriction of ERAP2 activity could enhance the antigenicity
of cancer cells and possibly synergize with checkpoint-inhibitor cancer immunotherapy.
While the generality and clinical relevance of such an approach is currently unknown,
further pharmacological development of DG011A or similar inhibitors may constitute
a worthwhile effort that can generate useful chemical tools and drug leads towards the
long-term goal of improving the efficacy of cancer immunotherapy.

http://hlathena.tools/
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Figure 4. Weblogo type plots based on Gibbs cluster analysis of 9mer sequences of identified
peptides. Analysis was performed using the GibbsCluster-2.0 Server and plotted using the Seq2logo
server. Amino acids are colored based on their physicochemical properties (negatively charged = red,
positively charged = blue, hydrophobic/aromatic = black, hydrophilic = green). The size of the
letter representation of each amino acid single letter code indicates the probability of observation at
the particular position of each cluster. Positive value on the y-axis suggests a higher-than-random
prevalence of the particular residue at that position. Positions that show the enhanced presence of
residues that correspond to anchor residues of particular HLA alleles are indicated with arrows.
Panels (A,B) indicate the two major clusters observed for peptides common in both control and
inhibitor conditions and panels (C,D) indicate the two major clusters observed for peptides unique in
the inhibitor-treated sample.

3. Materials and Method
3.1. Cell Culture

MOLT-4 cells (obtained from ATCC, Manassas, Virginia, cat. no. CRL-1582) were
cultured in RPMI 1640 supplemented with 2 mM glutamine, 10% heat-inactivated FBS (Gibco,
Waltham, MA, USA), penicillin and streptomycin and incubated at 37 ◦C, 5% CO2. Cells
were counted before each passage, to maintain a density between 4 × 105–2 × 106 cells/mL.
Cell viability was monitored using the Trypan Blue dye during each passage, and was
consistently over 95%.

3.2. Antibodies

For the immune-purification of the MHC-I molecules carrying the MOLT-4 immunopep-
tidome, the W6/32 monoclonal antibody was used. The antibody was isolated from the
supernatant of hybridoma cells grown in culture and purified using protein G affinity chro-
matography. For FACS analysis, MHC-I molecules were stained with the W6/32 monoclonal
antibody conjugated with FITC (Biorad, Hercules, CA, USA, MCA81F). For the detection
of ERAP1 and ERAP2 in cell lysates by western blot the following primary antibodies
were used: human aminopeptidase PILS/ARTS1 polyclonal goat IgG (R&D Systems,
Minneapolis, MN, USA, AF2334) for ERAP1 and human aminopeptidase LRAP/ERAP2
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polyclonal goat IgG (R&D Systems, Minneapolis, MN, USA, AF3830) for ERAP2. As a
secondary antibody anti-goat IgG–HRP (HAF017) was also purchased from R&D systems.

3.3. Recombinant Proteins and Enzymatic Assays

Recombinant ERAP1 and ERAP2 were produced from baculovirus infected insect
cells (Hi5™, Thermo Fischer, Waltham, MA, USA) as described previously [31]. Enzymatic
titrations to evaluate the in vitro efficacy of the inhibitor were performed using a small
fluorescent substrate assay as described previously [27,31].

3.4. Western Blotting

About 10 × 106 MOLT-4 cells were lysed with 500 µL lysis buffer containing 1%
Triton X-100, 0.1% sodium deoxycholate, 1 mM EDTA, pH 8.0, complete protease inhibitors
(Roche, Basel, Switzerland: 12326400) in 50 mM Tris–HCl, pH 7.5, and 150 mM NaCl
buffer. After cell lysis, the total protein concentration was determined using bicinchoninic
acid (BCA) Protein Assay Kit (Thermo Scientific, Waltham, MA, USA). Whole cell lysates
were analyzed with SDS-PAGE under reducing conditions in a 10% polyacrylamide gel.
The separated proteins were blotted onto a polyvinylidene difluoride (PVDF) membrane
(Thermo Scientific, Waltham, MA, USA) using the antibodies described above. Primary
antibodies were used at a final concentration of 2 µg/mL and the secondary antibodies were
diluted 1:1000. As an HRP substrate, we used the Pierce chemiluminescent western blotting
substrate (Thermo Scientific, Waltham, MA, USA) and enhanced chemiluminescence was
detected in LAS 4000 (Fujifilm, Greenwood, South Carolina). The images were processed
using the AIDA Image analysis software 4.1 (Elysia-Raytest).

3.5. Synthesis of Phosphinic Inhibitor DG011

Phosphinic inhibitor DG011 [((1R)-1-amino-3-phenylpropyl){(2′S)-2′-[((2′′S)-1′′-amino-
3′′-hydroxy-1′′-oxopropan-2′′-yl)carbamoyl]-4′-methylpentyl} phosphinic acid] was pre-
pared according to the synthetic strategy shown below (Figure 5). Briefly, phosphinic acid 1
reacted under silylating conditions with acrylate 2, the P-Michael product was saponified
and diacid 3 was isolated after recrystallization of the resulting diastereoisomeric mixture,
in 46% yield over 3 steps. Then, the Cbz protecting group was exchanged with Boc group,
affording diacid 4 in 92% yield. DG011 was obtained in 43% overall yield after coupling
of 5 with H-(L)Ser(TBS)-NH2 and acidic deprotection (See Supporting Information for
characterization data, Figures S4 and S5).
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Figure 5. Synthetic strategy for DG011. (a) HMDS, 110 ◦C, 1 h, then 90 ◦C, 3 h, then EtOH, 70 ◦C,
30 min; (b) aq. NaOH, EtOH, rt, 24 h, then H3O+; (c) 2× recrystallizations by AcOEt, 46%, three steps;
(d) HBr/AcOH 33%, rt, 1 h; I Boc2O, Et3N, DMF, rt, 24 h, 92%, two steps; (e) H-(L)Ser(TBS)-NH2,
EDC·HCl, HOBt, DIPEA, CH2Cl2, rt, 4 h; (f) TFA/CH2Cl2/TIS/H2O 48:49:2:1, rt, 2 h, 43%, two steps.
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3.6. Cytotoxicity Assay

MOLT-4 cells (5000 cells/well) were cultured as described above in the presence of
varying concentrations of DG011 (0–100 µM) for 48 h. The culture medium was replenished
with 100 µL of RPMI 1640 containing 2 mg/mL MTT reagent, to a final concentration of
1 mg/mL. After incubation for another 4 h the cell cultures were centrifuged at 1250 rpm
for 5 min at room temperature. The resultant formazan crystals were dissolved in 100 µL
DMSO and the absorbance intensity was measured on a TECAN infinite M200 microplate
fluorescence reader (Tecan Group Ltd., Männedorf, Switzerland) at 540 nm with reference at
620 nm. All experiments were performed at least three times and the relative cell viability (%)
was expressed as a percentage relative to untreated control cells.

3.7. Treatment of MOLT-4 Cells with DG011 Inhibitor

MOLT-4 cells were treated with a DG011 inhibitor for a total of five days. The inhibitor
was added to the complete culture medium at a final concentration 1 µM. The cell medium
that contained the inhibitor was refreshed every two days. Cell cultures were incubated at
37 ◦C, 5% CO2. After five days of incubation, cells were harvested for immunopeptidome
isolation or for flow cytometry. For immunopeptidome analysis, cells were cultured at
a large scale and collected from flasks using Centrifuge 5430 R (Eppendorf, Hamburg,
Germany). Cell pellets were stored at −80 ◦C until immunopeptidome isolation. For the
flow cytometry analysis, cells were seeded in a 12-well plate and harvested with 10 mM
EDTA pH 8.0, in PBS.

3.8. Flow Cytometry

Approximately 5 × 104 cells per sample were transferred in FACS tubes and washed
twice with 1 mL FACS buffer (1%BSA/PBS, 0.02% NaN3, 10 mM EDTA). The cells were
stained with 4 µL undiluted W6/32 antibody labeled with Fluorescein (Biorad, Hercules,
CA, USA, MCA81F) for 30 min on ice. After incubation, the cells were washed with
0.5 mL FACS buffer, centrifuged at 200× g for 5 min at 4 ◦C and re-suspended in 300 µL
FACS buffer. The samples were analyzed in a FACScalibur flow cytometer using the
BD CellQuest™ Pro software (Version 6.0, BD Bioschences, Franklin Lakes, NJ, USA).
Approximately 20,000 events per sample were measured.

3.9. Preparation of Immunoaffinity Columns

W6/32 antibody (2 mg per column) was dialyzed in coupling buffer (NaHCO3 0.1 M,
NaCl 0.5 M, pH 8.3) overnight. To generate one 1 mL bed volume of cyanogen bromide-
activated Sepharose 4B (GE Healthcare, Chicago, IL, USA, 17-0430-01), 0.285 g of dry
beads was used. Sepharose was rehydrated with 1 mM HCl for 30 min and then washed
thoroughly with a coupling buffer. The solution of the antibody was added to the beads and
left for coupling overnight at 4 ◦C. After coupling, the beads were washed with coupling
buffer and then with blocking buffer (Tris–HCl 0.1 M, pH 8.0). After the washes the beads
were transferred to a 50-mL tube with blocking buffer and were mixed for 3 h at room
temperature. Finally, the beads were washed with three cycles of acidic buffer (CH3COONa
0.1 M, NaCl 0.5 M, pH 4.0) and then basic buffer (Tris–HCl 0.1 M, NaCl 0.5 M, pH 8.0)
solutions and then with 20 mM Tris–HCl, pH 7.5, 150 mM NaCl. For the pre-columns, the
exact same procedure was followed except for the W6/32 coupling step. The columns and
the pre-columns were stored at 4 ◦C until needed.

3.10. Isolation of MHC-I Immunopeptidome

For the isolation of the immunopeptidome, 0.5 × 109 cells per sample were used.
Cells were lysed with 20 mL lysis buffer (Tris–HCl, pH 7.5, 150 mM NaCl, 0.5% IGEPAL
CA-630, 0.25% sodium deoxycholate, 1 mM EDTA pH 8.0, 1× complete EDTA-free protease
inhibitor cocktail tablets) for 1 h at 4 ◦C. The cell lysate was cleared with ultracentrifugation
at 100,000× g for 1 h at 4 ◦C and then loaded onto a cyanogen bromide activated Sepharose
pre-column, blocked as described above. The flow through from the pre-column was
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passed through W6/32-coupled beads three times and then washed with 20 bed volumes
20 mM Tris–HCl, pH 8.0, 150 mM NaCl, 20 bed volumes 20 mM Tris–HCl, pH 8.0, 400 mM
NaCl, 20 bed volumes 20 mM Tris–HCl, pH 8.0, 150 mM NaCl and finally with 40 bed
volumes 20 mM Tris–HCl, pH 8.0. The MHC-I–peptide complexes were eluted from
the immunoaffinity column with 1% TFA. The peptides were separated from the MHC-I
molecules using reversed-phase C18 disposable spin columns (Thermo Scientific, Waltham,
MA, USA). The fraction containing peptides was dried prior to LC-MS/MS analysis.

3.11. LC-MS/MS Analysis

The purified peptidic samples were pre-concentrated on a pepmap LC trapping col-
umn (Thermo Scientific, Waltham, MA, USA, 0.3 × 5 mm) at a rate of 5 µL of Buffer A (0.1%
Formic acid in water) for 5 min. Then the samples were injected onto a 50 cm long pepmap
column (Thermo Scientific, Waltham, MA, USA) placed in an oven set to 55 ◦C, using a
gradient of 100% Buffer A (0.1% Formic acid in water) to 27.5% Buffer B (0.1% Formic acid
in acetonitrile) in 35 min followed by an increase to 40% buffer B in 2.5 min and a second
increase to 99% Buffer B in 0.5 min and then kept constant for 1 min. Finally, the column
was equilibrated for 15 min prior to the subsequent injection. A full MS was acquired
using a Q Exactive HF-X Hybrid Quadropole-Orbitrap mass spectrometer (Thermo Fischer,
Waltham, MA, USA) in the scan range of 350–1500 m/z using 60 K resolving power with an
AGC of 3 × 106 and max IT of 45 ms, followed by MS/MS scans of the 12 most abundant
ions, using 15K resolving power with an AGC of 1 × 105 and max IT of 22 ms and an
NCE of 28.

3.12. Data Analysis

The raw files were searched and the identified peptides were quantified in MaxQuant
(https://www.maxquant.org/ accessed on 27 December 2021) (version 1.6.14.0, Martin-
sried, Germany), using “unspecific” search against the human uniprot protein database
(downloaded 19/9/2019). Search parameters included a molecular weight ranging from
350 to 5000 Da, a precursor mass tolerance of 20 ppm, an MS/MS fragment tolerance of
0.5 Da and methionine oxidation, deamidation of asparagine and glutamine and protein
N-terminal acetylation were set as variable modifications. The protein and peptide false
discovery rate (FDR) was set to 1%. The match-between-run function was enabled.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23031913/s1.
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