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Breast cancer, if diagnosed and treated early, has a better chance of surviving. Many studies have shown that a larger number of
ultrasound images are generated every day, and the number of radiologists able to analyze this medical data is very limited. This
often results in misclassification of breast lesions, resulting in a high false-positive rate. In this article, we propose a computer-
aided diagnosis (CAD) system that can automatically generate an optimized algorithm. To train machine learning, we employ
13 features out of 185 available. Five machine learning classifiers were used to classify malignant versus benign tumors. The
experimental results revealed Bayesian optimization with a tree-structured Parzen estimator based on a machine learning
classifier for 10-fold cross-validation. The LightGBM classifier performs better than the other four classifiers, achieving 99.86%
accuracy, 100.0% precision, 99.60% recall, and 99.80% for the FI score.

1. Introduction

Breast cancer represents one of the primary diseases behind
the loss of life for women globally. It can be classified into
three (3) groups: normal, benign, and malignant tumors.
Besides, it is grouped into five (5) stages (0-IV). However,
these stages are distinguished by the size of tumors, identi-
fied as invasive or noninvasive cancer, which have lymph
nodes and spread to other parts, although the chances of
survival decrease as the cancer progresses to stage IV [1].
Consequently, early detection and analysis of breast cancer
increase the probability of survival and decrease the mortal-
ity rate. As reported by the American Cancer Society, it is
estimated that 327,610 cases will be diagnosed in 2020,
which comprises 276,480 invasive breast cancers for women,
2620 for men, and 48,530 cases of ductal carcinoma in situ
identified in women. There are approximately 42,690 people
expected to die in 2020, including 42,690 women and 520
men [2]. In contrast, the World Health Organization
(WHO) reported that breast cancer was the most diagnosed
disease among women internationally. It is estimated that

627,000 women die every year due to breast cancer, and
most of this disease occurs in low- and middle-income
countries. More than 2.1 million new cases were diagnosed
in 2018, and one out of eight women will be diagnosed with
invasive breast cancer in their lifetime [3]. In addition,
various imaging techniques have been developed and are
widely used to detect early breast cancer. Mammography,
breast ultrasound, magnetic resonance imaging (MRI), pos-
itron emission tomography (PET), and computed tomogra-
phy (CT) are some imaging techniques [4–6]. Breast
ultrasound can be divided into diagnostic and therapeutic
categories. Diagnostic ultrasound was considered noninva-
sive, and therapeutic ultrasound did not produce images
[7]. ML for breast cancer classification has been presented
in this study. The study shows that, in recent years, the
researchers employ metaheuristics such as the ones
described below.

1.1. Harris Hawks Optimization (HHO). The HHO is based
on a gradient-free optimization technique that can be
applied to solve any problem based on optimization [8–11].
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1.2. Monarch Butterfly Optimization (MBO). The MBO algo-
rithm is a type of swarm intelligence metaheuristic algo-
rithm inspired by monarch butterfly migration behavior
[12]. The method can be used for medical image segmenta-
tion [13, 14], feature selection [15–17], and classification [18,
19].

1.3. Slime Mould Algorithm (SMA). The SMA is a
population-based metaheuristic algorithm inspired by the
phenomenon of slime mould oscillation [20], for segmenta-
tion [21, 22], feature selection [23, 24], and classifica-
tion [25].

1.4. Moth Search Algorithm (MSA). The MSA is a recent
swarm intelligent optimization algorithm that mimics moth
movement. The method can be used in image segmentation.
[26–28], feature selection [29–31], and classification [32, 33].

1.5. Hunger Games Search (HGS). The HGS incorporates the
idea of hunger into the feature selection process. The
method can be used in segmentation [34, 35], feature selec-
tion [36], and classification [37].

1.6. Colony Predation Algorithm (CPA). The CPA method is
based on animal corporate predation in nature [38, 39].

However, the majority of machine learning models used
to classify breast cancer have had their hyperparameters left
with default values, and some have been manually adjusted.
In this paper, we proposed automatic ML that can automat-
ically build optimized ML algorithms. The proposed method
significantly reduces human labour and can be easily applied
in real applications. Contributions to our article are pre-
sented below:

(i) First, it developed an algorithm for detecting and
segmenting outliers

(ii) Second, it is developing an algorithm for feature
extraction based on the pyradimics toolbox

(iii) Third, we have discussed machine learning models
and hyperparameter optimization techniques

(iv) Four, it summarizes the hyperparameter optimiza-
tion used in each related work

(v) Five, it identifies and recommends the most effec-
tive classifier for breast cancer classification

(vi) Finally, we have evaluated the effect of Bayesian
optimization with a tree-structured Parzen
estimator

The rest of this work is presented on paper as follows:
Section 2 presents the literature of related works. Section 3
introduces the application of hyperparameter optimization-
based machine learning models. Section 4 provides a general
description of the materials and the methods used. Section 5
describes the experiment setup and testing process. The
experiment results are discussed in Section 6. Finally, this
study is concluded in Section 7.

2. Related Work

This section discusses the previous research on breast cancer
classification based on ultrasound image, and Table 1 sum-
marizes each paper based on HPO, which is organized from
2019 to 2021.

Zeebaree et al. [40] developed a CAD that uses ML and
region-growing segmentation based on the morphological
characteristics of breast ultrasound. The method uses a
hybrid model to extract features from the ROI. The features
include 7 moments, FD, and HOG instead of one feature.
250 ultrasound images were used, of which 100 were benign
and 150 malignant lesions. The ANN is used to classify

Table 1: Summary of previous related state-of-the-art works.

Related works Year Technique Database Evaluation metric HPO

[40] 2019 ANN 100 93.1% ACC (M), 90.4% (B) Default

[41] 2019 SVM 82 94.12% ACC Default

[42] 2019 SVM 323 95.98% ACC, 95.37% SEN, 97.29%, and SPE Default

[43] 2019 SVM, Ada, LDA, and MLR 2032 89.0% ACC, 82.0% SEN, and 93.0% SPE Grid search

[44] 2019 SVM 1061 75.94% ACC, 66.37% SEN, and 86.87% SPE Default

[45] 2019 LDA 116 89.0% ACC Default

[46] 2019 MNN 840 97.8% ACC Default

[47] 2019 SVM 181 84.12% ACC, 92.86% SE, and 78.80% SPE GA

[48] 2019 FCM, LR, and SVM 160 89.4% ACC, 86.3% SE, and 92.5% SP Default

[49] 2019 XGBoost 2964 94.0% ACC RS

[50] 2020 LDA 2054 82.0% AUC Default

[51] 2020 SVM 192 67.31% ACC, 47.62% SEN, and 80.65% SPE Default

[52] 2021 LDA 2054 82.0% AUC Default

[53] 2021 SVM 192 67.31% ACC, 47.62% SEN, and 80.65% SPE Default

Proposed 2021 LightGBM 912 99.86% ACC, 100.0% PE, 99.60% RE, and 99.80% F1 BO-TPE

2 BioMed Research International



ultrasound images, and it achieved an accuracy of 93.1% for
malignant lesions and 90.4% for benign lesions.

Adel et al. [41] proposed a method for detecting and
classifying breast cancer using B-mode and elastography
images. The proposed method employs a total of 82 ultra-
sound images; 56 were malignant lesions, and 26 were
benign lesions. The extracted features from ROI were based
on geometrical and texture features. The 33 features
extracted from B-mode and elastography images include
mean, standard deviation, area, perimeter, width-to-height
ratio, contrast-to-noise ratio, and signal-to-noise ratio. The
SVM was employed and achieved an accuracy of 94.12%.

El-Azizy et al. [42] developed the CAD based on three
morphological features extracted from conventional B-
mode ultrasound images. The SVM classifier employs fea-
tures extracted from segment images to classify as benign
versus malignant. The features extracted include the perim-
eter, regularity variance, and circularity range ratio. The
CAD developed 323 ultrasound breast images of which 216
were benign lesions and 107 malignant lesions, and the noise
was removed using an anisotropic filter. The CAD employs a
semiautomatic and automatic approach. The proposed
method achieved 95.98% of accuracy, 97.20% of sensitivity,
and 95.37% of specificity when the semiautomatic method
was applied. Besides, the method achieved 95.67% of accu-
racy and 95.83% of specificity and decreased sensitivity to
95.33% when employing full automatic segmentation.

González-Luna et al. [43] proposed the CAD for the
classification of breast ultrasound images as benign or malig-
nant lesions. The method employs a total number of 2032
ultrasound images of which 1341 were benign and 691
malignant lesions, acquired from the National Cancer Insti-
tute (INCa) of Rio de Janeiro, Brazil. The SVM, Ada, LDA, k
-NN, RBFN, RF, and MLR were applied to classify 137 tex-
tures and morphological features. Some features include area
difference with an equivalent ellipse, maximum propor-
tional, solidity, extent, roundness, shape class, Pearson’s cor-
relation coefficient, and mean squared error. The proposed
method shows that LDA outperformed other classifiers as
it achieved 89.00% accuracy, 82.00% sensitivity, and
93.00% specificity, and the AUC was observed to be 95.00%.

Wei et al. [44] proposed an automatic classification of
breast cancer based on breast ultrasound images. The pro-
posed method uses texture and morphological features to
classify images as benign or malignant lesions. The proposed
method uses a total of 1061 ultrasound images, including
472 benign and 589 malignant tumors. These features
extracted include the direct least-squares fitting of ellipses,
compactness, and radial range spectrum extracted from
ROI. The SVM classifier was applied to classify morpholog-
ical features. The results, based on morphological features,
yielded 75.94% accuracy, 66.37% sensitivity, 86.87% specific-
ity, and 85.23% precision.

Karwat et al. [45] developed the CAD based on the shape
parameter of the Nakagami distribution and GLCM matrix
using quantitative ultrasound. A total of 116 ultrasound
images were used, of which 57 were malignant lesions and
59 benign lesions. These images were acquired from the
Department of Radiology, Maria Skłodowska-Curie Memo-

rial Institute of Oncology in Warsaw. The LDA classifier
with cross-validation based on leave-one-out was adopted
to classify malignant lesions versus benign lesions. The pro-
posed method produced a classification accuracy of 89.00%.

Rani and Dhenakaran [46] proposed the CAD for the
classification of ultrasound breast images based on a modi-
fied neural network (MNN) to predict tumor growth rate.
The proposed CAD employs 840 ultrasound images of
which 270 are malignant lesions and 570 benign images
lesions, and a Wiener filter is used to reduce speckle noise.
The different attributes include shape, regular (benign) and
irregular (malignant), concavity, tumor area, variance,
Euclidean distance, standard deviation, and entropy which
were extracted based on the foreground and background,
after segmentation. The proposed method achieved 97.80%
accuracy.

Li et al. [47] developed CAD based on radiomic features
extracted from multimodal ultrasound images to classify
breast tumors. The method used 181 breast tumors, of which
114 were benign and 67 were malignant. The noise is
reduced using a directional filter bank, and segmentation is
done using the contourlet transform method. Some of the
shape features extracted from ROI include maximum-
width-to-maximum-thickness ratio, solidity, convex area,
orientation, long-axis length, short-axis length, perimeter,
maximum width, area, equivalent diameter, eccentricity,
mean, median, maximum thickness mean, and median. An
SVM classifier is used to classify ultrasound images as
benign versus malignant tumors. The method yielded
84.12% of accuracy, 78.80% of specificity, and 92.86% of sen-
sitivity, and AUC was observed to be 91.90%.

Hsu et al. [48] proposed the CAD for breast tumor clas-
sification using quantitative features extracted from ultra-
sound parametric images. The proposed CAD used a total
number of 160 ultrasound images of which 80 were benign
and 80 malignant lesions. These images were acquired from
the Kuang Tien General Hospital. The method used mor-
phological and texture analysis based on the Nakagami para-
metric imaging. The morphological features extracted
include solidity, roundness, extent, a short distance of stan-
dard deviation, tumor circularity, and long-axis-to-short-
axis ratio. Three classifiers, fuzzy c-means, LR, and SVM,
were used. The logistic regression outperformed the other
two classifiers, with an accuracy of 89.40%, 86.30% specific-
ity, and 92.50% sensitivity, and they reported the AUC curve
to be 96.00%.

Chang et al. [49] proposed an XGBoost classifier for
breast cancer classification. A total of 2964 breast cancer
samples were collected from the Chung Shan Medical Uni-
versity Hospital, Jen-Ai Hospital, and Far Eastern Memorial
Hospital. The results revealed that the single XGBoost
method had a very high testing accuracy of 94.00%.

Gómez-Flores and Hernández-López [50] proposed a
CAD which helped radiologists to classify breast cancer.
The proposed CAD is based on 39 morphological features
which describe breast tumor shapes to distinguish whether
they are benign or malignant tumors. A total number of
2054 breast ultrasound images acquired from the National
Cancer Institute (INCa) of Rio de Janeiro, Brazi, and 892
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(a)

Figure 1: Continued.
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(b)

Figure 1: Continued.
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(c)

Figure 1: Continued.
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mammogram images acquired from the Breast Cancer Dig-
ital Repository (BCDR) were used for training. Morphologi-
cal features were extracted based on region descriptors and
boundary descriptors. The features extracted include elon-
gatedness, form factor, solidity, normalized residual, value,
convexity, roundness, elliptic-normalized skeleton, circular-
ity, compactness, eccentricity, long-to-short-axis ratio, area
difference with an equivalent ellipse, and elliptic-
normalized circumference. The AUC was reported to be
82.0% in both databases.

Liu et al. [51] developed the CAD for breast tumor classi-
fication based on edge feature extraction. The morphological

features were extracted from the ROI, which included rough-
ness, regularity, aspect ratio, ellipticity, and roundness. The
SVM classifier was adopted to classify images, whether they
are benign or malignant lesions. The proposed method used
a total number of 192 ultrasound images, including 71 malig-
nant and 121 benign. The proposed method achieved 67.31%
accuracy, 47.62% sensitivity, 80.65% specificity, 62.50% PPV,
and 69.44% NPV.

Irfan et al. [52] proposed deep learning segmentation of
ultrasonic breast lesion images by combined a dilated seman-
tic segmentation network (Di-CNN) and morphological ero-
sion operation. The segmented images were fed into

(d)

Figure 1: Benign: (a) original image, (b) mask image, (c) outline detection, and (c) ground truth image.
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(a)

Figure 2: Continued.
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(b)

Figure 2: Continued.
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(c)

Figure 2: Continued.
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DenseNet201 with transfer learning for feature extraction. A
total number of 780 breast tumor were used in the study.
The method employed CNN-activated feature vectors,
DenseNet201-activated feature vectors, and support vector
machine (SVM) to classify the breast tumor. The method
achieved an accuracy of 90.11% based on CNN-activated fea-
ture vectors and accuracy of 98.45% based on DenseNet201-
activated feature vectors combined with the SVM classifier
and 98.9% precision.

Lahoura et al. [53] proposed a machine learning frame-
work for cloud-based breast cancer classification using the
extreme learning machine (ELM). The method employed
AdaBoost, SVM, Naïve Bayesian, perceptron, and k -NN,

and then, the ELM model was executed. The data used were
from the Wisconsin Breast Cancer Diagnosis (WBCD). The
dataset consisted of 569 entries and 32 attributes. The experi-
mental results revealed that the method achieved an accuracy
of 98.68%, recall of 91.30%, precision of 90.54%, and F1-score
of 81.29%.

3. Applications of Machine Learning Model-
Based HPO

In this section, an overview of ML is given, followed by a
brief clarification of each algorithm used in this research.

(d)

Figure 2: Malignant: (a) original image, (b) mask image, (c) outline detection, and (c) ground truth image.
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3.1. Machine Learning (ML) Models. ML is a field of com-
puter science that was founded in the late 1970s when it
was very difficult to get the existing knowledge about
artificial intelligence (AI) [54]. AI is aimed at analyzing
hypotheses and designing computer systems that can per-
form tasks requiring biological attention to make decisions
based on the completed task: for example, image recognition
and perception [55]. Two common types of ML methods are
as follows:

(i) Supervised ML is when training functions have cor-
rectly labeled data, for classification problems where
labels include discrete values and regression prob-
lems where labels include continuous values

(ii) Unsupervised machine learning, where training
functions are trained on an unlabeled dataset, can
be used for clustering, dimensionality reduction,
and outlier detection algorithms and requires no
external understanding.

ML is popular because it is more efficient, timely, and less
expensive than deep learningmethods, and because it does not
require powerful computing hardware, it can be deployed in
low- and middle-income countries [56–58]. These ML have
been used in various applications: CAD, image registration,
image segmentation, image fusion, image search, and annota-
tion developed [59, 60]. The features extracted are based on
the ROI and not the whole image [61]. Some ML classifiers
based on tree-structure that have been used for breast cancer
classification and are appropriate for our study are given
below. Tree-structure means the ML algorithms based on
decision trees that use model decisions [62, 63].

3.1.1. k-Nearest Neighbor (k-NN) Classifier. k-NN is a simple
machine learning algorithm because the classifier is created by
manipulating the distances between data points, and the k-NN
in the training dataset belongs to the predictor class of each
sample tested [62]. The k-NN is used to distinguish all
similarities in its neighbors’majority votes as either Euclidean
or Minkowski metric, and its function is shown below as the
distance between two data points is calculated in a plane.

d x, x′
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
k

i=1
xi − xj′
� �2

vuut , ð1Þ

where d is the distance function, n is the number of variables,
and xi and xj′ are the variables of vectors x and x′, respectively,
in the two-dimensional vector space. The function to calculate
the distance between two data points in a norm vector space is
given below:

d x, x′
� �

= 〠
k

i=1
∣xi − x′i ∣
� �e !1/e

: ð2Þ

In the above equation, the value of e can be manipulated.

3.1.2. Support Vector Machines (SVM) Classifier. SVM is a
well-known supervised ML algorithm that has been used
for classification and regression problems. When choosing
the best separating hyperplane for linearly classifying data,
SVM uses a hyperplane for two different classes [62, 64,
65]. It can delineate the data points from low to high geo-
graphical space [66, 67]. The hyperplane expression is given
below:

f xð Þ =wTx + b: ð3Þ

Furthermore, SVM-RBF can be adopted if the data is not
split linearly and depends on the distance from its initial
point to another point. The function is given below:

k x, x′
� �

= exp −γ ∣ x − x′
�� ����2� �

: ð4Þ

In this, γ is the kernel variable for each kernel function.
These variables influence the performance of SVM, and the
distance used in the initial space is found by the similarity
of x and x′.

3.1.3. Random Forest (RF) Classifier. The RF classifier is
widely used to create many trees in a forest. RF accuracy
depends on the number of trees created in the forest. There-
fore, RF accuracy is influenced by the number of trees gener-
ated in the forest, since the more trees in the forest, the more
the accuracy increases significantly, and vice versa. In addi-
tion, RF uses batching and randomization in the construc-
tion of each tree when creating a forest of trees [62, 64,
65]. It is prescribed in the Gini index function below.

= 1 − 〠
c

i

= 1 pið Þ2: ð5Þ

The function determines the number of nodes on the DT
branch, where pi constitutes the comparative frequency of
the class noticed and c is the number of classes in the dataset.

3.1.4. Gradient Boosting (XGBoost) Machine. XGBoost is one
of the deterministic machine learning algorithms that can be
applied to regression and classification problems. The classi-
fier is very popular because it is reliable, efficient, predict-
able, and comparatively slow in implementation [63, 68].
In this way, it adapts to many of Kaggle’s challenges.

Input features
Features

visualization
Features ranking

and selection

ML based
on BO-TPE

Results based
on all features

Results based on
selected featuresClinical decision

Figure 3: Proposed framework.
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3.1.5. LightGBM Classifier. The LightGBM is one of the vari-
eties of gradient enhancement structures created in DT. This
structure can improve the efficiency of the model and reduce
memory usage when splitting trees with the leaf method. In
addition, it is widely used in various tasks such as feature
ranking and classification [69, 70].

3.2. Hyperparameter Optimization (HPO) in Machine
Learning Models. To achieve optimal ML results, the selec-
tion and tuning of hyperparameters are the most important
factors. Hyperparameters are parameters that have been
tweaked to improve their performance or accuracy in
machine learning. These parameters are of greater impor-
tance when studying, creating, and evaluating machine
learning classifiers. In addition, HPO is a procedure used
to find the optimal hyperparameters in the ML classifier.
Some of the HPO are default hyperparameters, hyperpara-
meters based on genetic algorithms (GA), hyperparameters
based on random search (RS), hyperparameters based on
particle swarm optimization (PSO), hyperparameters based
on hyperband, hyperparameters based on Bayesian optimi-
zation with Gaussian processes (BO-GP), and hyperpara-
meters based on Bayesian optimization with tree-
structured Parzen estimator (BO-TPE).

3.2.1. Hyperparameter Based on Bayesian Optimization with
Tree-Structured Parzen Estimator (BO-TPE). BO-TPE is
used to manage categorical, discrete, continuous, and
conditional hyperparameters [62, 71, 72]. The tree-
structured Parzen estimator (TPE) may be a sequential
model-based optimization (SMBO) method. During this
study, the BO-TRE was adopted since its performance is
higher in some difficult problems, and it is also often better
than other HPO [73, 74]. Moreover, it is ready to decide
the most desirable hyperparameters or most close desirable
hyperparameter configuration within a short time. TPE is
one of the surrogate models for BO. Instead of defining a
predictive distribution, the model generates two densities
to act as generative models for all domain variables. In
addition, the BO method has been used because it is more
effective and can be used in many HPO problems. The
model can perform better even if the objective function f
is stochastic, nonconvex, or noncontinuous [62].

4. Materials and Method

This section gives an overview of the materials used and the
method applied.

4.1. Acquisition and Segmentation. The breast ultrasound
images used in this dataset were obtained from a local
hospital. The dataset contains 912 (512 × 512 with png
extension) breast ultrasound images, including 600 benign
and 312 malignant lesions confirmed by a pathology report,
regardless of whether they are benign or malignant lesions.
The images marked by medical radiologists with their
corresponding label images are shown in Figures 1 and 2.
Furthermore, based on a marked area, we have developed
an algorithm for outline detection and segmentation based
on binarization to obtain the ground truth. This was done
with the help of OpenCV in the Python library. We
developed an algorithm to detect the contour of an image,
allowing us to identify the shape of images. The shape of
images helps doctors determine whether they are normal,
benign, or malignant. It detects the boundary of an image
with the same intensity by joining all of the marks drawn
by the physician. The image was thresholded to produce a
binary image, and the flood fill from pixel (0, 0) was used
to produce the inverted image. The inverted, flood-filled
image aids in white-to-black and black-to-white conversion.
The thresholded image is merged with the inverted flood-
filled image bitwise to create the final foreground mask with
holes filled in.

Table 2: Performance comparison using 10-fold cross-validation.

Classifiers Accuracy Precision Recall F1-score Parameters optimized

k-NN 92.99% 92.49% 91.47% 90.47% n neighbors = 17

SVM 96.17% 95.64% 96.56% 95.13% C = 32:35

Random 95.08% 95.25% 94.69% 93.48% max depth = 45, n estimators = 420, min samples split = 8, min samples leaf = 11

XGBoost 94.96% 95.08% 95.00% 93.41% max depth = 24, learning rate = 0:256, n estimators = 200

LightGBM 99.86% 100.00% 99.60% 99.80% max depth = 13, learning rate = 0:123, n estimators = 350, num leaves = 6
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0.6

0.4
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e p
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False positive rate

0.2

0.0
0.0 0.2 0.4 0.6 0.4 1.0

K-NN classifier (AUC=0.991)
SVM classifier (AUC=0.853)
Random classifier (AUC=0.973)
Xgboost classifier (AUC=0.973)
Lightgbm classifier (AUC=1.000)
Baseline

Figure 4: Performance comparison of five classifiers in terms of
ROC.
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4.2. Feature Extraction. The dataset used in this paper con-
tains 185 features extracted from 912 ultrasound images that
belong to two classes, which are malignant and benign
tumors, and the features are saved in tabular data with a
CSV extension. Furthermore, the speckled noise was
removed using a wavelet filter, which is a built-in filter in
the PyRadiomics toolbox. The features were extracted using
the PyRadiomics toolbox implemented in Python, which is
an open-source package [75]. The setting parameters for the
feature extraction were set to be minimumROIDimensions
(2), minimumROISize (None), normalize (True), normalizeS-
cale (256), removeOutliers (3), resampledPixelSpacing
(None), interpolator (sitkBSpline), preCrop (False), padDis-
tance (5), distances (1), force2D (True), force2Ddimension
(0), resegmentRange (None), label (1), additionalInfo (True),
binWidth (25), symmetricalGLCM (True), and weighting-
Norm (None).

4.3. Method. Five ML classifiers were used, including the
support vector machine (SVM), k-nearest neighbor (k-
NN), random forest (RF), XGBoost, and LightGBM. ML
was optimized using the tree-structured Parzen estimator,
and the dataset was divided using 10-fold cross-validation.
The ML classifiers are used to classify features extracted
from breast ultrasound images as benign lesions versus
malignant lesions. The proposed framework is shown in
Figure 3.

5. Experiment

This section introduced the setup of the experiment and
results for the proposed five (5) ML models employed on
185 features extracted from 912 breast cancers. The dataset
is split into two parts: 80 for training and 20 for testing.
Thirteen features out of 185 features were used to train five
ML models. The ML models were trained using 10-fold
cross-validation and were optimized using BO-TPE. These
features include the original mean (1); four (4) features
extracted from 2D shapes such as elongation, major axis
length, maximum diameter, and mesh surface; five (5) fea-
tures extracted from first order shapes such as 90 percentile,
median, minimum, minimum range, and maximum range;
and three (3) features extracted from GLCM such as infor-
mational measure of correlation (IMC2) L, informational
measure of correlation (IMC2) H, and maximum probabil-
ity. Five machine learning classifiers were used in this study,
which included k-NN, SVM, RF, XGBoost, and LightGBM,
which were used to classify breast cancer. The performance
of ML was measured using four metrics, including accuracy,
precision, recall, and F-score. Each metric’s detail and math-
ematical expression are provided below: Accuracy is defined
as the ratio of correctly classified samples to total samples
[76]. Its mathematical expression is shown below.

Accuracy = TP + TF
TP + TF + FP + FN

: ð6Þ

Precision can be defined as the ratio between true posi-
tive (TP) and the total of true positive (TP) and false positive

(FP) [76]. Its mathematical expression is shown below.

Precision =
TP

TP + FP
: ð7Þ

Recall can be defined as the ratio between true positive
(TP) and the total of true positive (TP) and false negative
(FN) [76]. Its mathematical expression is shown below.

Recall =
TP

TP + FN
: ð8Þ

The F1-score is defined as the harmonic mean between
precision and sensitivity [76]. Its mathematical expression
is given below:

F1 − score =
2 × Precision × Recall
Precision + Recall

=
2 × TP

2 × TP + FP + FN
:

ð9Þ

6. Experimental Results and Discussion

This section discusses experiment results, the importance of
segmentation in practical solutions, and potential futures.

6.1. Results. This paper proposed a CAD approach that
would help radiologists classify and detect breast cancer
based on ultrasound images, whether they are benign or
malignant lesions. Detecting whether breast lesions are
benign or malignant with high accuracy and a low false rate
is a significant step for breast cancer. The performance of the
developed CAD was evaluated using accuracy, recall, preci-
sion, and F1-score. The features were ranked, and we
selected only 13 out of 185 features. The feature selection
is based on the embedded method. The feature selection is
based on the embedded method. This method is used to
combine the qualities of the filter and wrapper methods
[77]. The embedded method belongs to decision tree algo-
rithms that have their own built-in feature selection
methods. According to Table 2, the performances of five
classifiers were compared: k-NN, SVM, random, XGBoost,
and LightGBM were used to classify the images. The region
under the curve (ROC) of the proposed method is depicted
in Figure 4. The LightGBM outperformed the other four
classifiers as the accuracy, precision, recall, and F1-score
which were noted to be 99.86%, 100.0%, 99.60%, and
99.80%, respectively. Because k-NN and SVM are simple
models that are ineffective for high-dimensional datasets,
they are underfitting.

6.2. Discussion. Breast cancer patients expect accurate
results. Radiologists sometimes give inaccurate results when
predicting that a patient has cancer when the patient may
not actually have cancer. This scenario is possible due to
the large number of ultrasound images generated each day
and the limited number of radiologists who analyze them.
This scenario automatically has implications for patients, if
radiologists recommend that the patient has no cancer, while
in the actual sense she has cancer. This will lead to
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unnecessary high costs in the future and sometimes death if
the cancer is detected at a late stage. On the other hand, if
radiologists recommend that a patient has breast cancer
when, in reality, she does not have breast cancer, the patient
might incur unnecessary costs as well as painful treatments
due to the biopsy and stress.

6.3. The Importance of Segmentation in Practical Solutions.
The segmentation method is applied in computer vision
for the detection and identification of abnormalities in med-
ical images [78]. Physicians can use the segmented area to
assess tissue volume, diagnose diseases, locate pathology,
examine anatomical structures, and plan for treatment.
The segment part will help physicians draw conclusions
about whether the segment part is normal or abnormal
[79]. The segmentation is important because it helps physi-
cians detect abnormalities and also diagnose diseases.

6.4. Potential Future. The proposed paper is based on classi-
cal methods for breast cancer classification. However, in our
future work, we plan to employ deep learning methods for
breast cancer. Deep learning methods need more data, so
more data will be collected. In addition, a comparison
between the swarm intelligence optimization algorithm and
the BO-TPE optimization algorithm will be conducted.

7. Conclusion

The dataset used in this study includes 185 features extracted
from 912 ultrasound images belonging to two classes of
malignant and benign tumors. We saved the features as tab-
ular data using the CSV extension. In addition, we intro-
duced a CAD framework to help radiologists classify breast
ultrasound images into benign and malignant tumors. Fur-
thermore, we evaluated the proposed framework’s perfor-
mance using five (5) classifiers: k-NN, SVM, RF, XGBoost,
and LightGBM. The experiment results revealed Bayesian
optimization with a tree-structured Parzen estimator based
on ML classifiers for 10-fold cross-validation; the LightGBM
classifier outperformed the other four classifiers in accuracy,
precision, recall, and F1-score, which were 99.86%, 100.00%,
99.60%, and 99.80%, respectively. Furthermore, we discov-
ered that 86% of the work we reviewed relied on default
hyperparameter values. The contribution of our research is
as follows: the algorithm for outlier detection was developed,
followed by feature extraction using the pyradiomics tool-
box. Machine learning and hyperparameter optimization
were discussed and summarized. The most effective classifier
for clinical application was identified and recommended.
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