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Abstract: Wave–particle duality as the defining characteristic of quantum objects is a typical example
of the principle of complementarity. The wave–particle–entanglement (WPE) complementarity,
initially developed for two-qubit systems, is an extended form of complementarity that combines
wave–particle duality with a previously missing ingredient, quantum entanglement. For two-qubit
systems in mixed states, the WPE complementarity was further completed by adding yet another
piece that characterizes ignorance, forming the wave–particle–entanglement–ignorance (WPEI)
complementarity. A general formulation of the WPEI complementarity can not only shed new light
on fundamental problems in quantum mechanics, but can also have a wide range of experimental
and practical applications in quantum-mechanical settings. The purpose of this study is to establish
the WPEI complementarity for general multi-dimensional bipartite systems in pure or mixed
states, and extend its range of applications to incorporate hierarchical and infinite-dimensional
bipartite systems. The general formulation is facilitated by well-motivated generalizations of
the relevant quantities. When faced with different directions of extensions to take, our guiding
principle is that the formulated complementarity should be as simple and powerful as possible.
We find that the generalized form of the WPEI complementarity contains unequal-weight averages
reflecting the difference in the subsystem dimensions, and that the tangle, instead of the squared
concurrence, serves as a more suitable entanglement measure in the general scenario. Two examples,
a finite-dimensional bipartite system in mixed states and an infinite-dimensional bipartite system
in pure states, are studied in detail to illustrate the general formalism. We also discuss our results
in connection with some previous work. The WPEI complementarity for general finite-dimensional
bipartite systems may be tested in multi-beam interference experiments, while the second example we
studied may facilitate future experimental investigations on complementarity in infinite-dimensional
bipartite systems.
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1. Introduction

Wave–particle duality occupies a central position in the world of quantum weirdness. It is usually
considered a prime example of Bohr’s principle of complementarity, which states that quantum systems
(“quantons”) may possess properties that are equally real but mutually exclusive [1]. In the context
of wave–particle duality, this means that the full wave nature cannot be observed simultaneously
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with the full particle nature, although both aspects are indispensable for a complete description of
the quantum reality. Attempts have been made to develop quantitative formulations of wave–particle
duality in two-beam interference experiments [2–5]. A brief review of the relevant history can be
found in Reference [6]. In these efforts, quantitative measures of wave and particle properties were
constructed and constrained in mathematical relations in accordance with quantum mechanics.
Accompanying the quantitative formulation was the expansion of the content of wave–particle
duality, from the extreme cases of full wave and particle natures existing in mutual exclusion,
to the intermediate cases of partial wave and particle natures coexisting in compliance with a
compatibility relation. Two basic versions of quantitative wave–particle duality relations were
proposed [3–5]. They correspond to two different setups of two-beam interference experiments,
with or without which-way detectors (devices detecting which way the quanton takes). The two setups
are schematically displayed in Figure 1.

(a)

(b)

Figure 1. Schematic two-beam interferometer. (a) two-beam interferometer without which-way
detectors. The input beam is split into two beams by the beam splitter, phase-shifted by the phase
shifters, and then recombined by the beam merger to produce the output beam; (b) two-beam
interferometer with which-way detectors. Detectors are placed on the path of each beam to acquire
which-way knowledge, adapted from Reference [5].

In the first setup without which-way detectors shown in Figure 1a, the input beam is split into
two beams by the beam splitter. Then, the phase of each beam is shifted by the phase shifter on
each path, after which the two beams are recombined to produce the output beam for measurements.
Wave–particle duality in this setup can be quantified by the inequality [3–5]:

P2 + V2 ≤ 1, (1)

where P is the path predictability quantifying the particle property, and V is the visibility of
interference fringes measuring the wave property. The fringe visibility has the standard expression
V = (Imax − Imin)/(Imax + Imin), where Imax and Imin are the maximum and minimum intensities of
the output beam. It quantifies the degree of contrast of the interference pattern. Given that interference
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is a signature of waves, it is reasonable to use the fringe visibility to quantify the wave nature.
On the other hand, the path predictability needs a little more explanation. The path predictability
measures the ability to predict which path the quanton takes, or a priori which-way knowledge.
Assume that the two beams (beam 1 and beam 2) in the interferometer have intensities I1 and I2,
respectively. (Note that the phase shifters do not affect I1 or I2, as they only modulate the phases of
the beams.) Then, it is known a priori that a quanton coming out of the beam splitter has the probability
p1 = I1/(I1 + I2) to be in beam 1 and p2 = I2/(I1 + I2) to be in beam 2. The path predictability,
P = |p1 − p2| = |(I1 − I2)/(I1 + I2)|, thus measures the ability to predict which way the quanton goes
through, based on the distinction in the a priori probabilities of the two paths. If one bets on the more
probable way, then the probability to win the bet is (1 + P)/2 [5]. In the special case of a symmetric
interferometer with I1 = I2, or p1 = p2, the path predictability vanishes, and there is no way to tell
beforehand which way the quanton will take (or is more likely to take). Since having a trajectory (path
or way) is typical of particles, the path predictability is a legitimate measure of the particle nature.
The wave–particle duality relation, in the form of P2 + V2 ≤ 1, then limits the extent to which both
the a priori which-way knowledge can be gained (particle nature) and the interference pattern can be
observed (wave nature).

In the second setup of the interference experiment in Figure 1b, detectors are placed on the path
of each beam to acquire which-way knowledge through interaction with the quanton. In this setup,
quantitative wave–particle duality relation has the form [5]

D2 + V2 ≤ 1, (2)

where D is the path distinguishability, a measure of the particle nature, and V is still the fringe
visibility, a measure of the wave nature. Although formally similar, the wave–particle duality relation
in Equation (2) has a very different interpretation from that in Equation (1). The distinction lies in
how the particle nature is characterized. In contrast with the path predictability P that represents the a
priori which-way knowledge, the path distinguishability D represents the a posteriori which-way
knowledge, gained retrodictively from measurements performed with which-way detectors interacting
with the quanton. As a result, the path distinguishability is not only determined by the quanton,
but also depends on the detector [5]. By contrast, the path predictability is determined only by
the state of the quanton (related to the setup of the interferometer). The wave–particle duality relation,
in the form of D2 + V2 ≤ 1, sets a limit on the extent to which the a posteriori which-way knowledge
gained with detectors (particle nature) is compatible with the observation of the interference pattern
(wave nature). Hence, the message it conveys is different from that in Equation (1). There has been
effort to generalize both versions of the wave–particle duality relations to multi-beam interference
experiments (corresponding to quantum systems with multi-dimensional Hilbert spaces) [7–14].
A schematic four-beam interferometer is shown in Figure 2.

Figure 2. Schematic four-beam interferometer. Detectors are placed on the path of each beam to acquire
which-way knowledge.
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Another direction that has enriched the physical content of the complementarity principle is
the investigation of wave–particle duality in relation to quantum entanglement [15–19]. In particular,
Jakob and Bergou extended the wave–particle duality relation to a wave–particle–entanglement (WPE)
“triality” relation for general two-qubit systems (bipartite two-state systems) [15]. When the two-qubit
system is in a pure state, the WPE complementarity relation has the form of a tight equality involving
three quantities:

P2
k + V2

k + C2 = 1, (3)

where k = 1 or 2 indicates the individual qubit, Pk is the path predictability of qubit k measuring
its particle aspect, Vk is the fringe visibility of qubit k characterizing its wave aspect, and C is
the concurrence quantifying the entanglement between the two qubits. The wave–particle duality
relation for each qubit in the form of P2

k + V2
k ≤ 1 is obviously implied by this WPE triality relation.

The predictability Pk and the visibility Vk are single-partite (local) properties, while the concurrence C
is a bipartite (nonlocal) property involving both qubits. The single-partite properties, predictability Pk
and visibility Vk, can be combined to form another single-partite quantity Qk defined by

P2
k + V2

k = Q2
k . (4)

(The quantity Qk was denoted by Sk in Reference [15]. To avoid confusion with the linear entropy to
be introduced later, we used a different notation.) Qk is invariant under local unitary transformations,
while Pk and Vk are not. The local invariant Qk is a quantitative measure of the quantum nature of
the single-partite reality, which consists of two complementary aspects, the particle aspect quantified
by the predictability Pk and the wave aspect captured by the visibility Vk. If Qk is held constant,
then Equation (4) implies the complementarity between Pk (particle) and Vk (wave), in the sense
that the increase of one necessarily implies the decrease of the other. Hence, this is a statement
of wave–particle duality in quantum reality. Given that all three quantities in Equation (4) are
local (single-partite) properties, Equation (4) may be referred to as the local complementarity relation.
Then, the WPE complementarity relation in Equation (3) also implies another complementarity relation

Q2
k + C2 = 1, (5)

which relates the local (single-partite) quantum property characterized by Qk to the nonlocal (bipartite)
quantum property quantified by the entanglement measure C in a complementary way, reflecting
a trade-off between local and nonlocal quantum properties. In this regard, Equation (5) may be
referred to as the local-nonlocal complementarity relation. The WPE complementarity relation in
Equation (3) is equivalent to the combination of the local complementarity relation in Equation (4)
and the local-nonlocal complementarity relation in Equation (5). In addition, when the two-qubit
system is in a mixed state, the WPE complementarity relation becomes an inequality

P2
k + V2

k + C2 ≤ 1. (6)

By identifying the path distinguishability D2
k = P2

k + C2, the wave–particle duality in the form of
D2

k + V2
k ≤ 1 can also be recovered for the two-qubit system.

A further development of the complementarity for two-qubit systems in mixed states is completed by
Tessier [20]. The local-nonlocal complementarity relation in Equation (5) for pure states was generalized
to mixed states of two-qubit systems, which, in our notations, reads [20]

Q2
k + C2 + B2 = 1, (7)

where Q2
k = (Q2

1 +Q2
2)/2, and η = B2 ∈ [0, 1] is referred to as “separable uncertainty” in Reference [20].

We shall refer to B instead of B2 as separable uncertainty in this article, which represents the ignorance in
the states of the two individual qubits, originating from the mixedness of the two-qubit state rather than
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the entanglement between the two qubits. (The meaning of the separable uncertainty will be further
discussed later.) When the two-qubit system is in a pure state, B = 0 and Q1 = Q2 so that Equation (7)
reduces to Equation (5) for pure states. In terms of Equation (7), the WPE complementarity is extended
to a general mixed state of two-qubit systems, which yet again takes the form of a tight equality

P2
k + V2

k + C2 + B2 = 1, (8)

where P2
k = (P2

1 + P2
2 )/2 and V2

k = (V2
1 + V2

2 )/2 are equal-weight averages of the single-partite
properties. Given its structure, we shall refer to this complementarity relation in Equation (8)
as the wave–particle–entanglement–ignorance (WPEI) complementarity. The WPE complementarity in
Equation (3) is recovered from Equation (8) when the two-qubit system is in a pure state. The WPE
complementarity for pure states in Equation (3) and its generalization to the WPEI complementarity for
mixed states in Equation (8) represent a more complete formulation of the complementarity principle for
two-qubit systems.

The complementarity relations in Equations (3)–(5) have also been recently derived in the context
of classical polarized optical field [21–23], where the degree of polarization plays the role of
the single-partite quantum property Q, the polarization coherence theorem [22] is the counterpart
of the local complementarity relation in Equation (4), and the coherent constraint [23] corresponds
to the local-nonlocal complementarity relation in Equation (5). (What was termed distinguishability
in References [21–23] is, strictly speaking, predictability.) The WPE complementarity has been
further investigated in relation to multi-partite entanglement in multi-qubit systems [20,24,25].
There is a simplification in multi-qubit systems as any single qubit is considered in relation to
the rest. The single-partite properties (P, V and Q) for a single qubit apply directly without any
change. The bipartite entanglement between the qubit and the rest can be quantified by generalized
concurrence [26–28]. The multi-partite entanglement measure can then be constructed from these
bipartite entanglements between a single qubit and the rest. This allows convenient investigation
of complementarity relations in multi-qubit systems in connection with multi-partite entanglement,
in terms of single-qubit properties and bipartite entanglements. However, for a general bipartite
system, each subsystem may have multiple states with a multi-dimensional Hilbert space. As a result,
the simplification in multi-qubit systems no longer applies and the problem needs to be addressed in a
more direct way. A multi-beam interference experiment with which-way detectors, as schematically
shown in Figure 2, may be considered as a typical example of such multi-dimensional bipartite
systems. One subsystem is the quanton in the interferometer, whose state in the interferometer is
described by a multi-dimensional density matrix. The other subsystem is the which-way detector with
multiple states in general (the detectors on the individual paths may be interpreted as components
of the measurement device collectively termed the which-way detector). The interaction between
the quanton and the which-way detector typically brings the bipartite system into an entangled state,
even if it was initially prepared in a separable state. In addition, the quanton-detector bipartite system
may also interact with an external environment, which brings the quanton-detector system into a mixed
state. Therefore, a general formulation of the WPEI complementarity for general multi-dimensional
bipartite systems in pure or mixed states is not only of theoretical interest that may shed new light on
fundamental problems in quantum mechanics, but also of experimental relevance as it may be tested
in these quanton-detector bipartite systems in multi-beam interference experiments. We mention that
there has also been effort to extend complementarity beyond the bipartite system settings [29].

The objective of the present work is to formulate the WPEI complementarity (including the WPE
complementarity) for general multi-dimensional bipartite systems in pure or mixed states, and push
its range of applications to include hierarchical bipartite systems (bipartite systems consisting of
bipartite sytems) and infinite-dimensional bipartite systems. The general formulation is facilitated
by well-motivated extensions of the relevant properties. In case there are different directions of
generalization to take, our guiding principle is that the formulated complementarity relation should



Entropy 2020, 22, 813 6 of 34

be as simple and powerful as possible. We find that the extended form of the WPEI complementarity
contains unequal-weight averages arising from the difference in the subsystem dimensions, and that
the entanglement measure of the squared concurrence is more suitably replaced by the tangle in
the general scenario. We illustrate the general formalism by studying two particular examples worked
out in detail. One example is a qubit–qutrit system in rank-2 mixed states and the other is a pair
of infinite-dimensional quantons in entangled coherent states. The relations of the present work
to some previous study are also discussed. The WPEI complementarity in this work for general
bipartite systems in pure or mixed states rests on the basic principles and structures of quantum
mechanics, which has a general feature that extends even to hierarchical and infinite-dimensional
bipartite systems. It has a wide range of potential applications in various quantum-mechanical
settings, including the multi-beam interference experiments and future experimental investigations on
hierarchical and infinite-dimensional bipartite systems.

The rest of this article is organized as follows. In Section 2, we formulate the WPEI
complementarity for general multi-dimensional bipartite systems, and extend its range of applications
to incorporate hierarchical and infinite-dimensional bipartite systems. In Section 3, we study
two particular examples in detail, a qubit–qutrit system in rank-2 mixed states, and a pair
of infinite-dimensional quantons in entangled coherent states, in order to illustrate the general
formulation. The results obtained in the present work are discussed in relation to the previous
work in Section 4, with a focus on the issue of measure matching. Finally, the conclusions are given in
Section 5.

2. WPEI Complementarity for General Bipartite Systems

In this section, we establish the WPEI complementarity relations for general multi-dimensional
bipartite systems in pure or mixed states. We first clarify a few points on the two-qubit systems in
preparation for the general formulation. The WPE complementarity relations are then developed for
general bipartite systems in pure states. We further formulate the WPEI complementarity relations for
general bipartite systems in mixed states, and present a graphical representation that encapsulates
all the relevant relations in a picture. After establishing the complementarity relations for general
bipartite systems, we expand the range of applications of these results by discussing how they can be
applied to hierarchical bipartite systems and infinite-dimensional bipartite systems.

2.1. Some Clarifications of the Two-Qubit Systems

We clarify a few points on the two-qubit systems that will facilitate the general formulation.
The first point is on the physical meaning of the single-partite quantity Q. In the qubit system,
Q is geometrically represented by the length of the Bloch vector of the qubit, which is essentially a
(normalized) measure of the purity of the single qubit state. Its connection to the usual purity tr(ρ2) is
given by the formula:

Q(ρ) = |a| =
√

2tr(ρ2)− 1, (9)

where ρ = (I + a · σ)/2 is the density operator of the qubit and a is the Bloch vector. This formula
shows that Q is a monotonically increasing function of the usual purity tr(ρ2), and it takes values
in the range [0, 1] while tr(ρ2) ∈ [1/2, 1]. Therefore, Q measures the degree of pureness of
the quantum state of the qubit. Pure states have maximum purity Q = 1, while mixed states have less
purity. Mixed states may arise from a statistical mixture of pure quantum states (i.e., ignorance) or
entanglement with another quantum system. In either case, mixed states contain a certain level of
missing information on the state of the quantum system under consideration. The missing information
degrades the purity of the quantum state of the system, resulting in less purity for mixed states.
Pure states are the most informative description of the state of the system compatible with quantum
mechanics. Thus, in a certain sense, the purity Q also quantifies the amount of “quantum information”,
or the degree of “quantumness”, in the state of the system. In addition, the local complementarity
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relation, P2 + V2 = Q2, also shows that Q determines the level of wave–particle duality, a quantum
signature. In particular, if Q = 0 (for the maximally mixed state ρ = I/2), then P = 0 and V = 0.
That means neither particle aspect (predictability) nor wave aspect (visibility) can be observed.
Thus, there is nothing quantum in such a state with Q = 0. All these justify that Q is a quantitative
measure of the quantum nature of the single-partite reality. The notation Q is also used as a reminder
of this quantum aspect in this meaning. Q may be termed quantum purity to stress both the quantum
nature and the purity measure. For simplicity, we also just call it purity in this work, with the quantum
aspect encoded in the notation Q. In case possible confusion may arise, tr(ρ2) is referred to as
the “usual purity”.

Furthermore, with Q identified as the (quantum) purity of the single qubit, the local-nonlocal
complementarity relation for pure states of the two-qubit system, Q2

k + C2 = 1, has the meaning that
the concurrence measuring the entanglement between the two qubits is complementary to the purity of
the single qubit. In other words, the more entangled the two qubits are, the less pure (i.e., more mixed)
each single qubit is. In fact, the concurrence for a two-qubit pure state |Ψ〉 has the expression:

C(Ψ) =
√

SL(ρk) =
√

2[1− tr(ρ2
k)], (10)

where ρk (k = 1, 2) is the reduced density operator of either single qubit, and SL(ρk) = 2[1− tr(ρ2
k)]

is the (normalized) linear entropy that measures the degree of impurity (i.e., mixedness) of the state
ρk. In the current context, the square root of the linear entropy may be a more natural quantity to use,
which we define as the mixedness:

M(ρk) =
√

SL(ρk) =
√

2[1− tr(ρ2
k)]. (11)

The mixedness M is also a single-partite property quantifying the degree of mixedness (i.e., impurity) of
the quantum state as the linear entropy SL is. In addition, as suggested by its connection to the linear
entropy, M also measures the level of missing quantum information in the state. The mixedness M is
the exact opposite of the purity Q, and they satisfy the purity–mixedness complementarity relation:

Q2
k + M2

k = 1, (12)

where Qk ≡ Q(ρk) and Mk ≡ M(ρk). This is a completely local, single-partite relation, in contrast with
the local-nonlocal complementarity relation Q2

k + C2 = 1 for pure states. In terms of the mixedness,
Equation (10) simply becomes

C(Ψ) = Mk. (13)

That is, the concurrence measuring the entanglement between the two qubits in a pure state is equal
to the mixedness of either single qubit. Although numerically the same, it is important to notice that
conceptually the concurrence as an entanglement measure is a bipartite property, while the mixedness
is a single-partite property that can be defined without referring to another system.

In addition, when the two-qubit system is in a mixed state, the concurrence C of the two-qubit
system in general is no longer equal to the mixedness of the single qubit. In fact, the combination of
the purity–mixedness complementarity in Equation (12) with the local-nonlocal complementarity for
mixed states in Equation (7) yields the following entanglement–mixedness relation for mixed states [20]:

C2 + B2 = M2
k , (14)

where M2
k = (M2

1 + M2
2)/2. The r.h.s. of this equation, M2

k , consisting of the mixedness of the two
individual qubits, characterizes the level of missing quantum information in the states of the two
individual qubits. The l.h.s. of the equation shows that the missing quantum information originates
from two sources. One source is the entanglement between the two qubits and the other source can
be identified as the ignorance associated with the mixedness of the two-qubit state. (The latter could
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still originate from entanglement with another system or ignorance.) The separable uncertainty B
is a measure of the ignorance in the states of the individual qubits associated with the mixedness of
the two-qubit state rather than the entanglement between the two qubits. It is invariant under the local
unitary transformations, as seen from the formula B2 = M2

k − C2. Later, we shall show the explicit
connection between the separable uncertainty and the mixedness of the bipartite state for rank-2
states. In the special case when the two-qubit system is in a pure state, we have B = 0 and M1 = M2.
As a result, the relation C(Ψ) = Mk in Equation (13) for pure states is recovered from the more general
entanglement–mixedness relation in Equation (14).

2.2. Generalized WPE Complementarity for Pure States of General Bipartite Systems

We first formulate the WPE complementarity relations for general multi-dimensional bipartite systems
in pure states. This requires appropriate extensions of the involved properties to multi-dimensional systems.

2.2.1. Generalized Local-Nonlocal Complementarity for Pure States

Rungta et al. [26,27] generalized the concurrence to arbitrary finite-dimensional systems.
The generalized concurrence for bipartite systems in a pure state |Ψ〉 is given by [26]

C(Ψ) =
√

2[1− tr(ρ2
k)], (15)

where ρk (k = 1, 2) is the reduced density operator of either subsystem in the bipartite
system. C(Ψ) is not normalized (except for two-qubit systems); it takes values in the range
[0,
√

2(nmin − 1)/nmin], where nmin = min{n1, n2} is the lower dimension of the two subsystems [27].
It may be tempting to normalize C(Ψ) so that it is in the range [0, 1]. However, the normalization factor
depends on nmin, which is not symmetric with respect to the two subsystems if they have different
dimensions, i.e., n1 6= n2. Hence, it is not very useful to normalize C(Ψ) when it is considered in
relation to both subsystems with n1 6= n2. We shall use C(Ψ) in Equation (15) without normalization.

Similar to the two-qubit system case, the generalized concurrence for bipartite systems in pure
states is closely related to the linear entropy of the subsystems. We consider this issue in a more general
context. For a general n-dimensional quantum system with the density operator ρ, the (normalized)
linear entropy is defined as

SL(ρ) =
n

n− 1
[1− tr(ρ2)], (16)

where tr(ρ2) is the usual purity. We also define the square root of the linear entropy as the (normalized)
mixedness, namely,

M(ρ) =
√
SL(ρ) =

√
n

n− 1
[1− tr(ρ2)]. (17)

The mixednessM is a single-partite property that measures the degree of mixedness (impurity) of
the state ρ just as the linear entropy does. The opposite of the mixednessM is the purityQ, measuring
the degree of purity of the state ρ. The (normalized) purity can be defined as

Q(ρ) =
√

n
n− 1

tr(ρ2)− 1
n− 1

, (18)

which is a monotonically increasing function (ranging from 0 to 1) of the usual purity tr(ρ2) ∈ [1/n, 1].
Q reduces to the purity Q for the qubit in Equation (9) with n = 2. The purity and the mixedness
satisfies the purity–mixedness complementarity relation

Q2 +M2 = 1. (19)
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Equations (16)–(19) apply to a general n-dimensional quantum system. When specified to each
subsystem of the bipartite system, Equation (19) readsQ2

k +M
2
k = 1, whereQk ≡ Q(ρk),Mk ≡M(ρk)

and n is replaced with nk in the expressions.
For general bipartite systems in pure states, according to Equations (15) and (17), the generalized

concurrence is related to the mixedness of the subsystems as follows:

C(Ψ) = νkMk, (20)

where νk =
√

2(nk − 1)/nk. Combined with the purity–mixedness complementarity Q2
k +M

2
k = 1,

we obtain the local-nonlocal complementarity relation for general bipartite systems in pure states

Q2
k + C

2/ν2
k = 1. (21)

This is the extension of the local-nonlocal complementarity relation for two-qubit systems in pure
states in Equation (5), which reduces to the latter in the special case nk = 2 (νk = 1). It states
that, when the bipartite system is in a pure state, there is a trade-off between the nonlocal bipartite
quantum property of the composite system (the quantum entanglement quantified by C) and the local
single-partite quantum property of the subsystem (the quantum purity measured byQk). The nonlocal
quantum property (entanglement) can only be increased at the expense of the local quantum property
(purity) and vice versa.

2.2.2. Generalized Local Complementarity

Then, we generalize the local complementarity relation, P2
k + V2

k = Q2
k , to multi-dimensional

systems. Still, we study this problem in a more general context by considering a general n-dimensional
system, which can later be specified to be a subsystem of the bipartite system. The generalized purityQ
has been given in Equation (18). We still need to extend the predicability and the visibility to a general
n-dimensional system. Notice that, for qubits, the predictability P = |ρ11 − ρ22| is only determined
by the diagonal elements of the density matrix, while the visibility V = 2|ρ12| is only determined
by the off-diagonal elements of the density matrix. The generalized definitions of the predictability
and the visibility for multi-dimensional systems are expected to retain these generic features [7,8].

According to the expression of the purity Q in Equation (18), we have

Q2 =
n

n− 1
tr(ρ2)− 1

n− 1
=

n
n− 1 ∑

ij
|ρij|2 −

1
n− 1

=
n

n− 1

(
∑

i
ρ2

ii −
1
n

)
+

n
n− 1 ∑

i 6=j
|ρij|2, (22)

where we simply separated the diagonal and off-diagonal elements of the density matrix. The two terms
that compose Q2 in Equation (22) suggest that the generalized predictability quantifying the particle
nature can be defined as

P =

√√√√ n
n− 1

(
∑

i
ρ2

ii −
1
n

)
(23)

and the generalized visibility measuring the wave nature can be defined as

V =

√
n

n− 1 ∑
i 6=j
|ρij|2. (24)

It is easy to check that these definitions reduce to those for the qubit system with n = 2.
These definitions of the predictability and the visibility were previously introduced by Dürr [7].
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What we have done here is to motivate their definitions in relation to the generalized purity Q,
in the context of the local complementarity relation for multi-dimensional systems

P2 + V2 = Q2. (25)

This relation shows that the particle aspect measured by the (generalized) predictability and the wave
aspect quantified by the (generalized) visibility are two complementary aspects of a single quantum
property, the (generalized) purity Q. The purity Q quantifies the amount of “quantum information”,
or the degree of “quantumness”, in the state of the system, and it determines the level of
the wave–particle duality. The particle aspect P and the wave aspect V obey a trade-off relation as Q
is held constant. When specified to either subsystem of a bipartite system, the local complementarity
relation reads P2

k + V2
k = Q2

k .

2.2.3. Generalized WPE Complementarity for Pure States

For general bipartite systems in pure states, we have obtained the local-nonlocal complementarity relation

Q2
k + C

2/ν2
k = 1 (26)

and the local complementarity relation

P2
k + V2

k = Q2
k . (27)

Eliminating the purity Qk from these two relations naturally leads to the generalized WPE
complementarity relation for multi-dimensional bipartite systems in pure states:

P2
k + V2

k + C2/ν2
k = 1, (28)

where νk =
√

2(nk − 1)/nk. The particle property characterized by the predictability, the wave
property captured by the visibility, and the entanglement between the two subsystems quantified by
the concurrence, nicely piece together the complementarity relation in the form of a tight equality.
For completeness, we list the expressions of the relevant quantities below:

Pk =

√√√√ nk
nk − 1

[
∑

i

(
ρk

ii
)2 − 1

nk

]
, (29)

Vk =

√
nk

nk − 1 ∑
i 6=j
|ρk

ij|2, (30)

Qk =

√
nk

nk − 1
tr(ρ2

k)−
1

nk − 1
, (31)

Mk =

√
nk

nk − 1
[1− tr(ρ2

k)], (32)

C(Ψ) =
√

2[1− tr(ρ2
k)]. (33)

Compared to the WPE complementarity for two-qubit systems in pure states, P2
k + V2

k + C2 = 1,
the WPE complementarity for general bipartite systems in pure states, P2

k + V2
k + C2/ν2

k = 1, differs in
form only by the factor 1/ν2

k in the term C2. If the two subsystems have the same dimension so that
ν1 = ν2, then this factor is merely due to the fact that the concurrence C is not normalized. However,
if the two subsystems have different dimensions so that ν1 6= ν2, then P2

k + V2
k + C2/ν2

k = 1 cannot be
brought into the form P2

k + V2
k + C ′2 = 1 where C ′ does not depend on the subsystem label k. (Notice

that C is independent of the subsystem label k.) Hence, this difference in form of the generalized
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WPE complementarity is not merely a matter of normalization, but reflects the asymmetry in the two
subsystems with different dimensions.

2.3. Generalized WPEI Complementarity for Mixed States of General Bipartite Systems

We consider the more general scenario when the multi-dimensional bipartite system is in a mixed
state, and extend the WPEI complementarity to this setting.

2.3.1. Entanglement–Mixedness Relation

When the bipartite system is in a mixed state, the generalized concurrence measuring
the entanglement between the two subsystems is no longer directly related to the mixedness of
the subsystems, since the mixedness of the bipartite system also contributes to the mixedness of
the subsystems. For two-qubit systems, the relation between the concurrence and the mixedness is
given by Equation (14), C2 + B2 = M2

k . We extend this entanglement–mixedness relation to general
bipartite systems in mixed states.

There is an issue of which entanglement measure to use when it comes to mixed states of general
bipartite systems. Although the generalized concurrence seems to be a natural option as a direct
generalization from two-qubit systems, there is a subtlety as what appears in the entanglement–mixedness
relation, C2 + B2 = M2

k , is the square of the concurrence (also referred to as the tangle for two-qubit
systems [30]). For two qubit systems, this is not an issue, since the tangle is simply the squared concurrence.
For general bipartite systems, however, it is not so simple. For general bipartite systems in a mixed
state, the concurrence and the tangle can be defined through the convex-roof extension of the pure
state measures [27,28]. More specifically, for a general mixed state of the bipartite system described by
the density operator ρ, the concurrence is defined as [27,31]

C(ρ) = inf
{pi ,|Ψi〉}

{
∑

i
piC(Ψi)

}
, (34)

and the tangle is defined as

τ(ρ) = inf
{pi ,|Ψi〉}

{
∑

i
piC2(Ψi)

}
, (35)

where the infimum is taken over all ensemble decompositions of the density operator ρ = ∑i pi|Ψi〉〈Ψi|.
In the above, C(Ψi) is the concurrence of the bipartite pure state |Ψi〉, with the expression

C(Ψi) =

√
2
[
1− tr

(
ρ
(i)2
k

)]
, (36)

where ρ
(i)
k (k = 1, 2) are the reduced density operators associated with |Ψi〉. (Note that in the literature

some authors refer to the squared concurrence C2(ρ) as the tangle. The definition of the tangle in
Equation (35) agrees with those in References [27,31].) For two-qubit systems, the relation τ(ρ) = C2(ρ)

is recovered for a general mixed state. However, for general multi-dimensional bipartite systems,
the concurrence and the tangle are related by the inequality C2(ρ) ≤ τ(ρ), which can be proven using
convexity properties [27,31]. In particular, the equality holds for pure states, that is, C2(Ψ) = τ(Ψ),
which, however, does not apply to a general mixed state.

The fact that C2(ρ) and τ(ρ) are not always the same poses the question of which entanglement
measure to choose. One may argue that, since the separable uncertainty in C2 + B2 = M2

k is not
yet defined for general bipartite systems, either entanglement measure may be used by exploiting
this ”freedom”. We beg to differ. It is important to use appropriate (matched) measures when
properties are considered in relation to each other. Mismatched measures could reduce the power
of the formulated relation, a point we will revisit in Section 4 when discussing the issue of measure
matching. The study in isotropic states and rank-2 states [27,31] suggests that the tangle τ(ρ),
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instead of the squared concurrence C2(ρ), may be the more suitable and powerful measure to
employ in the formulation of the entanglement–mixedness relation. In particular, using the tangle as
the entanglement measure, we obtain a simple relationship between the separable uncertainty and
the mixedness of rank-2 states of the bipartite system, as will be shown later. We take this as evidence
to support using the tangle in the entanglement–mixedness relation.

We further motivate the extension of the entanglement–mixedness relation by considering
the generalized spin-flipping operation in the study of the generalized concurrence [20,26].
The spin-flipping operation for two-qubit systems [32] was extended to the so-called universal state
inversion for a general bipartite system. The universal state inversion (generalized spin-flipping) of
the density operator ρ for a bipartite system is given by [26]

ρ̃ = I − ρ1 ⊗ I2 − I1 ⊗ ρ2 + ρ, (37)

where ρk (k = 1, 2) are the reduced density operators of the two subsystems. Equation (37) leads to

tr(ρρ̃) = 1− tr(ρ2
1)− tr(ρ2

2) + tr(ρ2), (38)

or, equivalently,
tr(ρρ̃) + ν2M2/2 = ν2

kM
2
k , (39)

where νk =
√

2(nk − 1)/nk (k = 1, 2) as before, ν =
√

2(n− 1)/n with n = n1n2, and the bar
notation still represents the equal-weight average, i.e., ν2

k M2
k = (∑2

k=1 ν2
k M2

k)/2. Here,M =M(ρ)

is the mixedness of the bipartite system, whileMk = M(ρk) is the mixedness of the subsystem k,
where the mixedness is defined by Equation (17).

Equation (39) is a natural starting point for the generalization of the entanglement–mixedness
relation. Consider the special case when the bipartite system is in a pure state ρ = |Ψ〉〈Ψ|.
In this case, we have M = 0 and ν1M1 = ν2M2 (due to tr(ρ1) = tr(ρ2)). As a result,
Equation (39) reduces to tr(ρρ̃) = ν2

kM
2
k for pure states. Compared with the relation C(Ψ) = νkMk

in Equation (20), we see that tr(ρρ̃) = C2(ρ) = τ(ρ) for pure states ρ = |Ψ〉〈Ψ|. Hence, Equation (39)
recovers the entanglement–mixedness relation for pure states C(Ψ) = νkMk, in the equivalent form
τ(Ψ) = C2(Ψ) = ν2

kM
2
k . In this special case, we also see that tr(ρρ̃) for pure states is simply the tangle

measuring the entanglement between the two subsystems. When the bipartite system is in a mixed
state, tr(ρρ̃) is no longer the tangle that quantifies the entanglement, but it is still closely related to
the tangle. The complication is due to mixedness of the bipartite state. This is exactly the point of
the entanglement–mixedness relation.

In view of the above discussions, we separate the l.h.s. of Equation (39) into two parts. One part
is the tangle τ(ρ) measuring the entanglement, and the other part we identify as the square of
the separable uncertainty B2(ρ). Thus, we have the generalized entanglement–mixedness relation for
general bipartite systems in mixed states:

(τ + B2)/ν2
k = M̃2

k , (40)

which is an alternative form of τ + B2 = ν2
kM

2
k . The bar notation introduced before represents

the equal-weight average, e.g., ν2
k = ∑2

k=1 ν2
k /2. The tilde notation (not to be confused with

the universal state inversion) introduced here represents the (possibly) unequal-weight average,
e.g., M̃2

k = ∑2
k=1 wkM2

k , where the weight is given by wk = ν2
k /(ν2

1 + ν2
2). The tangle τ(ρ) is defined

by Equation (34), and the separable uncertainty has the expression

B(ρ) =
√

tr(ρρ̃) + ν2M2(ρ)/2− τ(ρ) =
√

ν2
kM

2
k − τ(ρ). (41)
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The separable uncertainty B(ρ) measures the ignorance in the states of the individual subsystems due
to the mixedness of the bipartite state instead of the entanglement between the two subsystems. B(ρ)
is in the range [0,

√
2− 1/n1 − 1/n2], where the minimum is achieved when the bipartite system is

in a pure state and the maximum is reached when the bipartite state is the completely mixed state
ρ = I/n. In the special case when the bipartite system is in a pure state, we have B = 0 and τ = C2,
and the average notations (bars and tildes) can be dropped due to the property ν1M1 = ν2M2.
Then, we recover C2(Ψ) = ν2

kM
2
k or C(Ψ) = νkMk for pure states.

For rank-2 mixed states of bipartite systems, described by density operators with no more than
two nonzero eigenvalues, the tangle τ(ρ) has the following expression in our notations [31]:

τ(ρ) = tr(ρρ̃) + λmin ν2M(ρ)2, (42)

where λmin is the smallest eigenvalue of a certain 3× 3 real symmetric matrix that will be specified later.
Combining the above expression with Equation (41), we obtain the more explicit form of the separable
uncertainty for these rank-2 mixed states:

B(ρ) =
√

1
2
− λmin νM(ρ), (43)

which is directly connected to the mixedness of the bipartite state. (Note that λmin is invariant under
local unitary transformations and so is B(ρ).) This is also an indication that the tangle τ(ρ) is a suitable
(simple and powerful) entanglement measure in the formulation of the entanglement–mixedness
relation. To what extent the relation in Equation (43) can be expanded to include more general states
will be a subject of future investigation.

2.3.2. Generalized Local-Nonlocal Complementarity for Mixed States

Combining the entanglement–mixedness relation in Equation (40) and the purity–mixedness
complementarity relation in Equation (19), Q2

k +M
2
k = 1, we obtain the local-nonlocal complementarity

relation for general bipartite systems in mixed states:

Q̃2
k + (τ + B2)/ν2

k = 1, (44)

where the bar and tilde notations have the same meanings as before. This equation relates in a
complementary way the local (single-partite) quantum properties characterized by the quantum
purity Qk, the nonlocal (bipartite) quantum property characterized by the tangle τ measuring
the entanglement between the two subsystems, as well as the separable uncertainty B quantifying
the ignorance. When the bipartite system is in a pure state, B = 0, τ = C2, and the average notations
can be dropped. As a result, the above equation reduces to Q2

k + C
2/ν2

k = 1 in Equation (26),
which represents a trade-off between the local quantum property (purity) and the nonlocal quantum
property (entanglement).

2.3.3. Generalized Local Complementarity

The local complementarity relation

P2
k + V2

k = Q2
k (45)

is not affected by whether the bipartite system is in a pure or mixed state, as it is a local
(single-partite) relation entirely determined by the subsystem density matrix. The same is true for
the purity–mixedness complementarity relation

Q2
k +M

2
k = 1. (46)
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The combination of these two equations also leads to the wave–particle-mixedness (WPM)
complementarity relation

P2
k + V2

k +M2
k = 1, (47)

which, withM2
k in the form of SL, was noted in Reference [33] in a remark. Equations (45)–(47) are

all single-partite (local) complementarity relations. They actually apply to a general n-dimensional
system by dropping the subsystem index k.

2.3.4. Generalized WPEI Complementarity for Mixed States

Combining the local-nonlocal complementarity in Equation (44) and the local complementarity
in Equation (45), we finally obtain the generalized WPEI complementarity relation for general bipartite
systems in mixed states:

P̃2
k + Ṽ2

k + (τ + B2)/ν2
k = 1. (48)

This relation connects four complementing aspects in a tight equality, namely, the predictability of
the subsystems characterizing their particle properties, the visibility of the subsystems quantifying
their wave properties, the tangle measuring the entanglement between the two subsystems,
and the separable uncertainty representing the ignorance in the individual subsystem states associated
with the mixedness of the bipartite state. In the special case when the bipartite system is in a pure state,
we have B = 0, τ = C2, and the bar and tilde notations can be removed. We then recover the WPE
complementarity relation for bipartite systems in pure states in Equation (28): P2

k + V2
k + C2/ν2

k = 1.

2.3.5. Summary

The central result in Section 2.3 is the generalized WPEI complementarity relation for general
bipartite systems in mixed states:

P̃2
k + Ṽ2

k + (τ + B2)/ν2
k = 1, (49)

which is obtained by combining the local-nonlocal complementarity relation

Q̃2
k + (τ + B2)/ν2

k = 1 (50)

and the local complementarity relation

P2
k + V2

k = Q2
k . (51)

The local-nonlocal complementarity relation is obtained from the entanglement–mixedness relation

(τ + B2)/ν2
k = M̃2

k (52)

and the purity–mixedness complementarity relation

Q2
k +M

2
k = 1. (53)

In addition, the combination of Equations (51) and (53) leads to the WPM complementarity relation

P2
k + V2

k +M2
k = 1. (54)

The tangle τ measuring the entanglement is defined in Equation (35). The separable uncertainty B is
given by Equation (41). For rank-2 mixed states, τ and B have the more explicit forms in Equations (42)
and (43), respectively. The expressions of other quantities have been given in Equations (29)–(32).
The bar notation represents the equal-weight average, e.g., ν2

k = ∑2
k=1 ν2

k /2, while the tilde notation
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represents the (possibly) unequal-weight average, e.g., P̃2
k = ∑2

k=1 wkP2
k with wk = ν2

k /(ν2
1 + ν2

2)

and νk =
√

2(nk − 1)/nk. In the special case of a pure state of the bipartite system, B = 0, τ = C2,
and the average notations (bars and tildes) can be dropped. The results of the WPE complementarity
in Section 2.2 for pure states can then be recovered. The various relations in Equations (49)–(54) may
be collectively referred to as the WPEI complementarity relations, while the more specific usage of
the term only refers to the relation in Equation (49).

On the formal level, the WPEI complementarity relation for general bipartite systems,
P̃2

k + Ṽ2
k + (τ + B2)/ν2

k = 1, differs from that for two-qubit systems, P2
k +V2

k +C2 + B2 = 1, in the following
two major aspects.

• One difference is that the equal-weight averages of the normalized single-partite properties
(the predictability and the visibility) are replaced by the (possibly) unequal-weight averages.
The relative weights depend on the dimensions of the two subsystems. Thus, the proportions
of contribution of the two subsystems to the WPEI complementarity relation are different
if they have different dimensions. This point is relevant, for instance, in the case when
one subsystem represents a small system under study, while the other subsystem represents
the measurement device with a large dimension (e.g., the which-way detector in the multi-beam
interference experiment).

• The other difference is that the squared concurrence C2 is replaced by the tangle τ. For two-qubit
systems, these two measures of entanglement are the same. However, they differ for mixed
states of general bipartite systems (and coincide only for pure states in general). We have argued,
with the support of results in rank-2 states that the tangle, instead of the squared concurrence,
is the more suitable (simple and powerful) entanglement measure to use in the formulation of
the WPEI complementarity relation.

2.3.6. Schematic Representation of the WPEI Complementarity Relations

The WPEI complementarity relations in Equations (49)–(54) can be schematically represented by
Figure 3. The top circle represents the bipartite system, which consists of two subsystems indicated
by the two circles at the bottom, connected to the top circle by two solid arrows. Each circle is
divided into three parts, corresponding to the predictability P , the visibility V , and the mixedness
M, respectively. This is a reflection of the WPM complementarity in Equation (54). The two parts
associated with the predictability P and the visibility V are combined into one part denoted by the purity
Q, a representation of the local complementarity in Equation (51). Each circle can also be regarded as
consisting of two parts, associated with the purityQ and the mixednessM, respectively, a reflection of
the purity–mixedness complementarity in Equation (53). Since the purityQ characterizes the quantum
nature of the system while the mixednessM reflects the missing of quantum information, one may
imagine that the part corresponding to the purityQ is full while the part associated with the mixedness
M is empty. The wiggling line connecting the two bottom circles symbolizes the entanglement between
the two subsystems measured by the tangle τ. The entanglement between the two subsystems contributes
to the mixedness of the states of the two individual subsystems. This is why the two ends of the wiggling
line are attached to the mixedness regions of the two circles. The wiggling line is solid, reflecting the fact
that entanglement indicates the presence of a bipartite quantum property. In addition, the mixedness
of the states of the two individual subsystems is also contributed by the separable uncertainty B,
which originates from the mixedness of the bipartite state. This fact is represented by the three
dashed arrows around the separable uncertainty B. The arrows are dashed as the mixedness indicates
the missing of quantum information. The solid wiggling line and the three dashed arrows connected to
the mixedness regions of the three circles are a representation of the entanglement–mixedness relation in
Equation (52). The stronger the tangle τ and the separable uncertainty B are, the more mixed the states
of the individual subsystems are (larger regions of mixedness), and thus the less pure they are (smaller
regions of purity), a manifestation of the local-nonlocal complementarity in Equation (50). Further
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noting that the purity region consists of the predictability region and the visibility region, we also have
the representation of the WPEI complementarity in Equation (49). Therefore, Figure 3 has essentially
captured all the complementarity relations in Equations (49)–(54).

Figure 3. A schematic representation of the WPEI complementarity relations in general bipartite systems.

2.4. WPEI Complementarity for Hierarchical Bipartite Systems

The WPEI complementarity for general bipartite systems in a general state (pure or mixed) in
the form of equalities allows it to be readily applied to a more general class of systems, which we refer
to as hierarchical bipartite systems. Hierarchical bipartite systems are bipartite systems consisting of
bipartite systems, so that the entire system and all its subsystems at different levels are organized in a
hierarchical structure in the form of a binary tree. More precisely, the organization of the system has
the structure of a full binary tree, with each subsystem (node) having either no subsystem (no children) or
two subsystems (two children). The root node of the binary tree represents the whole system, while other
nodes represent subsystems at different levels. A schematic representation of a hierarchical bipartite
system is shown in Figure 4. In this example, the whole system a is a bipartite system, consisting of
subsystem b and subsystem c. Subsystem b is yet another bipartite system, consisting of subsystem d and
subsystem e.

Figure 4. A schematic representation of the structure of a hierarchical bipartite system as a full binary tree.
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Hierarchical bipartite systems are widely encountered. A hierarchical bipartite system can be
simply constructed by dividing a system into two parts successively. For a given system, there are
different ways to divide the system and its subsystems into two parts. Therefore, different hierarchical
bipartite systems can be constructed from the same whole system, depending on how the system
and its subsystems are divided into two parts. For instance, for a system consisting of three qubits,
there are three different ways to divide the three qubits into two parts (one part containing one qubit
and the other containing two), corresponding to three different hierarchical bipartite systems with two
levels in the binary tree. If the subsystem consisting of two qubits is further divided into two parts,
each containing one qubit, and then we obtain another three different hierarchical bipartite systems
with three levels in the binary tree, which have the same structure as that shown in Figure 4.

Since the WPEI complementarity relations in Equations (49)–(54), schematically represented by
Figure 3, apply to general multi-dimensional bipartite systems in pure or mixed states, it is a simple
matter of realization that they also apply to each bipartite subsystem in the hierarchical bipartite
system. Roughly speaking, the structure in Figure 3 is Λ-shaped (the basic structure in a full binary
tree), but with more specific modifications (e.g., the bottom nodes are connected due to the presence of
entanglement). By replacing the Λ-shaped basic structures in the full binary tree of the hierarchical
bipartite system (e.g., those in Figure 4) with the more detailed structure in Figure 3, we have
the graphical representation of the WPEI complementarity relations for the hierarchical bipartite
system. Translating the graphical representation into mathematical formulas using Equations (49)–(54),
the mathematical form of the WPEI complementarity relations for the hierarchical bipartite system
can also be obtained.

Take the hierarchical bipartite system in Figure 4 for instance. The WPEI complementarity relation
for the b-d-e bipartite subsystem reads

P̃2
d,e + Ṽ

2
d,e +

[
τde +

(
Bb

de

)2
]

/ν2
d,e = 1, (55)

where we have used the system labels to indicate the various quantities involved. The label “d, e”
represents d or e. The label “de” in the tangle represents d and e as the entanglement is a bipartite
property. The label “b

de” in Bb
de indicates that the separable uncertainty is related to three subsystems,

one on the higher level (subsystem b) and the other two on the lower level (subsystems d and e).
This reflects the understanding that the separable uncertainty originates from the mixedness of
the bipartite state and contributes to the mixedness of the states of the individual subsystems. Similarly,
the WPEI complementarity relation for the a-b-c bipartite subsystem reads

P̃2
b,c + Ṽ

2
b,c +

[
τbc + (Ba

bc)
2
]

/ν2
b,c = 1. (56)

Other complementarity relations in Equations (49)–(54) can also be obtained simply by adding
system labels.

As mentioned, different hierarchical bipartite systems can be built from the same whole system.
The WPEI complementarity relations apply to all these hierarchical bipartite systems constructed from
the same system. The consistency of all these relations may provide a means to investigate, for instance,
the multi-partite entanglement, which will be pursued in the future.

We remark that the terms “local” and "nonlocal" used in this article as in the “local-nonlocal
complementarity” only have relative meanings in light of the structure of the hierarchical bipartite
system. A single-partite property (e.g., the visibility of a subsystem) may represent a local property
when considered in relation to the higher-level system, but may represent a nonlocal property when
considered in relation to the lower-level subsystems. The connections of the system properties at
different levels are worth further investigation.
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2.5. WPEI Complementarity for Infinite-Dimensional Bipartite Systems

We formally generalize the results obtained so far to infinite-dimensional bipartite systems
by taking the limit nk → ∞ (k = 1, 2). (This setting implies that the representation in which
the predictability and the visibility are defined has a discrete basis.) Given that νk =

√
2(nk − 1)/nk,

in the limit nk → ∞, we have νk =
√

2, so that ν2
k = 2 and wk = ν2

k /(ν2
1 + ν2

2) = 1/2. The latter means
the unequal-weight averages (the tilde notations) reduce to the equal-weight averages (the bar notations).
As a result, for infinite-dimensional bipartite systems, we have the WPEI complementarity relation

P2
k + V2

k +
1
2
(τ + B2) = 1, (57)

the local-nonlocal complementarity relation

Q2
k +

1
2
(τ + B2) = 1, (58)

the entanglement–mixedness relation

1
2
(τ + B2) =M2

k , (59)

the local complementarity relation
P2

k + V2
k = Q2

k , (60)

the purity–mixedness complementarity relation

Q2
k +M

2
k = 1, (61)

and the WPM complementarity relation

P2
k + V2

k +M2
k = 1. (62)

The expressions of the relevant quantities read

Pk =

√
∑

i

(
ρk

ii
)2, (63)

Vk =

√
∑
i 6=j
|ρk

ij|2, (64)

Qk =
√

tr(ρ2
k), (65)

Mk =
√

1− tr(ρ2
k), (66)

C(Ψ) =
√

2[1− tr(ρ2
k)], (67)

B =
√

tr(ρρ̃) +M2(ρ)− τ(ρ) =
√

2M2
k − τ(ρ), (68)

and the tangle τ(ρ) is still defined by the convex roof extension of the pure-state measure τ(Ψ) = C2(Ψ).
For the infinite series in Pk and Vk to converge, the reduced density operator ρk need to be normalizable,
e.g., tr(ρk) = 1, implying that ρk is a trace class operator.

When the infinite-dimensional bipartite system is in a pure state, B = 0, τ = C2 and the bar
notations can be removed. Then, we have the WPE complementarity relation

P2
k + V2

k +
1
2
C2 = 1, (69)
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the local-nonlocal complementarity relation

Q2
k +

1
2
C2 = 1, (70)

the local complementarity relation
P2

k + V2
k = Q2

k , (71)

and the entanglement–mixedness relation

C =
√

2Mk. (72)

Equations (60) and (61) are implied by the above equations. If needed, C/
√

2 may be introduced as a
normalized concurrence to bring the formulas into a more elegant form.

3. Examples

To demonstrate the general formulation obtained in the previous sections, we study two
more specific examples. The first example is the simplest nontrivial bipartite system with unequal
dimensions, consisting of a qubit (two-state system) and a qutrit (three-state system). In this example,
we consider rank-2 mixed states which allow explicit calculations of the tangle and the separable
uncertainty. The second example is an infinite-dimensional bipartite system consisting of two quantons
in pure entangled coherent states.

3.1. WPEI Complementarity in Rank-2 Mixed States of a Qubit–Qutrit System

Consider a qubit–qutrit system with the computational basis {|00〉, |01〉, |02〉, |10〉, |11〉, |12〉}.
We study its rank-2 states described by the following density operator:

ρ = p|v1〉〈v1|+ (1− p)|v2〉〈v2|, (73)

where |v1〉 and |v2〉 are eigenstates of ρ defined as

|v1〉 =
1√
2
(|00〉+ |11〉), |v2〉 =

1√
3
(|01〉+ |02〉+ |12〉), (74)

which are both entangled states. By construction, ρ has at most two nonzero eigenvalues p and 1− p.
When p = 0 or 1, it reduces to the pure states |v2〉 and |v1〉, respectively. Otherwise, it represents a
mixed state.

The reduced density operators of the qubit and the qutrit are obtained by direct calculation,
which yields

ρ1 = tr2(ρ) =
1
6
(4− p)|0〉〈0|+ 1

6
(2 + p)|1〉〈1|+ 1

3
(1− p)(|0〉〈1|+ |1〉〈0|), (75)

ρ2 = tr1(ρ) =
p
2
|0〉〈0|+ 1

6
(2 + p)|1〉〈1|+ 2

3
(1− p)|2〉〈2|+ 1

3
(1− p)(|1〉〈2|+ |2〉〈1|). (76)

3.1.1. Local Complementarity Relations within the Qubit

In the computational basis, the density operator ρ1 is represented by the density matrix with
the elements

ρ
(1)
00 =

1
6
(4− p), ρ

(1)
11 =

1
6
(2 + p), ρ

(1)
01 = ρ

(1)
10 =

1
3
(1− p). (77)
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Applying Equations (29)–(32) to this case, we obtain the predictability

P1 =

√
2
[(

ρ
(1)
00

)2
+
(

ρ
(1)
11

)2
− 1

2

]
=

1
3
(1− p), (78)

the visibility

V1 = 2|ρ(1)01 | =
2
3
(1− p), (79)

the purity

Q1 =
√

2tr(ρ2
1)− 1 =

√
5

3
(1− p), (80)

and the mixedness
M1 =

√
2[1− tr(ρ2

1)] =
1
3

√
4 + 10p− 5p2. (81)

It is easy to check the local complementarity P2
1 + V2

1 = Q2
1, the purity–mixedness complementarity

Q2
1 +M2

1 = 1, and the WPM complementarity P2
1 + V2

1 +M2
1 = 1 for this qubit.

Notice that both the predictability P1 and the visibility V1 decrease as p increases, indicating that
the particle property and the wave property are not acting in a complementary way in this case. This is
because the purity Q1 is not held constant, but also decreases with p in this case. When the purity Q
varies, it is possible that the predictability (particle aspect) and the visibility (wave aspect) may both
increase or decrease.

3.1.2. Local Complementarity Relations within the Qutrit

In the computational basis, the density operator ρ2 is represented by the density matrix with
the following nonzero elements:

ρ
(2)
00 =

p
2

, ρ
(2)
11 =

1
6
(2 + p), ρ

(2)
22 =

2
3
(1− p), ρ

(2)
12 = ρ

(2)
21 =

1
3
(1− p). (82)

With the help of Equations (29)–(32) and some algebra, we get the predictability

P2 =

√√√√3
2

[
2

∑
i=0

(
ρ
(2)
ii

)2
− 1

3

]
=

√
4− 14p + 13p2

2
√

3
, (83)

the visibility

V2 =
√

3|ρ(2)12 | =
1√
3
(1− p), (84)

the purity

Q2 =

√
3
2

tr(ρ2
2)−

1
2
=

√
8− 22p + 17p2

2
√

3
, (85)

and the mixedness

M2 =

√
3
2
[1− tr(ρ2

2)] =

√
4 + 22p− 17p2

2
√

3
. (86)

The local complementarity P2
2 + V2

2 = Q2
2, the purity–mixedness complementarity Q2

2 +M2
2 = 1,

and the WPM complementarity P2
2 + V2

2 +M2
2 = 1 are also easily verified for this qutrit.
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3.1.3. Tangle and Separate Uncertainty

Since the density operator ρ in this case represents rank-2 states, we can use Equation (42) to
calculate the tangle [31], which is reproduced below for the reader’s convenience:

τ(ρ) = tr(ρρ̃) + λmin ν2M(ρ)2, (87)

where ρ̃ is the universal state inversion of ρ, and λmin is the smallest eigenvalue of a certain 3× 3
real symmetric matrix. The universal state inversion for a general linear operator K (not necessarily
Hermitian) is defined as follows [31]:

K̃ = tr(K†)I − K†
1 ⊗ I2 − I1 ⊗ K†

2 + K†, (88)

where K1 = tr2(K) and K2 = tr1(K).
The term tr(ρρ̃) can be calculated using the above definition of ρ̃, or more conveniently using

the property derived from it (see Equation (38)):

tr(ρρ̃) = 1− tr(ρ2
1)− tr(ρ2

2) + tr(ρ2) =
1
9
(4− 2p + 7p2). (89)

The mixedness of the qubit–qutrit state is given by

M(ρ) =

√
6
5
[1− tr(ρ2)] =

√
12
5

p(1− p), (90)

and ν =
√

2(n− 1)/n =
√

5/3.
Then, we still need to calculate λmin, the minimum eigenvalue of a real symmetric 3× 3 matrix.

This matrix was denoted by M in Reference [31]. To avoid confusion with the mixedness, we shall
denote it by G. Before calculating λmin, a couple of typos or minor errors in the expression of the matrix
G (the matrix M defined by Equation (18) in [31]) need to be corrected. The corrected expression is
given by

Gjk =
1
4 ∑

α

tr
(

σ∗j ζ†
ασk(ζ

†
α)
∗
)

, (91)

where the star represents a complex conjugate, the dagger represents Hermitian conjugate, and σi
(i = 1, 2, 3) are Pauli matrices. ζα is a 2× 2 matrix with its elements defined as

ζα
ij = 〈vi|~θα|vj〉 = 〈vi|ṽα

j 〉, (92)

where |ṽα
j 〉 ≡ ~θα|vj〉, θα is an anti-linear operator labeled by α, and the arrow over it indicates

the direction it acts on (to the right in this case). Compared with Equation (18) in [31], there are
two differences in Equation (91). One difference is that there is an additional factor 1/4. The second
difference is that the matrix ζ†

α has replaced ζα. (Equivalently, if ζα instead of ζ†
α is used in Equation (91),

then the anti-linear operator θα in Equation (92) should act to the left instead of to the right.) The first
difference is due to a typo, as the component-wise expression given in Equation (12) in [31] does have
the factor 1/4. We have carefully examined the derivation of Gjk (Mjk in [31]) and also compared with
a previous work [32] that the derivation was based on. ζ†

α instead of ζα should be used in the correct
expression. The form of Gjk in Equation (91) containing the anti-linear operators is not convenient to
use. An alternative expression can be obtained following [31] (using the corrected expression):

Gij =
1
4 ∑

klmn
Tmknl [σ

∗
i ]kl [σj]mn, (93)
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where Tmknl = tr(γmkγ̃nl), γmk = |vm〉〈vk|, and γ̃nl = ∑α |ṽα
n〉〈ṽα

l |. Note that γ̃nl is
the universal state inversion of γnl , which can be calculated using Equation (88) without referring to
the anti-linear operators.

After some tedious algebra, we obtain

T1111 = 1, T1122 = T1212 = T2121 = T2211 =
1
3

,

T2222 =
4
9

, T1222 = T2122 = T2212 = T2221 = − 2
3
√

6
,

(94)

and the rest of the components are zero. Then, the expression in Equation (93) yields

G =


1
6

0
1

3
√

6
0

1
6

0
1

3
√

6
0

7
36

 . (95)

(We note that the component-wise expressions in Equation (12) in [31] give the same matrix above in
this case. However, we are not sure whether this is generally true.) The eigenvalues of the matrix G
are given by λ = 1/6, (13±

√
97)/72, so that the smallest eigenvalue is

λmin =
1
72

(13−
√

97). (96)

Combining Equations (87), (89), (90) and (96), we finally obtain the tangle quantifying the entanglement
between the qubit and qutrit:

τ(ρ) = tr(ρρ̃) + λmin ν2M(ρ)2 =
1
9
(4− 2p + 7p2) +

1
18

(13−
√

97)p(1− p). (97)

The separate uncertainty can also be found in this case using Equation (43):

B(ρ) =
√

1
2
− λmin νM(ρ) =

√
1

18
(23 +

√
97)p(1− p). (98)

3.1.4. Entanglement–Mixedness Relation

We verify the entanglement–mixedness relation

(τ + B2)/ν2
k = M̃2

k . (99)

Note that ν1 = 1 and ν2 = 2/
√

3, so that ν2
k = 7/6 and the weights in the unequal-weight average read

w1 = 3/7, w2 = 4/7.
According to the expressions of τ and B in Equations (97) and (98), we have

(τ + B2)/ν2
k =

2
21

(4 + 16p− 11p2). (100)

On the other hand, with the expressions ofM1 andM2 given in Equations (81) and (86), we obtain
the average squared mixedness

M̃2
k =

3
7
M2

1 +
4
7
M2

2 =
2

21
(4 + 16p− 11p2). (101)

Hence, the entanglement–mixedness relation is verified.
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As a consistency check, consider the special cases p = 0 and p = 1, in which the bipartite state
is pure, corresponding to |v2〉 and |v1〉, respectively. In these two cases, the separate uncertainty
vanishes as expected. In addition, the tangles, according to Equation (97), are given by τ(|v2〉) = 4/9
and τ(|v1〉) = 1. Equivalently, the concurrences are given by C(|v2〉) = 2/3 and C(|v1〉) = 1, according
to the relation τ(Ψ) = C2(Ψ). On the other hand, the subsystems in this case have the following
mixedness: M1(|v2〉) = 2/3, M2(|v2〉) = 1/

√
3, M1(|v1〉) = 1, M2(|v1〉) =

√
3/2. With ν1 = 1

and ν2 = 2/
√

3, it is easy to see that these results agree with the entanglement–mixedness relation for
pure states C(Ψ) = νkMk.

3.1.5. Local-Nonlocal Complementarity

The local-nonlocal complementarity for mixed states reads

Q̃2
k + (τ + B2)/ν2

k = 1. (102)

Direct calculation yields the average squared purity

Q̃2
k =

3
7
Q2

1 +
4
7
Q2

2 =
1

21
(13− 32p + 22p2), (103)

where we have used Q1 and Q2 in Equations (80) and (85). With (τ + B2)/ν2
k in Equation (100),

the local-nonlocal complementarity is easily shown to hold true in this case.

3.1.6. WPEI Complementarity

The WPEI complementarity relation has the form

P̃2
k + Ṽ2

k + (τ + B2)/ν2
k = 1. (104)

The average squared predictability is found to be

P̃2
k =

3
7
P2

1 +
4
7
P2

2 =
1

21

(
5− 16p + 14p2

)
, (105)

where we have used the expressions of P1 and P2 in Equations (78) and (83), respectively. Similarly,
the average squared visibility is calculated as

Ṽ2
k =

3
7
V2

1 +
4
7
V2

2 =
8

21
(1− p)2, (106)

with V1 and V2 given in Equations (79) and (84). Together with (τ + B2)/ν2
k in Equation (100),

simple algebra verifies the WPEI complementarity relation in Equation (104).
We have thus validated all the complementarity relations in Equations (49)–(54) and obtained

explicit expressions of the various quantities involved for this qubit–qutrit system with rank-2
states. In the following, we study another example with infinite dimensions that can also be
handled analytically.

3.2. WPE Complementarity Relations in Entangled Coherent States of a Pair of Quantons

We consider the infinite-dimensional bipartite system consisting of two quantons in a pure
entangled coherent state [34]

|Ψ〉 = α(|z1z2〉+ |z2z1〉), (107)
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where |z1z2〉 = |z1〉 ⊗ |z2〉 and |zi〉 (i = 1, 2) are single-mode bosonic coherent states defined as
|z〉 = eza†−z∗a|0〉. The pre-factor α, which normalizes the entangled coherent state, has the expression

α =
1√

2(1 + |〈z1|z2〉|2)
, (108)

where
〈z1|z2〉 = e−

1
2 (|z1|2+|z2|2−2z∗1 z2). (109)

(Note that |〈z1|z2〉|2 = e−|z1−z2|2 .)
The density operator for the bipartite system thus reads

ρ = |Ψ〉〈Ψ| = α2(|z1z2〉+ |z2z1〉)(〈z1z2|+ 〈z2z1|). (110)

Without loss of generality, we focus on the first quanton, whose reduced density operator is given by

ρ1 = tr2(ρ) = α2 (|z1〉〈z1|+ |z2〉〈z2|+ 〈z1|z2〉|z1〉〈z2|+ 〈z2|z1〉|z2〉〈z1|) . (111)

3.2.1. Purity

We first calculate the purity Q of quanton 1 (also equal to the purity of quanton 2). According to
Equation (65), we have

Q2 = tr((ρ1)
2) = α4tr

[
(|z1〉〈z1|+ |z2〉〈z2|+ 〈z1|z2〉|z1〉〈z2|+ 〈z2|z1〉|z2〉〈z1|)2

]
= 2α4

(
|〈z1|z2〉|4 + 6|〈z1|z2〉|2 + 1

)
=
|〈z1|z2〉|4 + 6|〈z1|z2〉|2 + 1

2(1 + |〈z1|z2〉|2)2 .
(112)

Thus, we obtain the purity

Q =

√
|〈z1|z2〉|4 + 6|〈z1|z2〉|2 + 1√

2(1 + |〈z1|z2〉|2)
. (113)

The condition for Q = 1 (indicating that the reduced state of the quanton is pure) is given by

|〈z1|z2〉|4 + 6|〈z1|z2〉|2 + 1 = 2(1 + |〈z1|z2〉|2)2, (114)

which yields |〈z1|z2〉| = 1. Noticing that |〈z1|z2〉|2 = e−|z1−z2|2 , this condition is equivalent to
|z1 − z2| = 0, namely,

z1 = z2 = z. (115)

In this special case, it is clear from Equation (107) that the bipartite system is in the pure state |Ψ〉 = |zz〉
and the reduced state of each quanton is also pure. Other than the special case z1 = z2 = z, we have
Q < 1, which means the individual quanton is in a mixed state. According to the expression of Q
in Equation (113), the infimum of the purity Q, associated with the least pure state of the individual
quanton, is given by

Qinf =
1√
2

, (116)

which is asymptotically approached as |z1 − z2| → ∞ (i.e., |〈z1|z2〉| → 0).

3.2.2. Concurrence

The concurrence measuring the entanglement between the two quantons, according to
Equation (67), is given by

C =
√

2[1− tr(ρ2
1)] =

√
2(1−Q2) =

1− |〈z1|z2〉|2
1 + |〈z1|z2〉|2

= tanh(|z1 − z2|2/2), (117)
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which is a monotonically increasing function of |z1 − z2|. When z1 = z2, we have C = 0, indicating
that the quanton is in a separable state with zero entanglement, which is true since |Ψ〉 = |zz〉 is
a separable pure state. When z1 6= z2, we have C > 0, indicating that the bipartite system is in an
entangled state, which is referred to as the entangled coherent state according to its form of construction.
In the limit |z1− z2| → ∞, we have C → 1, the supremum of the concurrence (measuring the maximum
entanglement that can be asymptotically achieved) for this family of entangled coherent states. (Note
that the concurrence C is not normalized and may exceed one in general.)

3.2.3. Local-Nonlocal Complementarity Relation

The behaviors of the concurrence above mirror those of the purity, as they are connected by
the local-nonlocal complementarity relation

Q2 +
1
2
C2 = 1, (118)

or Q2 + (C/
√

2)2 = 1. This demonstrates the trade-off between the local property (the purity of
the individual quanton) and the nonlocal property (the entanglement between the two quantons).
The more entangled the two quantons are, the less pure each quanton is. In Figure 5, we plotted
the purity Q and the concurrence C (divided by

√
2) as functions of |z1 − z2|. The complementarity

betweenQ and C is clear in the figure as can be seen from the anti-correlation of their graphs. In the limit
|z1 − z2| → ∞, we have Qinf = Csup/

√
2 = 1/

√
2.

Figure 5. The graphs of the purity Q and the concurrence C (divided by
√

2) as functions of |z1 − z2|.

3.2.4. Predictability

The predictability and the visibility are dependent on the local representation. The representation
in which we study them in this example is the Fock-state representation spanned by {|n〉}. According
to the expression of the reduced density operator ρ1 in Equation (111), the density matrix elements in
the Fock-state representation are given by

ρ
(1)
nm = α2

2

∑
i,j=1
〈zi|zj〉〈n|zi〉〈zj|m〉 = α2

2

∑
i,j=1

Rij
zn

i√
n!

z∗mj√
m!

, (119)

where
Rij = e−|zi |2−|zj |2+z∗i zj . (120)

The predictability is only determined by the diagonal elements of the density matrix

ρ
(1)
nn = α2

2

∑
i,j=1

Rij
βn

ij

n!
, (121)



Entropy 2020, 22, 813 26 of 34

where we have introduced
βij = ziz∗j . (122)

Then, the predictability is calculated according to Equation (63) as follows:

P2 =
∞

∑
n=0

(ρ
(1)
nn )

2 = α4 ∑
ijkl

RijRlk

∞

∑
n=0

(βijβlk)
n

(n!)2 = α4 ∑
ijkl

RijRlk

∞

∑
n=0

(βikβl j)
n

(n!)2

= α4 ∑
ijkl

RijRlk I0(2
√

βikβl j),
(123)

where I0(x) is the modified Bessel function of the first kind with the series expression

I0(x) =
∞

∑
n=0

1
(n!)2

( x
2

)2n
. (124)

In deriving Equation (123), we have also used the property βijβlk = βikβl j according to the definition
in Equation (122), which is to make explicit connection with the visibility discussed later. In addition,
the square root (of a complex number)

√
βikβl j is understood as the principal one. Thus, we obtain

the expression of the predictability in the Fock-state representation for quanton 1:

P = α2
√

∑
ijkl

RijRlk I0(2
√

βikβl j), (125)

where, more explicitly, we have

R11 = e−|z1|2 , β11 = |z1|2 (126)

R22 = e−|z2|2 , β22 = |z2|2 (127)

R12 = e−|z1|2−|z2|2+z∗1 z2 , β12 = z1z∗2 (128)

R21 = e−|z1|2−|z2|2+z1z∗2 , β21 = z∗1z2 (129)

Note that, although Rij and βij are complex numbers, the predictability P in Equation (125) is a
real number.

3.2.5. Visibility

The visibility is determined by the off-diagonal elements of the density matrix. Its direct calculation
is pretty involved, which can be done in the following way. According to Equation (64), we have

V2 = ∑
n 6=m
|ρ(1)nm|2 = 2 ∑

n<m
|ρ(1)nm|2 = 2

∞

∑
n=0

∞

∑
m=n+1

|ρ(1)nm|2 = 2
∞

∑
n=0

(
∞

∑
m=0
|ρ(1)nm|2 −

n

∑
m=0
|ρ(1)nm|2

)
, (130)

where, according to Equation (119),

|ρ(1)nm|2 = α4 ∑
ijkl

RijR∗kl
(ziz∗k )

n

n!

(zlz∗j )
n

m!
= α4 ∑

ijkl
RijRlk

βn
ik

n!

βm
lj

m!
. (131)

(Note that we used R∗kl = Rlk.)
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As a result, we obtain

V2 = 2
∞

∑
n=0

(
∞

∑
m=0
|ρ(1)nm|2 −

n

∑
m=0
|ρ(1)nm|2

)
= 2α4 ∑

ijkl
RijRlk

[
∞

∑
n=0

∞

∑
m=0

βn
ik

n!

βm
lj

m!
−

∞

∑
n=0

n

∑
m=0

βn
ik

n!

βm
lj

m!

]

= 2α4 ∑
ijkl

RijRlk

[
eβik+βl j − eβl j

∞

∑
n=0

βn
ikΓ(n + 1, βl j)

(n!)2

]

= 2α4 ∑
ijkl

RijRlk

[
eβik+βl j − eβl j m(βik, βl j)

]
,

(132)

where we have used
n

∑
m=0

xm

m!
=

exΓ(n + 1, x)
n!

(133)

with the incomplete Gamma function defined as Γ(n+ 1, x) =
∫ ∞

x tne−tdt, and we have also introduced
a two-variable function

m(x, y) =
∞

∑
n=0

xnΓ(n + 1, y)
(n!)2 . (134)

The function m(x, y) has integral expressions in terms of the modified Bessel function given in
Appendix A.

We have thus obtained the visibility in the Fock-state representation for quanton 1

V = α2
√

2 ∑
ijkl

RijRlk

[
eβik+βl j − eβl j m(βik, βl j)

]
. (135)

3.2.6. Local Complementarity Relation

To verify the local complementarity relation P2 + V2 = Q2, we invoke the following property of
the function m(x, y):

eym(x, y) + exm(y, x) = ex+y + I0(2
√

xy), (136)

which is derived in Appendix A. Then, according to the expression of V in Equation (135), we have

V2 = 2α4 ∑
ijkl

RijRlk

[
eβik+βl j − eβl j m(βik, βl j)

]
= α4 ∑

ijkl
RijRlk

[
2eβik+βl j − eβl j m(βik, βl j)− eβik m(βl j, βik)

]
= α4 ∑

ijkl
RijRlk

[
2eβik+βl j − eβik+βl j − I0(2

√
βikβl j)

]
= α4 ∑

ijkl
RijRlk

[
eβik+βl j − I0(2

√
βikβl j)

]
= α4 ∑

ijkl
RijRlkeβik+βl j − α4 ∑

ijkl
RijRlk I0(2

√
βikβl j)

= Q2 −P2,

(137)

which is equivalent to the local complementarity relationP2 +V2 = Q2. In the second step of the above
derivation, we have made a switching of the index i↔ l and j↔ k. With the expressions of Rij and βij

in Equations (126)–(129), it is also easy to show Q2 = α4 ∑ijkl RijRlkeβik+βl j in the last step of the above
derivation. Thus, we have verified the local complementarity relation in this example. (The difficulty
in the direct evaluation of the visibility also highlights the usefulness of the local complementarity
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relation in the calculation of the visibility. Since Q and P are usually easier to calculate, the visibility
can then be obtained indirectly by V =

√
Q2 −P2.)

The local complementarity relation P2 + V2 = Q2 shows that the predictability P (particle nature)
and the visibility V (wave nature) are two complementary aspects of the purity Q (quantum nature).
To visualize this complementarity relation in this particular example, we consider the more specific
case with z1 = 1 and z2 = 1 + eiθ (θ ∈ [−π, π]). Then, in this case, |z1 − z2| = 1. According to
the expression of Q in Equation (113), this implies

Q =

√
e−2 + 6e−1 + 1√

2(1 + e−1)
≈ 0.945, (138)

independent of the variable θ. In other words, the purity Q is fixed when θ is varied. On the other
hand, the predictability P and the visibility V are dependent on the variable θ. They are plotted as
functions of θ in Figure 6. The complementarity between P and V as Q is fixed is manifested in their
negative correlation seen from the figure.

In addition, the local complementarity relation P2 + V2 = Q2 and the local-nonlocal
complementarity relation Q2 + C2/2 = 1 together lead to the WPE complementarity relation
P2 + V2 + C2/2 = 1 for this example. We have thus verified the complementarity relations and obtained
the expressions of all the relevant quantities for this particular example of an infinite-dimensional
bipartite system in entangled coherent states.

Figure 6. The graphs of the predictability P and the visibility V as functions of θ ∈ [−π, π] for the case
with z1 = 1 and z2 = 1 + eiθ . The purity Q in this case is constant, with the value Q ≈ 0.945.

4. Discussion

In this section, we discuss the connections and distinctions between our work and some relevant
previous work [9,33]. The issue of measure matching is given particular attention.

4.1. Generalized Visibility and Predictability

Roy and Qureshi introduced in Reference [9] an alternative set of definitions for the generalized
predictability and the generalized visibility (referred to as coherence and denoted by C there) for
multi-slit interference experiments. They defined the predictability as

PR =

√√√√1−
(

1
n− 1 ∑

i 6=j

√
ρiiρjj

)2

(139)
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and the visibility as

VR =
1

n− 1 ∑
i 6=j
|ρij|. (140)

They have shown that
P2

R + V2
R ≤ 1, (141)

where the equality holds for all pure states, obviously a desirable property. However, we would like to
discuss one important difference with the results in this work in the following.

In comparison with the local complementarity relation P2 + V2 = Q2 in the present work
(which implies that P2 + V2 ≤ 1 with the equality saturated by pure states), one may introduce
the counterpart of Q in terms of PR and VR, defined as

QR =
√
P2

R + V2
R =

√√√√1−
(

1
n− 1 ∑

i 6=j

√
ρiiρjj

)2

+

(
1

n− 1 ∑
i 6=j
|ρij|

)2

. (142)

QR is in the range [0, 1]. QR = 1 if ρ is a pure state and QR = 0 if ρ is maximally mixed (i.e., ρ = I/n)
as can be readily verified. (These properties of QR imply P2

R + V2
R ≤ 1 with the equal sign saturated

by all pure states.) Therefore, it would seem thatQR may serve as an alternative measure of the degree
of purity of the state ρ. In particular, in the special case n = 2 for single qubits, QR coincides with
Q (represented geometrically by the length of the Bloch vector), which is a measure of purity that
is invariant under local unitary transformations (i.e., independent of representations). However,
for multi-dimensional systems with n > 2, QR in Equation (142) is in general representation-dependent.
This is in contrast with the purity Q in this work that is representation-independent, as it is defined in
terms of the usual purity tr(ρ2) (see Equation (31)).

To show that QR is not representation-independent in general, it is sufficient to consider a
particular example. Take for instance the following two three-dimensional density matrices

ρ =

 1
2 0 0
0 1

2 0
0 0 0

 , ρ′ =

 1
2 0 0
0 1

4
1
4

0 1
4

1
4

 . (143)

ρ and ρ′ are related by the unitary transformation ρ′ = UρU† with

U =

1 0 0
0 1√

2
1√
2

0 1√
2
− 1√

2

 . (144)

Therefore, ρ and ρ′ may be considered as two different representations of the same density operator.
Direct calculation using Equation (142) yields

QR(ρ) =

√
1−

(
1
2

)2
+ 02 =

√
3

2
(145)

and

QR(ρ
′) =

√√√√1−
(√

1
8
+

√
1
8
+

√
1
16

)2

+

(
1
4

)2
=

2−
√

2
4

, (146)

demonstrating that QR in general is not representation-independent as QR(ρ) 6= QR(ρ
′) with

ρ′ = UρU†.
Thus, the predictability PR and visibility VR in the multi-beam setting lose one important property

compared to the two-beam setting. That is, they cannot be considered as two complementary aspects of
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one representation-independent property (invariant under local unitary transformations). In addition,
since the entanglement for bipartite systems (e.g., quantified by the generalized concurrence C) is
invariant under local unitary transformations, there is no obvious way to connect the predictability PR
and visibility VR (they form a representation-dependent quantity QR) to the generalized concurrence
C without introducing additional elements. As a result, there does not seem to be a direct way to
generalize the WPE complementarity relation for pure states to multi-dimensional bipartite systems
using the definitions of PR and VR.

This problem can also be observed from the perspective of measure matching. The structure

of the generalized concurrence for pure states, C ∝
√

1− tr(ρ2
1) (root trace square of the density

operator), is naturally related to the l2 norm of coherence defined as the visibility V in Equation (30)
(root sum square of the off-diagonal elements of the density matrix). In contrast, the visibility VR in
Equation (140) is the l1 norm of coherence (sum of the absolute values of the off-diagonal elements of
the density matrix). Therefore, the connection of VR (based on the l1 norm) to C (naturally related to
the l2 norm) is complicated by the mismatch of different measures. This is another reason why there
does not seem to be a direct generalization of the WPE complementarity relation in terms of VR and PR.
However, it does not mean that the visibility V (the l2 norm of coherence) is superior to VR (the l1 norm
of coherence) in every way. In fact, if considered merely as a coherence measure (instead of focusing
on its connection to the concurrence), V has a disadvantage compared to VR in that it is no longer a
coherence monotone when subselection based on measurement outcomes is allowed for incoherent
operations, as pointed out in Reference [35]. It is just that, as far as the relation between visibility
and concurrence is concerned, the visibility V has a more natural connection to the concurrence C than
VR does. This is the point of measure matching.

4.2. WPM Complementarity Relation

Zhang et al. [33] developed a WPM complementarity relation among wave, particle,
and mixedness aspects for multi-dimensional systems. Their WPM complementarity relation is
represented by the inequality

P2
1g + V2

R + SL ≤ 1, (147)

where P1g is the “one-guess bet” predictability capturing the particle aspect, defined as

P1g =
n

n− 1
max

i
{ρii} −

1
n− 1

, (148)

VR is the l1 measure of coherence (visibility) describing the wave aspect (the same as VR in
Equation (140)), given by

VR =
1

n− 1 ∑
i 6=j
|ρij|, (149)

and SL is the linear entropy quantifying the mixedness aspect, with the expression

SL =
n

n− 1
[1− tr(ρ2)]. (150)

In terms of the mixedness defined as M =
√
SL in the present work, the WPM complementarity

relation in Equation (147) reads
P2

1g + V2
R +M2 ≤ 1. (151)

It becomes an equality for two-dimensional systems (n = 2), but in general remains an inequality for
multi-dimensional systems (n > 2).

In the present work, there is also a WPM complementarity relation, in the form of an equality:

P2 + V2 +M2 = 1. (152)
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This relation remains an equality for multi-dimensional systems (n ≥ 2), in contrast with the WPM
complementarity relation in Equation (151) in the form of an inequality except for n = 2. The WPM
complementarity relation in Equation (152) withM2 replaced by SL was also mentioned in [33] in a
remark, but considered to be a bit trivial.

From a mathematical point of view, the tight equality in Equation (152) places a much more
stringent constraint among the wave, particle, and mixedness properties than the inequality in
Equation (151). In this regard, the equality form of the WPM complementarity relation makes
a stronger statement and thus may be more desirable. In fact, the inequality form of the WPM
complementarity in Equation (151) can be derived from the equality form in Equation (152), by taking
into account the distinctions of predictability and visibility measures (P1g versus P and VR versus V).
The two lemmas used in [33] to derive the inequality form of the WPM complementarity are essentially
statements of measure comparison: P1g ≤ P (equivalent to lemma 1) and VR ≤ V (equivalent to
lemma 2). As a consequence, P2

1g + V2
R +M2 ≤ P2 + V2 +M2 = 1, producing the inequality in

Equation (151). It is the adoption of smaller measures of predictability and visibility that reduced
the equality in Equation (152) to an inequality in Equation (151). This also resonates with the point
of measure matching discussed previously. Even though there may be multiple measures for an
individual property which all seem to be appropriate, some measures may be more suitable (useful
or powerful) than others when the property is considered in relation to others. In other words,
the issue of measure matching arises when the relations between different qualities are of concern.
Mismatched measures could reduce the power of the formulated relation that may otherwise offer
more information. Our choice of the tangle instead of the squared concurrence as the entanglement
measure in the formulation of the entanglement–mixedness relation also has to do with this issue.

Moreover, we would like to stress that the WPM complementarity relation, in its nature, is a
single-partite (local) relation, as the predictability, the visibility, and the mixedness can all be defined in
terms of the single-partite density operator without referring to another system. In contrast, the WPE
complementarity relation for pure states (Equation (28))

P2
k + V2

k + C2/ν2
k = 1 (153)

connects the local single-partite properties (predictability Pk and visibility Vk) with the nonlocal
bipartite property (concurrence C). It has a different physical content from the WPM complementarity
relation, even though they have similar forms, especially when the equality form in Equation (152)
is used. In addition, the WPM complementarity in Equation (152) holds regardless of whether
the bipartite system is in a pure or mixed state. In contrast, the WPE complementarity in Equation (153),
in general, no longer holds for mixed states, and is replaced by the more general WPEI complementarity
relation P̃2

k + Ṽ2
k + (τ + B2)/ν2

k = 1.

5. Conclusions

In this paper, we have formulated the WPEI complementarity for general multi-dimensional
bipartite systems in pure or mixed states, and we have further extended its range of applications to
incorporate hierarchical bipartite systems and infinite-dimensional bipartite systems.

• For multi-dimensional bipartite systems in pure states, we developed the extended form
of the WPE complementarity relation, P2

k + V2
k + C2/ν2

k = 1, from the local-nonlocal
complementarity relation,Q2

k + C
2/ν2

k = 1, and the local complementarity relation, P2
k +V

2
k = Q2

k ,
using generalized measures of the relevant properties as summarized in Equations (29)–(33).
The additional factor 1/ν2

k in the extended form reflects the asymmetry in the two subsystems
when they have different dimensions.

• For multi-dimensional bipartite systems in mixed states, we formulated the generalized form of
the WPEI complementarity relation, P̃2

k + Ṽ2
k + (τ + B2)/ν2

k = 1, together with the local-nonlocal
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complementarity relation, Q̃2
k + (τ + B2)/ν2

k = 1, and the entanglement–mixedness relation,

(τ + B2)/ν2
k = M̃2

k , with the help of the single-partite complementarity relations: P2 + V2 = Q2,
Q2 +M2 = 1, and P2 + V2 +M2 = 1. Compared to the case of two-qubit systems, the extended
WPEI complementarity has the unequal-weight averages in place of the equal-weight averages,
reflecting the possible difference in the subsystem dimensions. Moreover, the tangle has replaced
the squared concurrence as the entanglement measure. These two measures agree for two-qubit
systems, but differ for mixed states of general bipartite systems. We motivated and argued
with the results in rank-2 states that the tangle gives a more powerful formulation of the WPEI
complementarity. We also presented a graphical representation of all the relations relevant to
the WPEI complementarity, shown in Figure 3.

• We further demonstrated how the WPEI complementarity can be applied to hierarchical
bipartite systems (bipartite systems consisting of bipartite systems) and infinite-dimensional
bipartite systems.

• The general formulation of the WPEI complementarity was illustrated with two specific examples
worked out in detail. The first example is a qubit–qutrit system in rank-2 mixed states. The second
example is a pair of infinite-dimensional quantons in entangled coherent states.

• We also discussed the relation of the present study to some previous work, with a focus on
the measure matching issue in the formulation of the complementarity relations.

The WPEI complementarity formulated for general bipartite systems in pure or mixed states in
this work has both theoretical significance and experimental implications. On the theoretical side,
this general formulation of the WPEI complementarity demonstrates that the role of entanglement
as well as ignorance in relation to the wave–particle duality is a general feature that rests on
the basic structure of quantum mechanics and extends to (at least) general bipartite systems, including
hierarchical and infinite-dimensional bipartite systems. It also hints at the intriguing possibility of
rebuilding the foundations of quantum mechanics from a set of basic components that incorporates
the WPEI complementarity principle. On the experimental side, the complementarity relations
for finite-dimensional bipartite systems may be tested in multi-beam interference experiments,
as the quanton-detector systems in these experiments can be analyzed in the context of general
multi-dimensional bipartite systems. The particular example of entangled coherent states studied
in this work may facilitate future experimental investigations on complementarity relations in
infinite-dimensional bipartite systems.
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Appendix A. Properties of the Function m(x, y)

The function m(x, y) is defined as

m(x, y) =
∞

∑
n=0

xnΓ(n + 1, y)
(n!)2 . (A1)
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Starting from the above definition, we found two integral expressions for the function m(x, y) in terms
of the modified Bessel function:

m(x, y) =
∫ x

0
ex−y−z I0(2

√
zy)dz + e−y I0(2

√
xy) = ex −

∫ y

0
e−z I0(2

√
zx)dz. (A2)

These two integral expressions imply the property

eym(x, y) + exm(y, x) = ex+y + I0(2
√

xy), (A3)

which is shown as follows.
From the first integral expression, we have

eym(x, y) = ey
[∫ x

0
ex−y−z I0(2

√
zy)dz + e−y I0(2

√
xy)
]
=
∫ x

0
ex−z I0(2

√
zy)dz + I0(2

√
xy). (A4)

From the second integral expression, we have

exm(y, x) = ex
[

ey −
∫ x

0
e−z I0(2

√
zy)dz

]
= ex+y −

∫ x

0
ex−z I0(2

√
zy)dz. (A5)

Combining the two, we obtain Equation (A3).
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