
1. Background
Advances in genome sequencing in the last decades have 
made it possible to reconstruct genome-scale metabolic 
network models (GEMs) for many organisms (1-6). 
Over recent years, the number of available metabolic 
networks has significantly increased in different taxa of 
living organisms (7-13). Nowadays, analysis of GEMs 
plays an indispensable role in metabolic engineering 
(14, 15).

The process of GEM reconstruction is comprised of 
four fundamental steps (6, 16) including: automated 
omics-based (mainly genomics-based, i.e., using 
the sequenced genome of organisms) reconstructing 
the draft network using toolboxes such as COBRA 

toolbox (17) or RAVEN toolbox (18); curating the 
draft reconstruction; converting the network to a 
computational model and finally evaluating the 
correctness of models using experimental data.

In the process of GEM reconstruction, metabolic data 
of an organism is collected, and then, converted into 
a machine readable format, which in turn is converted 
to a mathematical constraint-based model. In fact, 
GEMs can be seen as the mathematical representation 
of metabolic processes. In the Materials and Methods 
section, we will briefly explain the mathematical 
framework used in this study.

In spite of the great advances in the reconstruction 
of GEMs (19), current models may not be completely 
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successful in modeling experimental data. Such 
inconsistencies may occur due to incorrect or 
incomplete annotations, missing reactions and 
pathways, incorrect or missing regulatory constraints 
and inaccurate formulation of the biomass reaction 
(14, 20).

As a result of the potential deficiencies in GEMs, 
it is always necessary to validate a GEM to ensure its 
ability in predicting the behavior of organism (21). In 
a recent comparative study, we assessed the modeling 
capabilities of GEMs of three Pseudomonas species, 
namely, P. aeruginosa, P. putida and P. fluorescens 
(22). Using the previously published biochemical 
data, we showed that GEMs of P. aeruginosa and P. 
putida are much more accurate than the P. fluorescens 
GEM.

2.  Objectives
In the present study, we follow a similar idea. Two 
Bacillus species, namely B. subtilis and B. megaterium 
are chosen for this analysis. The goal of this work is 
to compare the computationally-modeled biochemical 
capabilities of these species with their in vivo 
biochemical capabilities. 

3.  Materials and Methods

3.1.Comprehensive Literature Searching for 
Experimental Data
For comparing the predictive power of GEMs, 
experimental data were obtained from previous wet-
lab studies. For this purpose, we considered all articles 
in PubMed database, containing the names of the 
two species of interest. By June 2014, searching for 
“Bacillus subtilis” AND “Bacillus megaterium” in 
PubMed database resulted in 610 articles. These articles 
were carefully investigated to check whether they are 
appropriate for evaluating the in silico experiments.

In selecting the articles for evaluation, a number of 
criteria were considered. Firstly, only those articles 
which include data on metabolic activities of the two 
species were chosen. Secondly, we considered only 
those in vivo experiments which are related to the 
metabolic activities present in both of the two GEMs. 
For example, different growth rates in the same growth 
medium and the ability of bacteria in consuming/
producing a special substance are appropriate results 
for evaluating simulations. Metabolic engineering 
of B. subtilis and B. megaterium could have been 
ideal for evaluating simulations. However, we could 
not find cases of simultaneous engineering of both 
species.

3.2.  Genome-Scale Metabolic Network Models
In the present study, two genome-scale metabolic 
network models were used: (i) the GEM of B. subtilis 
168 (called iBsu1103) (23); and (ii) the GEM of B. 
megaterium WSH002 (called iMZ1055) (24).

3.3. Flux Balance Analysis of Metabolic Networks
For mathematical representation of metabolism, an m × 
n stoichiometric matrix (S) is used. In this matrix, rows 
and columns represent the system’s metabolites and 
reactions, respectively. Element Sij is the stoichiometric 
coefficient of metabolite i in reaction j. The fluxes of all 
reactions are represented in vector v with the length of 
n. Now, consider vector c as an m-dimensional vector 
of metabolite concentrations. Then, one can show that 
S.v= dc/dt holds for the metabolic network (25).

For a system at steady-state conditions, no net 
production or consumption of metabolites is possible, 
which means that dc/dt = 0. Consequently, at steady-
state conditions, flux through each reaction is given by 
the stoichiometric constraint, i.e. S.v = 0. In addition 
to the stoichiometric constraint, vector v is also 
limited because of thermodynamic or environmental 
constraints. These constraints limit each flux vi between 
a lower bound and an upper bound, in the form ai ≤ vi 
≤ bi. In the especial case of irreversible reaction i, flux 
through the reaction is limited by the thermodynamic 
constraint 0 ≤ vi.

Flux balance analysis (FBA) (25) is a computational 
technique based on linear programming. The aim of 
FBA is to find the optimal solution of an objective 
function (typically biomass production rate) subject 
to stoichiometric, thermodynamic and environmental 
constraints. For this purpose, the stoichiometric and 
thermodynamic constraints are extracted from a GEM, 
while the environmental constraints should be defined 
depending on the growth medium (See section 3.4.).

3.4. COBRA Toolbox for in Silico Analyses
For simulating experimental conditions in this study, 
COBRA toolbox was used (17). This toolbox contains 
various functions which can be used for performing 
a variety of in silico metabolic network analyses, 
including FBA.

For simulating a specific experiment, in vivo 
growth medium conditions were applied to models. 
For example, the uptake rate of all those metabolites 
which were absent in the medium were set to zero. On 
the other hand, the uptake rates of the constituents of 
the medium were constrained between zero and an 
upper bound value. After setting the environmental, 
stoichiometric and thermodynamic constraints, FBA is 
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performed to predict the biomass production rate, and 
the values of other fluxes.

Similar to some of the previous studies (26, 27), 
the most frequently used functions in this study are 
explained below:
• “changeRxnBounds” can be used to modify lower 
or upper bounds of a reaction. Using this function, 
environmental constraints can be simulated. 
• In some cases it was needed to have a reaction 
which was not included in the models. In these situations 
“addReaction” was used. The input of this function is 
the chemical equation of the reaction. The function adds 
reactions to the metabolic model. 
• After applying the desired conditions to the models, 
FBA should be performed (using “optimizeCbModel” 
function) to predict the growth phenotypes in a certain 
growth medium.

4.  Results 

4.1. Utilization of Amino Acids as the Sole Source of 
Carbon and Nitrogen
Consuming single l-amino acids as the only source of 
carbon and nitrogen is a common phenomenon amongst 
prokaryotes and occurs in most genera of bacteria (28-
30). Metabolism of amino acids by bacteria has been 
widely studied. For example, in a comprehensive study, 
twenty taxonomically known bacteria (including B. 
subtilis and B. megaterium), which can utilize amino 
acids, were examined for their growth capabilities on 
amino acids (31). In this study, utilization of twenty 
amino acids was examined (among which utilization 
pattern of ten amino acids was found to be different in 
B. subtilis and B. megaterium).

In each experiment, Lochhead-Chase basal medium 
(32) was used, in which glucose and nitrate were 

replaced by a certain single amino acid. Moreover, 
this medium contains mineral salts. Since the exact 
constituents of this medium could not be determined, 
we performed the in silico simulations in mineral 
salt medium (MSM) which includes mineral salts. 
MSM medium contains the following salts: K2HPO4, 
KH2PO4, (NH4)2SO4, MgCl2, CaCl2, H3BO3, ZnSO4, 
NiSO4, (NH4)6Mo7O24.4H2O, CuSO4.5H2O, MnSO4, 
CoCl2, and FeCl3. As our goal is to simulate the amino 
acid as the single source of carbon and nitrogen, we did 
not consider NH4 in our simulated media.

For simulating this experiment, we defined the 
mentioned medium for models. This was done by 
setting the lower bound of uptake reaction for desired 
ions to -10 millimoles per gram dry weight per hour 
(mmol.gDW-1.hr-1). Additionally, the lower bounds of 
glucose and nitrate uptake rates were set to zero. In 
each of the simulations, we set the lower bound of the 
uptake rate of a certain amino acid to -10 mmol.gDW-1.
hr-1. By this process, we defined each amino acid as the 
single source of carbon and nitrogen. Uptake reactions 
of Hydroxyproline and Cystine were not included in the 
two GEMs, and therefore, FBA was not carried out for 
these amino acids.

In Table 1, in silico growth results are compared 
to the experimental in vivo data for differentially-
consumed amino acids in the two species. In this table 
and also in Table 2, the terms “good growth” and “poor 
growth” refers to the experimental data. We have also 
differentiated between these two groups in calculation 
of Kendall rank coefficients which are reported below. 
From these data, in vivo biomass production in either 
B. megaterium or B. subtilis can be observed, while, 
in many cases, in silico simulations fail to predict 
such differences. In other words, there is no significant 
correlation between experimental and computational 

Table1.  In silico and in vitro data of amino acid utilization of differentially-consumed patterns in B. 
Megaterium and B. Subtilis. Relative cell growth estimated visually from the amount of growth on the amino 
acid. ++: Good growth; + : Poor growth; − : No growth.

Amino Acids
Bacillus subtilis Bacillus megaterium

In vitro data In silico data (mmol.gDW-1.hr-1)
In vitro 
data

In silico data (mmol.gDW-1.hr-1)

Valine ++ 0.6608 − 0.8423
Isolucine ++ 0.8820 − 1.0602
Serine + 0.3056 − 0.3807
Threonine + 0.4520 − 0.4774
Aspartic acid − 0.3862 ++ 0.4676
Arginine ++ 0.7423 − 0.8841
Histidine + 0.6772 ++ 0
Tryptophan + 0 − 0
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results (Kendall rank coefficient of 0.56 (p-value = 
0.07) and -0.38 (p-value = 0.24) for B. subtilis and B. 
megaterium respectively). 

In the same study (31), utilization patterns of ten 
amino acids were found to be similar in B. subtilis and 
B. megaterium. In silico and in vivo growth rates for 
these amino acids are compared in Table 2. Here, unlike 
Table 1, the two GEMs successfully predicted the in 
vivo results in most cases including the utilization of 
alanine, leucine, cysteine, glutamic acid, phenylalanine, 
tyrosine and proline (Kendall rank coefficient of 0.62 
for B. subtilis and B. megaterium, p-value < 0.05). 
These results suggest that in case of similar phenotypes, 
the responsible reactions/pathways are also included in 
both GEMs.

4.2. Carbohydrate Fermentation Capability
A recent analysis has been conducted to study the 
diversity of a chlorine-resistant Bacillus population 
isolated from a wastewater treatment station (33). This 
study has investigated the phenotypic and genotypic 
diversity of this bacterial population. Based on 16S 
rRNA gene sequencing and biochemical tests, 12 strains 
were identified. Similarity searches on GenBank showed 
that five of these strains were Bacillus subtilis, while 
one strain was identified as Bacillus megaterium (33).

One of the biochemical tests done in this experiment 
was the carbohydrate fermentation test. This test was 
done to investigate the acid and gas production during 
carbohydrate utilization in bacteria. Growth medium 
used in this test includes NH4H2PO4, KCl, MgSO4, 
Bromothymol blue and carbohydrate of interest.

For simulating this experiment, we proposed that 
when a strain is capable of growing on a carbohydrate 

source, it may or may not be able to produce acid (i.e., 
to ferment the carbohydrate). This means a correct 
positive result in the in silico analysis might have 
equivalent negative or positive result in the in vivo 
experiment. However, if the strain cannot use the 
carbohydrate as source of carbon and energy, the result 
of its fermentation test must necessarily be negative, as 
it cannot use the carbohydrate.

For modeling fermentation, in each simulation we 
set a carbohydrate to be the sole source of carbon/
energy, and then, FBA was performed. The results are 
shown in Table 3. Interestingly, in all three cases of 
the first three carbohydrates (d-glucose, d-mannitol, 
and l-arabinose) the results of simulation are not 
inconsistent with experimental data. 

In the same study (33), the ability of these bacteria 
in utilizing citrate as single source of carbon has been 
examined. According to the experimental data, none 
of those two bacteria was able to grow on citrate. 
However, in silico growth phenotype of B. megaterium 
and B. subtilis showed inconsistency with in vivo data, 
i.e., both strains could grow on citrate. 

4.3. Effect of Formaldehyde on the Growth of Bacillus 
Species
Formaldehyde is an antimicrobial compound used 
as disinfectant against microbial vegetative cells and 
spores. This compound can inactivate bacteria, fungi, 
yeasts and molds. In one study, the minimal inhibitory 
effect of formaldehyde against several bacteria 
including Bacillus subtilis and Bacillus megaterium 
has been measured (34). According to this article, 
Bacillus megaterium was more resistant than Bacillus 
subtilis against formaldehyde. Formaldehyde resistance 

Table 2.  In silico and in vivo data of amino acid utilization with similar consumption patterns in B. megaterium and B. 
subtilis. Relative cell growth estimated visually from the amount of growth on the amino acid. ++: Good growth; +: Poor 
growth; −: No growth.

Amino acids
Bacillus subtilis Bacillus megaterium

In vivo data In silico data (mmol.gDW-1.hr-1) In vivo data In silico data (mmol.gDW-1.hr-1)

Glycine − 0.1055 − 0.2180
Alanine ++ 0.3670 ++ 0.4405
Leucine − 0 − 0
Cysteine − 0 − 0
Methionine + 0 + 0
Glutamic acid ++ 0.6007 ++ 0.7175
Lysine + 0 + 0
Phenylalanine − 0 − 0
Tyrosine − 0 − 0
Proline ++ 0.7206 ++ 0.8303
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in these two closely-related species is presumably due 
to the detoxification mechanisms imbedded in their 
metabolism (35, 36).

For simulating formaldehyde resistance, spontaneous 
uptake reaction of formaldehyde was added to the two 
GEMs. Then, in each model, we increased the flux 

of formaldehyde in a stepwise manner until biomass 
production rate became zero, or formaldehyde uptake 
rate reached its upper limit. The results of this study for 
Bacillus subtilis and Bacillus megaterium are shown in 
Figures 1A and 1B, respectively.

As it is shown in the graphs, not only the biomass 
production rates do not decrease by formaldehyde 
uptake flux, but also the biomass production rates 
increase in both models. In case of B. subtilis, biomass 
production rate gets its maximum value (i.e., 0.295 
mmol.gDW-1.hr-1) when formaldehyde uptake becomes 
15.8 mmol.gDW-1.hr-1 or higher. However, in Bacillus 
megaterium, by increasing formaldehyde uptake flux 
to 1000 mmol.gDW-1.hr-1 biomass production rate 
persistently increases. 

5.  Discussion
In this work, we showed that in silico simulations fail to 
predict the differences in the amino acid metabolism of 
B. subtilis and B. megaterium. In other words, the two 
GEMs cannot accurately show the differences in amino 
acid utilization phenotypes. This might be due to the 
difference between strains used for in vivo experiments 
and GEM reconstruction. However, such discrepancies 
might also reflect the poor quality of the two GEMs.
The cases of five amino acids, namely valine, isoleucine, 
serine, threonine and arginine, should be studied in more 
details. For these amino acids, B. megaterium GEM 
incorrectly predicts growth, while in silico and in vivo 
data of B. subtilis are consistent. One possible explanation 
for this inconsistency is that the B. megaterium strain 
used for GEM reconstruction has much more metabolic 
capabilities compared to the B. megaterium strain used 
in the in vivo studies. However, a stronger possibility 
is that the B. megaterium GEM includes additional 

Table 3. In silico growth phenotypes vs. in vivo fermentation phenotypes. +: Positive result; −: Negative result; −/+: 
Both results have been observed. It should be noted that in case of d-glucose, d-mannitol and l-arabinose, in silico data 
show biomass production from the carbon source, while in vivo data suggest acid production as a result of fermentation. 
Therefore, inconsistency is guaranteed only when growth is not reported in silico but acid production is reported in vivo. In 
case of using citrate as the carbon source, in silico results of both GEMs showed inconsistency with in vivo results.

Carbohydrate
Bacillus subtilis Bacillus megaterium

In silico data In vivo data Consistent? In silico data In vivo data Consistent?

d-Glucose + −/+ yes + + yes

d-Mannitol + −/+ yes + − yes
l-Arabinose + − yes + + yes

Citrate as carbon source + − no + − no

Figure 1. In silico biomass production rate as a function of 
formaldehyde uptake rate in (A) Bacillus subtilis and (B) Bacillus 
megaterium
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reactions which are not, in reality, in its metabolism. 
Note that B. subtilis GEM had been used as a reference 
during the reconstruction of B. megaterium GEM (24). 
Therefore, some reactions/pathways which are present 
in B. subtilis but are actually absent in the metabolism 
of B. megaterium might have been wrongly included in 
its GEM. Such reactions are either needed for filling the 
gaps of the model and making it functional or present 
in the model as a mistake of the method used for model 
reconstruction. Such pathways can be responsible for 
these observed false positive growth phenotypes.

Based on Table 3, we observe that in case of glucose, 
mannitol and arabinose, the two GEMs show the 
capability to use these compounds as carbon source. 
Consequently, one cannot draw any conclusion on the 
correctness of the predictions based on the fermentation 
studies. Furthermore, in case of growth on citrate, in 
silico growth phenotype of B. megaterium and B. subtilis 
showed inconsistency with in vivo data, i.e., both strains 

could grow on citrate. Again, these inconsistencies 
might be either due to difference in strains used for in 
vivo experiments and in silico simulations or due to the 
poor quality of the GEMs.

Therefore, both models failed to reflect the sensitivity 
of bacteria to formaldehyde. Although one of the reasons 
for this failure is that metabolic models cannot predict 
the inhibitory effects, there must be definitely something 
wrong with the reactions of these models, which caused 
this failure. In other words, according to their metabolic 
models, these bacteria have evolved some pathways for 
consuming formaldehyde as a source of carbon and 
converting it to biomass precursors. Clearly, this is not 
reasonable and is probably because of the existence of 
extra reactions, or reactions with wrong directionalities 
in these models.

Figure 2A depicts a part of formaldehyde 
metabolism in the GEM of B. subtilis. According to this 
pathway, formaldehyde is eventually converted to CO2, 

Figure 2. Schematic representation of formaldehyde metabolism according to the A) Bacillus subtilis GEM and 
(B) Bacillus megaterium GEM.
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bicarbonate, and then to oxaloacetate, which is in turn 
used for glutamate production. Note that conversion of 
CO2 to oxaloacetate is not thermodynamically favorable 
in a cell. Glutamate is a constituent of biomass. 
Therefore, in simulation, it is logical that increasing 
formaldehyde flux lead to increase in biomass.

Figure 2B shows a part of formaldehyde metabolism 
in the GEM of B. megaterium. According to this figure, 
formaldehyde is converted to formate, and then to CO2. 
The model suggests that CO2, then, reacts with ammonia 
to produce glycine and tetrahydrofolate. Note that this 
reaction cannot readily occur in the cell, as it is not 
thermodynamically favorable. The latter compound can 
be converted to serine. Note that both glycine and serine 
are constituents of biomass. Therefore, it is logical for 
this model not to show formaldehyde inhibitory effect.

6.  Conclusion
In the present paper, we compared the predictive power 
of two genome-scale metabolic networks. The results of 
such comparison can be used to improve the accuracy of 
GEMs. The striking result is that, in many of the cases 
B. subtilis and B. megaterium GEMs fail to accurately 
predict the experimental data, especially where the 
phenotypes the two species are different. Consequently, 
one can conclude that these metabolic network models 
have some errors that should be subject to a gap filling 
process. In other words, further modifications should be 
performed based on literature reports and experimental 
results, before these models can be used in metabolic 
engineering and biotechnological applications.

In the present paper, and also in the sister paper (22), 
we showed how the wealth of data in the literature can 
be used for evaluating the accuracy of a genome-scale 
metabolic network model. We previously showed that, 
as expected, consolidated reconstruction of metabolic 
networks of P. aeruginosa and P. putida reduces the 
inconsistencies between in silico and in vivo data. On 
the other hand, independently reconstructed GEMs 
should be used with care because of their (potentially 
extensive) errors in predicting experimental phenotypes. 
Altogether, we recommend that available literature data 
can be used for GEM evaluation. Although using such 
data may not be ideal (e.g., due to strain dissimilarities 
within the same species), it can reduce the massive 
time, cost and effort requirements for experimental 
evaluations (for example see (37)).

Here, we emphasize that P. fluorescens GEM (i.e., 
iSB1139) (38) and B. megaterium GEM (i.e., iMZ1055) 
(24) failed to accurately predict the experimental 
phenotypes in many cases. This is a serious concern, 
as these two models are among the most recently 

reconstructed GEMs (both are published in 2013). 
This observation suggests that reconstructing GEMs 
cannot be considered as a mature field, in spite of 
using advanced bioinformatics tools. Still, quality and 
completeness of GEMs highly depend on more reliable 
procedures, such as extensive manual curation (39).

Another important point should be noted here. 
Classification of bacterial species highly depends on 
the differences in the biochemical capabilities. It was 
previously suggested that the GEM reconstruction 
will revolutionize prokaryotic systematics (40) by 
characterizing the metabolic differences. One of 
our goals in the present study was to check whether 
the differences in the biochemical capabilities are 
predictable by the existing GEMs. However, the results 
are generally disappointing. With such poor results, one 
should not expect the existing GEMs to correctly predict 
the phenotype of an organism, let alone the between-
species differences in the biochemical capabilities. 
Additionally, it was recently shown that a high degree of 
similarity exists among many GEMs, regardless of their 
phylogenetic relationships (39). Finally, it should be 
noted that even for a well-defined and reliable genome-
scale model, different alternative optimal solutions are 
expected to occur (41). For all these reasons, exploiting 
GEMs for phylogenetic reconstruction is far from reality 
at the moment, and it requires enormous improvements 
in GEM reconstruction in the first place.
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