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Abstract: Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle
and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized
in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure
its segregation equally between the two daughter cells. Deregulation of any of the stages of the
cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases,
such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This
review presents the current state of knowledge about the characteristics of cyclin-dependent kinases
as potential pharmacological targets.
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1. Introduction

Hartwell L.H., in his work on cell division in the baker’s yeast Saccharomyces cerevisiae,
discovered a great number of genes that control the cell cycle. One of these genes called
“START” (later known as CDK1) played a crucial role in regulating the first step of each cell
cycle. Next, Nurse P. M. identified and characterized cyclin-dependent kinases (CDKs) and
showed that CDK drives the cell cycle by phosphorylating other proteins. In turn, Hunt R.
T. discovered the presence of cyclin molecules during the cell cycle, the proteins regulating
CDKs [1].

2. Cyclin-Dependent Kinases (CDKs)

There are 20 members of CDK family known to this day regulating the cell cycle,
transcription and splicing. The kinases are organized in a pathway to ensure that, during
cell division, each cell accurately replicates its DNA, and ensures its segregation equally
between the two daughter cells [2]. Deregulation of any of the stages of the cell cycle or
transcription lead to apoptosis, but if uncorrected, can result in a series of diseases, such as
cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke [3–5].
They also play a key role in the spread of some viral infections, including HIV [6].

The CDK activity is regulated by their association with partner subunits known
as cyclins, and without their corresponding cyclin subunit, the enzyme is 40,000 fold
less active than in the non-covalent dimer complex; thus, it is essential for functional
response [7–11]. Twenty nine cyclins sharing the cyclin box belong to group of proteins that
are present in cells during the cell proliferation [12]. Their name derives from the fact that
their concentration varies cyclically during the cell cycle; their synthesis and degradation
depends on the different stages of the mitotic cell division cycle [13].

Cyclins form a dimer complex with corresponding cyclin-dependent kinases, by
interacting with a highly conserved region of 16 amino acid residues, named PSTAIRE
motif [14], facilitating large conformational rearrangement of the positions of residues
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that bind to the ATP phosphate groups. Upon binding to cyclin, the small L12 helix
situated at the primary sequence of the T-loop, is altered to become a beta strand, leading
to reorientation of the active site and T-loop [15]. Immediately after dissociation of the
cyclin-CDK complex, the enzymatic activity of CDK is dramatically reduced, probably due
to an alteration in an enzyme’s structure that blocks the active site from any interaction
with its metabolites and because of the low concentration of the cyclin [16]. The proteins
are inactivated by ubiquitin-mediated proteolysis once they have fulfilled their task.

CDKs are additionally controlled by a series of kinases and phosphatases other than
cyclins. The best example of such positive regulator is CDK activating kinase (CAK) which
is known to phosphorylate threonine residues at the CDK active sites. This phenomenon
was first identified during a work on Schizosaccharomyces pombe, where phosphorylation
of Thr-167 residue is essential for activity of cell division cycle 2 (CDC2), homologous to
CDK1 in the human genome [17]. On the other hand, phosphorylation of the Thr-14 and
Tyr-15 residues in human CDK1 exhibits inhibitory effects until dephosphorylation by the
dual specificity phosphatase CDC25, which initiates CDK activity [18]. Negative regulatory
proteins, also known as endogenous CDK inhibitors (CKIs), react directly with CDKs by
blocking the cell cycle progression and transcription.

2.1. Cyclin-Dependent Kinase 1 (CDK1)

Cyclin-dependent kinase 1 (CDK1), formerly known as Cdc2, interacts with cyclin
B1 to facilitate the transition from the G2 phase into mitosis [19]. This enzyme is further
controlled by checkpoint kinases, such as Wee1-like protein kinase (WEE1) and checkpoint
kinase 1 (CHK1), which ensure that incompletely replicated or damaged DNA is not
distributed to daughter cells [20]. CDK1/cycB1 activity starts to increase in late G2, and
continues through prometaphase until the spindle assembly checkpoint is satisfied and
the cell enters the metaphase. This complex is activated through the CDC25-mediated
dephosphorylation of inhibitory phosphorylation on Thr14 and Tyr15 [21].

2.2. Cyclin-Dependent Kinase 2 (CDK2)

In dividing cells, cyclin-dependent kinase 2 (CDK2) is a major cell cycle component
that controls the G1/S and S/G2 transitions. CDK2/CycE must phosphorylate Rb to
induce S phase entry (mouse embryonic fibroblasts–MEFs) [22]. CDK2 has also been shown
to regulate the phosphorylation of several transcription factors, inter alia, Myb-related
protein B (B-MYB) (mouse, human cells) [23], Myc proto-oncogene (MYC) (U-937 cells) [24],
mothers against DPP homolog 3 (SMAD family member 3) (MEFs; epithelial cell lines) [25],
inhibitor of DNA binding 2 (ID2) (normal human diploid fibroblasts–TIG-3) [26], forkhead
box proteins O1 (FOXO1) [27], and M1 (FOXM1) (human osteosarcoma U2OS cells) [28]
and nuclear factor Y (NF-Y) (human HEK293, EJ, and HCT116 cells) [29], which work
together to drive the cell cycle through different transition phases. In addition, CDK2
plays key roles in controlling cell differentiation (primary blasts from the human bone
marrow–Leu-1-19) [30], proliferation (yeast) [31], apoptosis (podocytes, human) [32], and
adaptive immune response (T cells, mice) [33].

2.3. Cyclin-Dependent Kinases 4 and 6 (CDK4/6)

Direct inhibition of the cyclin D-CDK4/6 dimer activity prevents cell cycle progression
from the G1 to the S phase of the cell cycle. This tightly controlled restriction point is
regulated by CDK4/6 complex, which is further controlled by the regulatory subunits
D-type cyclins (D1, D2 and D3) and CDK inhibitor p16INK4a ([34]. Activated CDK4/6
complexes are responsible for the phosphorylation of retinoblastoma gene product (Rb)
by functionally inactivating it [22]. Phosphorylation of Rb allows dissociation of the
transcription factor E2F from the Rb/E2F complexes [35], thus facilitating the subsequent
transcription of E2F target genes, such as those for the E-type cyclins (cyclins E1 and E2).
By interacting with CDK2, cyclin E hyperphosphorylates RB, further increasing the activity
of the E2F target genes, which are needed for initiation of DNA synthesis and entry into
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the S phase, thereby allowing the cell to proceed through the cell cycle and divide (C33A
cells) [36].

2.4. Cyclin-Dependent Kinase 5 (CDK5)

Despite having high amino acid sequence homology with other CDKs, CDK5 is dif-
ferent as it has been identified to activate various functions in the nervous system, by
binding to p35 and p39 neuronal proteins, and their proteolytic cleavage products, p25
and p29, respectively (central nervous system cells) [37]. It has been reported that CDK5 is
not activated upon binding with a cyclin and does not require T-loop phosphorylation for
activation (bitransgenic 11A or 1A mice). The CDK5 gene is located on chromosome 7q36,
and its expression is mediated by Fos and CREB transcription factors in the MEK/ERK
signaling pathway, as well as by δFosB (human neuroblastoma SK-N-BE(2)C cells) [38,39].
CDK5 plays a key role in the central nervous system, where it regulates the migration of
neurons, the production of neurite connections, as well as their care. CDK5 is also respon-
sible for neuronal migration, synaptic plasticity, neurite growth, as well as maintaining
the entire neurogenesis process in adult life (HEK293T cells) [40,41]. In addition to the
nervous system, it also plays important roles in cell division, cell differentiation, gene
expression, angiogenesis [19,42,43]. Moreover, CDK5 activity reduces secretion of insulin
from pancreatic β-cells in response to a rise in the plasma glucose concentration, which
was demonstrated using pancreatic β-cells deficient in p35, an activator of CDK5 [44]. The
inhibitory phosphorylation by CDK5 on the L-type voltage-dependent Ca2+ channel (L-
VDCC) at Ser783 prevents the binding of L-VDCC to SNARE proteins, thereby preventing
exocytosis of insulin from the cell (pancreatic β-cells) (Figure 1) [45].

Figure 1. Simplified schematic of the regulation of cyclin-dependent kinase (CDK)5 activity. Involve-
ment of CDK5 in various biological processes.

Knowing that CDK5 acts as a major factor during embryonic development of the
central nervous system and maintains the entire neurogenesis process during adulthood,
the aberrant CDK5 activity result in severe disruptions in synaptic homeostasis. Under
conditions of environmental stress CDK5 signaling acts as a compensatory mechanism
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to limit the damage caused by these stressors. However, the irreversible damage leads to
cleavage of endogenous p35 to p25 and accumulation of the CDK5/p25 complex. This
prolonged activation of CDK5/p25 is associated with neurodegeneration, DNA damage,
and cell death [46]. Moreover, studies on p35 knockout mice confirmed a key role of p35 in
proper neuronal migration. Mice without p35 survive and are fertile, but display severe
cortical lamination defects and are prone to develop fatal seizures [47].

It has been proven that depending on the conditions, CDK5 can either promote or
prevent neurite regeneration. CDK5 phosphorylates collapsin response mediator protein 2
(CRMP-2) at Ser-27, thus supporting axonal growth (SH-SY5Y and HEK293T cells) [48,49].
CDK5 may also enable axonal growth by regulating the Axin protein (axis inhibitor).
The phosphorylated Axin protein, in turn, stabilizes the microtubular cytoskeleton by
inhibiting GSK3β activity (HEK 293T cells) [50]. On the other hand, CDK5 may also
interact with the α2-chimerin protein. The complex CDK5-p35 and α2-chimerin enables
phosphorylation of CRMP-2 on Ser522, as well as for phosphorylation of CRMP-2 on T514
by GSK3β, which results in inactivation of CRMP-2, destabilization of the microtubular
cytoskeleton and inhibition of the growth process [51]. Phosphorylation of p35 on T138 by
CDK5 leads to growth inhibition by preventing microtubule polymerization. However, the
phosphorylation process on T138 was observed only in utero (HEK 293T cells) [52].

While CDK5 has been well characterized for its functions in the central nervous system,
little was known for its role in the cell cycle. Most recent data identify the retinoblastoma
protein (Rb) as a crucial CDK5 downstream target. It has been found that CDK5 could
regulate the activation state of the tumor suppressor Rb, thereby implicating CDK5 in the
regulation of cell cycle progression (MEFs cells) [53].

2.5. Cyclin-Dependent Kinase 7 (CDK7)

During the cell cycle CDK7 actively phosphorylates CDK2/cyclin E complex, in order
for the cell to cross into the G1 state and enter to S phase. On completion of S phase it
helps to activate CDK1/cyclin B complex, also called mitosis promoting factor allowing
mitotic entry. Formation of a stable dimer of CDK7/cyclin H requires phosphorylation on
a conserved threonine (Thr170) in the activation loop of CDK7 and is essential for activity
(human cervical tumor cell line–HeLa; human lung small cell carcinoma cell line–H1299;
insect cells–SF9) [54–56]. Assembly and activity are augmented by a third protein, the
RING finger protein MAT1 (ménage-a-trois 1). This trimer, comprising CDK7, cyclin H,
and MAT1, forms CDK activating kinase (CAK) a part of the general transcription factor
TFIIH (HeLa cells) [57–61]. In this complex CDK7 phosphorylates RNAPII large subunit
C-terminal domain (CTD) (eukaryotic cells) [62–66]. TFIIH consists of the holoenzyme
IIH, which contains at least six proteins (helicases XPB and XPD necessary for correct
transcription initiation and nucleotide excision repair, p62, p55, p44, p34) (yeast) [67]. CDK7
most likely phosphorylates Ser5 in the heptad sequence of RNAP-II. Phosphorylation of
the CTD facilitates promoter clearance, initiation of transcription ([68], and recognition
by RNA processing enzymes. Levels of CDK7 in cells remain constant and are low [69]
and CDK7 is concentrated predominantly in the nucleus (human cells) [70]. Unlike most
other CDKs, CDK7 has an additional phosphorylation site within the T-loop (Ser164). It
is reported that phosphorylation of this site favors involvement of CDK7 in transcription
but is not essential for the regulation of the cell cycle [56,71]. The in vivo activating kinase
for human CDK7 phosphorylation is still unknown, but in vitro however active phospho-
CDK2/cyclin A can phosphorylate CDK7 [72]. CDK7 also plays an important role in the
DNA repair process [73].

2.6. Cyclin-Dependent Kinases 8 and 19 (CDK8, CDK19)

CDK8, and its paralog CDK19, together with their regulatory subunits cyclin C,
MED12, and MED13 are components of the Mediator complex, which acts as a negative
regulator of transcription by directly and indirectly influencing the biochemical activity
of RNAP-II and GTFs. CDK8 or CDK19 form a 4-subunit subcomplex with cyclin C,
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MED12 and MED13 (also known as the kinase-module) that associates in a dynamic
fashion with the rest of Mediator complex (HCT116 and HEK293FTcells) [74]. The Mediator
phosphorylates the RNAP-II CTD, before RNAP-II is recruited to promoters, causing a
disruption in Mediator–RNAP-II interactions as only hypophosphorylated form of RNAP-
II can be recruited to promoters (human testis; yeast) [75–77]. Moreover, CDK8 dependent
phosphorylation of cyclin H at Ser5 and Ser304 residues (a subunit of TFIIH) inhibits
TFIIH disrupting transcription initiation (yeast) [78]. Therefore, the interaction of the
kinase module with Mediator appears to act as a switch that regulates Mediator–Pol II
association [79–81]. This would suggest that global gene expression patterns may rely upon
precise regulation of the kinase module-Mediator association, but, in fact, this association
is regulated by the MED13 subunit [80,81], and knockdown of CDK8 or CDK19 in human
cells causes relatively modest effects on gene expression [74,82,83].

Several Mediator subunit aberrations have been linked to the pathogenesis of diverse
disorders including cancer (human cells) [84–86]. These abnormalities can be either chro-
mosomal [87,88] or gene mutations [89–91]. Numerous studies have revealed that CDK8
functions as a key oncogenic driver in several signaling pathways such as Wnt/Catenin
signaling (human cells) [91] and TGFβ/SMAD-driven metastases [92]. By now, CDK8
has been found to be implicated in a wide spectrum of cancers, such as breast (human
cells) [93], ovarian, and gastric cancer, as well as acute myeloid leukemia [94]. Although
CDK19 is less well studied than CDK8, current evidence provided that it is involved in
colorectal, breast, and ovarian cancer [95], as well as in fibro- and osteosarcoma (human
cells) [96]. Therefore identification and optimization of small molecule inhibitors altering
either CDK8 or CDK19 have emerged as promising therapeutic strategies with promising
initial results [97–99].

2.7. Cyclin-Dependent Kinase 9 (CDK9)

The cyclin-dependent protein kinase 9 (CDK9) has been found to regulate the RNAPII
transcription elongation. Quantitative Real-time PCR analysis (RT-PCR) of total cellular
RNA from cell extracts resulted in identification of two different isoforms of CDK9: 42 kDa
protein CDK942 and 55 kDa protein CDK955. The N-terminal regions of both proteins
vary greatly in length, with CDK942 consisting of 372 amino acids and CDK955 extended
at N terminal domain by 117 amino acids providing additional proline-rich and glycine-
rich regions and is expressed from a TATA-box containing promoter. The ratio between
CDK942 and CDK955 expression depends on cell type and apparently is governed in a
tissue dependent manner. Therefore, the two CDK9 isoproteins have been found to localize
to the nucleus (human cells) [100]. CDK9 is activated by interacting with T-type cyclins,
T1, T2a, T2b, and closely related cyclin K (yeast) [101]. Like other kinases, CDK9 must be
phosphorylated at its activation segment for activity. However it is not phosphorylated
by the CAK (CDK7/CycH/MAT1), instead the phosphorylation on Thr186 takes place
by autophosphorylation. Phosphorylation on Thr186 is also important for binding of 7SK
RNA to CDK9/cyclin T (Escherichia coli cells) [102]. CDK9 and its cyclin T partners form the
core of positive transcription elongation factor b (P-TEF-b) [103]. The activity of P-TEFb has
shown its dependence on its negative regulatory factors, like the small nuclear RNA 7SK
(snRNA) and the hexamethylene bisacetamide-inducible proteins (HEXIM1 or HEXIM2).
Within the cell two forms of P-TEFb exist: a smaller kinase-active form, consisting of
complex of CDK9 bound to its cyclins T or K and a larger, inactive form in complex
with HEXIM and 7SK, which is thought to act as a reservoir for the smaller form [104].
External stimuli, such as stress inducing or hypertrophic signals lead to the dissociation of
P-TEFb releasing it from the inhibitory complex [105]. Recent studies show that besides
the 7SK-HEXIM1–P-TEFb complex, another complex in which a major fraction of nuclear
P-TEFb resides is the BRD4–P-TEFb complex (HeLaS3 cells) [106,107]. The BRD4-bound
P–TEFb is transcriptionally active and recruited to transcriptional templates possibly due
to the ability of BRD4, a co-activator bromodomain protein 4, to bind acetylated histones
and the mediator (HeLa cells) [107]. BRD4 preferentially recognizes specific patterns of
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acetyl histone 3 (H3) and histone 4 (H4) (NIH3T3 cells) [108]. This interaction is significant
in stimulating P-TEFb for transcriptional activity through phosphorylation of RNAP-II.
Other important transcription factors, such as nuclear factor kappa B (NF-κB), myogenic
regulatory factor (MyoD) are recruited to the transcription initiation complex.

P-TEFb governs the RNA transcription elongation by phosphorylation at Ser-2 of CTD
RNAP-II [6]. Formation of productive transcription complexes after promoter escape by
RNAP-II is also controlled by negative factors. The main negative elongation factor (NELF)
consists of four polypeptides. However, NELF needs for activity the two-polypeptide 5,6-
dichloro-1-β-D-ribo-benzimidazole-sensitivity inducing factor (DSIF). DSIF/NELF interact
with RNAP-II and the RNA transcript respectively making the production of truncated
transcripts by polymerase. This promoter-proximal pause stimulates the whole process by
providing a checkpoint prior to transcription elongation (Escherichia coli cells) [109]. Once
P-TEFb phosphorylates the RNAP-II CTD at Ser-2, the Spt5 (p160) subunit of DSIF, and the
RD subunit of NELF the repressor pausing is reversed, resuming transcription machinery
(HeLa cells) [110,111]. The process of transcription that occurs in almost every living cell
at some stage is dependent upon CDK9. The essential knowledge of the functional and
structural biology of CDK9 allows to evaluate how and why the suppression of this enzyme
can be beneficial in the fight against cancer, AIDS, cardiac hypertrophy, and perhaps even
inflammation [6].

2.8. Cyclin-Dependent Kinase 10 (CDK10)

CDK10, first mentioned in 1994 [112], received little interest until it was identified as
a critical determinant of tamoxifen resistance to the treatment of breast cancer, combined
with endocrine therapy. Additionally, no cyclin partner has been identified up until recently
to provide a more detailed analysis of CDK10 functions (MCF7 cells) [113]. Early research
on CDK10 had demonstrated that this enzyme exerts a positive control on cell division
with its function limited to the G2 or M phase of the cell cycle (HeLa S3 cells) [114]. More
recent studies in various human cell lines resulted in: rapid inhibition of proliferation in
HeLa cells, G2 phase accumulation in HCT116 colon carcinoma cells or the retinal pigment
epithelial (RPE) cell cycle arrest at the G2/M phase, as well a mild, caspase-3/7 induced,
decrease in cell viability in MCF7 cells (derived from a ERα-positive breast tumor) [115].

CDK10 kinase activity is regulated by forming a heterodimer with cyclin M, the
product of FAM58A, the gene encoding cyclin M [116]. The yeast two-hybrid (Y2H) assay,
the most commonly used assay for detecting binary protein-protein interactions, was used
to identify whether CDK10 can also regulate transcription. CDK10/cyclin M complex
has been found to positively control the N-terminus of the ETS2 transcription factor
degradation by phosphorylating it [117]. In addition, CDK10/cyclin M was demonstrated
to phosphorylate the protein kinase N2 (PKN2) to repress assembly and elongation of
primary cilia, as well as it plays a key role in regulation of the actin network organization,
which affects cilia growth (hTERT-RPE1 cells) [118]. Moreover, one single nucleotide
polymorphism (SNP) located in CDK10 was found to be associated with familial short
stature (FSS) in Han Chinese in Taiwan, which was confirmed in a genome-wide association
studies (GWAS) [119].

2.9. Cyclin-Dependent Kinase 11 (CDK11)

Recently CDK11, formerly known as PITSLRE, in association with cyclin L has been
found to participate in regulating RNA processing and transcription [12]. There are
three protein isoforms of CDK11: CDK11p110, CDK11p58, and CDK11p46. The CDK11p110

plays an important role in the regulation of transcriptional activity as in vitro studies
revealed that p110 interacts with hypo- and hyperphosphorylated forms of RNAP-II
and with general transcription factors TFIIF and TFIIS, suggesting that reduction in its
activity can block transcriptional activity, whereas readdition of CDK11p110 re-established
transcriptional activity to some extent. Cdk11p110 is also known to modulate RNA splicing
and neuronal signaling. The CDK11p58 protein isoform is involved in the regulation of
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mitosis and Cdk11p46 is linked to the initiation of apoptosis (CEM-C7 cells) [120–122]. Once
the transcriptional cycle ends, with mature mRNA strands transcribed, dephosphorylation
of the hyperphosphorylated RNAP-II takes place. This process is mediated by a specific
TFIIF-associated CTD protein phosphatase, FCP1. After transcription termination, RNAP-II
is recycled to carry out another round of transcription (Escherichia coli; recombinant human
FCP1) [123–125].

2.10. Cyclin-Dependent Kinases 12 and 13 (CDK12, CDK13)

Initial studies showed that CDK12, in complex with cyclin K, is a transcriptional CDK
which mediate a critical step in transition from transcriptional initiation to elongation by
phosphorylating RNA polymerase II at Ser2 (HEK293A and HeLa cells) [126,127]. Later
analysis found that CDK12 is characterized by the specific upregulation of genes in response
to DNA damage, oxidative stress, and heat shock, as well as regulating mRNA splicing,
alternative splicing (differential splicing), 3′ end processing, pre-replication complex as-
sembly, and genomic stability during embryonic development. CDK12 is ubiquitously
expressed in a number of human tissues and was mainly localized to the nucleus. CDK12
has been implicated in cancer pathology, such as cell invasion, suggesting that aberrant
CDK12 expression may have oncogenic properties. Thus, this kinase may become a par-
ticularly interesting therapeutic target in prostate [128], esophageal [129], gastric [130],
breast [131], endometrial, bladder, uterine, and ovarian [132], pancreatic [133], non-small
cell lung cancer [134], lung adenocarcinoma [135], and follicular lymphoma [136]. An
increasing number of studies point to the role of CDK12, in cell function and cancer, as
an effective strategy to inhibit tumor growth, and its potential clinical use as a biomarker.
Although the biological role of CDK13 is not known, its sequence similarity with CDK12
predicts some degree of overlap between these kinases. The CDK12 gene is located on
chromosome 7q36, and its closely related CDK13, which is located on 7p14, have been
reported to share extensive sequence similarity of 43% with a largely conserved kinase
domain (KD) (human cells) [137].

Until recently, CDK9 was considered to be the only elongation-associated Ser2 kinase
in metazoans [138]. However, experimental studies from the last 10 years have demon-
strated that the CDK12/cyclin K complex also promotes phosphorylation of the CTD
of RNA polymerase II at Ser2 in vitro, and depletion of CDK12 resulted in a dramatic
reduction in Ser2 phosphorylation in human cells, as opposed to CDK13 depletion, which
did not produce any observable change in the levels of phosphorylated Ser2 (yeast) [139].
Depletion of the CDK12/CycK complex results in the downregulation of only a small
subset of genes (predominantly long and complex ones) and does not affect global tran-
scription rates [140]. In vitro, knockdown of CDK12 had sensitized cells to DNA-damaging
agents. Therefore, these data suggest the involvement of CDK12/CycK in response to
DNA damage repair and DNA damage, stress, and heat shock as a master regulator.

Arginine/serine (RS)-rich domains of CDK12 were found to be the critical compo-
nents of proteins involved in nuclear pre-mRNA processing. The remaining splicing
factors are supposedly stored in subnuclear structures known as nuclear speckles (HeLa
cells) [141]. Nuclear pre-mRNA splicing is catalyzed by the spliceosome, a large and
dynamic complex, which consists of several accessory proteins and five small nuclear
ribonucleoproteins (snRNPs) [142]. Further analysis indicated that CDK12 directly phos-
phorylates pre-mRNA processing factors (human neuroblastoma (NB) cells: Kelly, IMR-32,
IMR-5, LAN-1, LAN-5, NGP, SK-N-AS, SH-SY5Y, CHLA-20, CHLA-15, and SK-N-FI) [143].
Nearly all multi-exon human genes are alternatively spliced (human cells) [144], thus
aberrant expression may cause splicing defects, which can lead to almost 15% of all genetic
diseases (human cells) [145]. In addition, CDK12 was found to indirectly regulate RNA
processing by regulating carboxy terminal domain (CTD) of RNA Pol II at Ser2, which
governs transcription and mRNA 3′ end processing by interacting with polyadenylation
and termination machinery at the 3′ ends of mRNA (SK-BR-3 and MDA-MB-231 cells) [146].
Furthermore, phosphorylation of cyclin E1 at Ser366 mediated by the CDK12/cyclin K
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complex is necessary for mammalian cell proliferation, which blocks interaction with its
binding partner, CDK2, during pre-replicative complex (pre-RC) assembly restricting these
events to early G1 phase when CDK activity is low (HCT116 cells) [147].

3. Transcription CDKs

The main function of transcription is to allow cells to copy their genomic DNA into
messenger RNA (mRNA), which subsequently is translated into proteins. This process
is catalyzed by three distinct classes of eukaryotic RNA polymerases: I, II, and III, each
composed of two large and 12–15 smaller subunits [148]. However RNA polymerase II is
the most studied type of RNA polymerase. It catalyzes the transcription of DNA by synthe-
sizing precursors of messenger RNA and most small nuclear RNAs and microRNAs [149].
RNA polymerase I is responsible for transcription of ribosomal RNA [150], whereas RNA
polymerase III synthesizes transfer RNAs (tRNAs) and some small nuclear RNAs found in
the nucleus and cytosol [151].

The mRNA transcription is essential for mammalian cell growth and required for
the transcriptional initiation, elongation, processing, and termination sequentially. All
these aforementioned steps are coordinated by the RNA polymerase II (RNAP-II). The
largest subunit RPB-1 of RNAP-II contains at its carboxyl terminus heptapeptide repeat
(Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7). Each cycle of transcription requires the reversible
phosphorylation of this domain. Modifications of CTD phosphorylation by CDKs 7, 8, 9,
11, and phosphatases play a major role in regulation of the transcription [152–154]. Recent
studies proved that RNAP-II exist in two distinct phosphorylated states: the hypophospho-
rylated RNAP-IIA and the hyperphosphorylated RNAP-IIO having different roles [155].
RNAP-IIA is normally recruited by promoters during the assembly of a pre-initiation
complex (PIC), containing the RNAP-II catalytic core and general transcription factors
(GTFs), essentially TFIIB, TFIID, TFIIE, TFIIF, and TFIIH [156–158] whereas RNAP-IIo is
engaged in the elongation complex [159]. Upon binding of RNAP-II to the promoter the
CTD is phosphorylated by CDKs 7, 8, 9, and 11 into the RNAP-IIO (Figure 2), with CDK7
being responsible for transcription initiation. After completion of a nascent transcript,
RNAP IIA must be regenerated by CTD phosphatase, an enzyme capable of selectively
dephosphorylating the CTD [160]. Moreover, CDK8 is necessary for transcriptional regu-
lation before transcription initiation, CDK7 is involved in transcription initiation, CDK9
being responsible for modulating transcription elongation and CDK11 being involved
in regulating RNA processing and splicing. Most recent studies show that CDK12 and
CDK13, in complex with cyclin K, mediate the transition from transcriptional initiation to
elongation by phosphorylating RNA polymerase II.
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Figure 2. Regulation of transcription initiation and elongation by CDKs. The Mediator phosphorylates RNAP-II.
CDK7/cyclin H phosphorylate RNAP-II CTD at Ser 5, which allows promoter clearance by RNAP-II. Phosphorylation of
CTD at Ser 2 by CDK9, CDK12, and CDK13 originates in transcriptional elongation. CDK11 regulates the transcriptional
activity and the mRNA splicing.

4. Cell Cycle CDKs

Every cell must replicate all of its material and divide into two daughter cells [7,161].
The division of a eukaryotic cell is composed of four steps: Gap phase-1 (G1), DNA
synthesis (S), Gap phase-2 (G2), and mitosis (M). The cell division and mitosis occur during
the relatively short M phase. This is followed by G1 phase, the period of cell growth
to allow the cell to prepare itself for the DNA synthesis. During the G2 phase, the cell
prepares for mitosis. The circle closes with the relatively short M phase, where mitosis and
cell division occur. Next, new cells enter the quiescent G0 stage, meaning cells lose the
ability to further divide for some time. This complex series of events requires appropriate
regulation. Thus, there are three main checkpoints that occur during the normal mitotic
cycle [161]. Three protein families are required for primary regulation of these restriction
points: cyclins, their partner cyclin-dependent kinases (CDKs), and cyclin-dependent
kinase inhibitors (CKIs) [162]. The enzymes alter the biological functions of regulatory
proteins, so their activity must be regulated by phosphorylation, the presence of activating
cyclins and interactions with inhibitory proteins, such as CKIs.

The first checkpoint happens at the end of the cell cycle’s G1 phase, just before entry
into S phase, when the cell undergoes cell division in place of an alternative developmental
process, such as the division delay, or entrance to a G0 resting stage. During the G1 check-
point the cell cycle is arrested if environmental conditions make cell division impossible or
if the cell passes into G0 for an extended period. It is controlled by cyclin-dependent kinase
inhibitor p16, a member of INK4 CDK inhibitor family as well as another members of the
INK4 family including p15, p18 and p19 by influencing the activity of CDK4/6 [11]. The
CKI p16 specifically inhibits the CDK4/6 and ensures that it can no longer interact with
cyclin D1 to continue the cell cycle progression. This allows the cell to undergo cell cycle
arrest and repair defected DNA. These inhibitors are however expressed continuously
throughout the cell cycle, providing a threshold level of suppression necessary to overcome.
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Secondly, transition of the G2/M boundary, during which any inaccurately duplicated
and damaged cells are eliminated. This restriction point is regulated by p53 and is activated
in response to DNA damage. Active p53 causes direct interaction of inhibitor proteins, such
as p21, with CDK1/cyclin B to arrest passage of cells from G2 into mitosis [11]. Finally, the
spindle assembly checkpoint during mitosis that controls precise chromosome alignment
and retraction into the two identical daughter cells [11].

CDKs have been found to play a very important role in regulation throughout the
cell cycle (Figure 3). CDK3/cyclin C helps the cells to cross the G0 resting phase by
phosphorylation of pRb [163]. In early G1 phase extracellular signals (e.g., growth factors,
mitogenic stimuli) cause the release of D-type cyclins (D1, D2, D3) in association with
CDK4 and CDK6 initiate further phosphorylation of the retinoblastoma protein family,
including pRb, p107, and p130 [10]. This phosphorylation causes the release of E2F
transcription factor, which in turn is able to increase transcription of E2F responsive
genes required for cell-cycle progression [164,165]. Among these early E2F responsive
genes are those of cyclins A and E [166,167]. In the late G1 phase, CDK2 in association
with cyclin E is activated and completes the phosphorylation of pRb, which causes its
inactivation. This leads to cross the restriction point at the G1/S boundary and to enter
S phase. During the S phase, cyclin E is replaced by cyclin A, which by complexing with
CDK2 phosphorylate proteins responsible for DNA replication [168,169]. At the cell cycle’s
G2/M transition cyclin A in association with CDK1 allows the initiation of mitosis [170–
173]. Towards the end of the cycle, cyclin B binds to CDK1 actively participating in and
completing mitosis by a series of phosphorylation events [174,175]. Cell cycle exit starts
with cyclin D1 transcription cancelled, this causes destruction of the CDK4/cyclin D1
complex. Next, CDK2/cyclin E function is inhibited and on G1 cyclin-dependent kinases
inhibition, proteins that belong to the retinoblastoma protein family are turned back to
their hypophosphorylated active state and cells exit the cycle [176].

Figure 3. The role of CDKs at different stages of the cell cycle.
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All activities and functions of CDK/cyclin complexes are further regulated by two
families of CDK inhibitors: the INK4 family (p16, p15, p18, p19), which exclusively bind to
and inhibit CDK4 and CDK6, the partner kinases of the D-type cyclins and the Cip/Kip
family (p21, p27, p57), which inhibit CDK2/cyclin E, CDK2/cyclin A, CDK1/cyclin A, and
CDK1/cyclin B complexes [177,178].

5. Cell Cycle and Tumor Development

Any living cell can acquire mutations, especially during its division, which can lead
to pathological irregularities. The resultant alterations originate in accumulation of errors
in transcriptional regulation and protein expression, influencing the cell cycle machinery.
Furthermore, if a mutation affects the error-correcting system within the cell, it causes
the uncontrolled production of more abnormal cells, which migrate and disrupt healthy
cells finally resulting in tumor [11,178]. From many repressors known to be altered during
carcinogenesis, two of them seem to be of great importance, they are retinoblastoma (Rb)
and p53 genes.

For each cell to enter S phase, CDKs phosphorylate and inactivate Rb to allow the cell
cycle progression. This protein contains 16 sites for potential phosphorylation by cyclin-
dependent kinases, such as CDK4/6 and CDK2. Rb remains phosphorylated throughout S,
G2, and M phases [166]. p53 protects the genome from any mutagens and if necessary it
blocks cell proliferation to prevent abnormalities being inherited. It promotes either DNA
repair or cell death through apoptosis [179].

In response to damaged DNA p53 can cause cell cycle arrest. In this case, ataxia-
telangiectasia mutated kinase (ATM) phosphorylates p53, its negative regulator mouse
double minute 2 homolog, also known as E3 ubiquitin-protein ligase (MDM2), as
well as, checkpoint kinase 2 (CHK2) and murine double minute X (MDMX, MDM4),
leading to activation of the G1/S checkpoint. The transcriptionally active form of p53
triggers the expression of p21, which binds to and inhibits the Cdk2/cycE complex to
prevent downstream protein phosphorylation required for passage into S phase. P53 is
also known to control the G2/M checkpoint, by interacting with CDK1/cycB to arrest
passage of cells from G2 into mitosis [180]. If the DNA damage is irreversible p53
initiate apoptotic cell death with an involvement of an integral membrane protein B-cell
lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (BAX), by inducing mitochondrial
caspase dependent apoptosis [181].

6. Role of CDKs in Cancer Development
6.1. CDK1

Deregulated CDK1 and cyclin B activities were negatively correlated in many cancer
types including breast, lung and colorectal tumors [182]. Therefore CDK1 inhibition has
been proposed to be an attractive anti-tumor strategy. Indeed, inhibition of CDK1 with
a highly selective small molecule CDK1 inhibitor RO-3306 has been shown to be more
tumor specific rather than normal cell specific [183,184]. Synergistic inhibition of CDK1
and poly (ADP-ribose) polymerase (PARP), an abundant nuclear enzyme involved in DNA
repair, was shown to prolong survival in a spontaneous mouse tumor model without
apparent normal tissue toxicity [185]. In addition, the study aimed at determining novel
dependencies in GTPase KRas (KRAS–a signal transducer protein, which when mutated
enhances tumor cell fitness) mutant cancer cells revealed that the mutant KRAS-driven
pancreatic and colon cancer cell models were found to be more sensitive to CDK1 inhibition
than KRAS wild-type cell lines in colony formation and cell survival experiments [186].

6.2. CDK2

The deregulated expression and activity of CDK2 binding partner cyclins A and E
have been associated with a variety of cancer types, including breast, colon, and prostate
carcinomas [187–190]. Overexpression of Cyclin E results in accelerated G1 progression
and chromosome instability, which correlates with poor prognosis in patients [191,192].
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However, direct inhibition of cyclin E is unlikely as it acts as a regulatory subunit rather
than as an enzyme or receptor. Thus, CDK2 as its major catalytic partner has been found
to be an attractive pharmacological target. Despite the initial setbacks that CDK2 inhi-
bition by anti-CDK2 shRNA, antisense oligonucleotides, a dominant-negative CDK2, or
overexpression of p27Kip1 failed to arrest the proliferation of colon carcinoma cells [193].
Moreover, genetic ablation of CDK2 had little effect on cellular proliferation and embryonic
development in mice [194]. Later studies on numerous human cancers, susceptible to
CDK2 inhibition, provided cause for more optimism in targeting CDK2 as a potentially
valuable target. For instance, CDK2 knockout mice remain viable without apparent abnor-
malities which suggests that CDK2 inhibitors might selectively kill cancer cells without
being toxic to normal cells [192]. Additionally, in ovary tumors, elevated CCNE1 level
is often correlated with higher CDK2 expression [195]. Deregulation of CDK2 activity is
significantly associated with the metastasis of prostate cancer [196], as well as with the
development of other cancer types, including breast cancer [197,198], KRAS-mutant lung
cancers [199], MYCN-amplified neuroblastoma [200], B-cell lymphomas [201], Glioblas-
toma multiforme (GBM) [202], hepatocellular carcinoma (HCC) [203], and acute myeloid
leukemia (AML) [30]. A clear link between melanocyte lineage transcription factor (MITF)
and CDK2 expression levels has been observed in primary melanoma specimens and
predict susceptibility to the CDK2 inhibition [204]. Furthermore, the most recent analysis
by the number of scientific groups have demonstrated very interesting data for pharmaco-
logical CDK2 inhibition through combination strategies. Synergistic interactions of CDK2
and Pl3K inhibitors resulted in apoptosis in glioma and colorectal cancer xenografts [202].
Another combination therapy using CDK2 inhibitors with bromodomain-containing pro-
tein 4 (BRD4) inhibitors in MYC amplified medulloblastoma resulted in MYC suppression
and promoted apoptosis [205]. The same outcome was observed by combining inhibition of
CDK2 and BCL-2 family proteins [206]. The synergistic anti-tumor effect of dual inhibition
can also attenuate the development of resistance. Targeting CDK2 overcomes melanoma
resistance against Hsp-90 and BRAF inhibitors [207]. Inhibition of CDK2 and CDK4/6 func-
tions has been found to suppress the growth of triple negative breast cancer cells (TNBC),
which manifests itself in loss of expression of the RB protein, or high expression of cyclin
E, which are thought to confer resistance to treatment with CDK4/6 inhibitors. Moreover,
combination of CDK2 inhibition with traditional chemotherapy or radiotherapy, in TNBC,
is effective in cases demonstrating high resistance to these forms of treatment [208,209].
CDK2 inhibition has been found to sensitize tamoxifen resistant breast cancer cells both
in vitro and in vivo [210].

6.3. CDK4/6

Numerous cancers have been found to be particularly sensitive to CDK4/6 inhibition.
These genomic or transcriptional aberrations that activate CDK4/6 may lead to alterations
in cell cycle machinery genes. For example, amplifications of CDK4 have been manifested
in liposarcoma and glioblastoma, and CDK6 have been demonstrated in upper gastroin-
testinal cancers and neuroendocrine carcinoma of the prostate [211]. These specific genomic
translocations and gene mutations can also result in elevated cyclin D levels in tumor cells,
for instance, in mantle cell lymphoma. Loss of p16INK4A function has been implicated in
many types of cancer such as head and neck, bladder, pancreatic, and lung carcinomas,
glioblastoma, as well as malignant peripheral nerve sheath tumors [211,212]. However, the
most recent data call into question whether loss of p16INK4A function is actually associated
with heightened sensitivity to CDK4/6 inhibition, but rather with upregulated CDK2
activity [213].

Cyclin D-CDK4/6 complexes have also been found to be the key integrators of various
mitogenic and antimitogenic signals. For example, many cancers exhibit increased cyclin
D levels, which leads to the activation of the RAS–RAF–MEK–ERK pathway, inter alia, by
overexpression of the growth factor receptors or by inducing mutations in signaling effector
proteins [214]. The hyperactive phosphoinositide-3-kinase/protein kinase B (PI3K/Akt)
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pathway is also a strong activator of cyclin D1, by preventing its nuclear export and increas-
ing its translation [215]. Moreover, mice lacking CCND1 gene, which encodes the cyclin D1
protein, were unable to develop mammary tumors dependent upon ErbB2 or RAS [175].
However, the clear correlation between elevated levels of cyclin D1 protein in cancer cells
and CDK4/6 inhibitor sensitivity is yet to be definitely confirmed. Nevertheless, three
newly approved CDK4/6 inhibitors: palbociclib, ribociclib, and abemaciclib have been
synthesized. When used in combination with other available therapies for the treatment of
patients with hormone receptor positive (HR+), human epidermal growth factor receptor
2 negative (HER2-) breast cancer (HR+/HER2− advanced breast cancer) give hope in
search for the cure against this deadly disease [216]. In HR+/HER2− breast cancer cyclin
D overexpression is common and loss of pRb function is rare [217].

6.4. CDK5

In recent years, more and more evidence has emerged confirming the involvement
of CDK5 in the formation and spread of cancers and neurodegenerative diseases, such as
Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia
(FTD), Huntington’s disease (HD), and Parkinson’s disease (PD), as well as in stroke and
diabetes [218–220].

Many malignant forms of cancer have been associated with elevated levels of CDK5,
such as: medullary thyroid cancer (MTC), hepatocellular carcinoma (HCC) [221,222]. CDK5
phosphorylates the retinoblastoma protein (pRb) thus allowing cell cycle progression by
expression of other cyclins and CDKs [222]. The casein kinase 1 (CK1) is phosphorylated by
CDK5, consequently CDK5 can indirectly control an array of signaling pathways including
cell cycle, apoptosis and DNA repair [223]. When CDK5 phosphorylates CK1, a subsequent
decrease in kinase activity is observed [224]. However, the precise mechanisms connecting
CDK5-mediated phosphorylation of CK1 on cell cycle, DNA repair, or apoptosis have yet
to be discovered.

In the model of mice infected with medullary thyroid carcinoma (MTC), overexpres-
sion of p25 led to excessive CDK5 activity and the development of malignant MTC. In
contrast, p25-expressing neoplastic mice were able to survive the experiment and it was
shown that CDK5 levels in the tumor cells of these mice were significantly lower [225]. In
the case of medulloblastoma, disturbances in the expression of CDK5 allow the develop-
ment of this tumor by deceiving the T lymphocytes, in order to evade detection by the
immune system. Lack of expression of CDK5 reduces expression of the transmembrane
protein–IFNγ-induced programmed death ligand 1 (PD-L1), which is found to interact with
the inhibitory checkpoint molecule PD-1, present in various immune cells. This interaction
is important to maintain homeostasis of normal tissues. However, tumor cells can also
utilize the same mechanism to evade detection and elimination by T-cells [226]. CDK5 is
essential for lymphatic vessel development by phosphorylating Foxc2, the transcription
factor which regulates the expression of connexin 37, the junction protein necessary for
lymphatic valve formation [227]. Knockdown of endothelial CDK5 results in lymphatic
dysfunction and embryonic lethality in mice [228]. In the case of hepatocellular carcinoma
(HCC), inhibition of CDK5 expression also inhibits its angiogenesis, which reduces the
presence of the hypoxia-inducible factor 1a (HIF-1a), a protein that mediate cellular adap-
tation to hypoxia, which gives hope for an effective method of curing this type of cancer
and other highly vascularized cancers [221]. Recently, it has even been proposed to treat
proteins that target CDK5 as possible biomarkers for some cancers. An example would be
a lung cancer, where the phosphorylated form of CRMP2 was present in cancer cells, but
was not in tumor-surrounding epithelial cells [49].

Numerous studies have demonstrated that CDK5 regulates neuronal migration, layer
formation, axon elongation and dendrite arborization during cortical development and
adult neurogenesis [229]. In addition, CDK5 activity seems to control a naturally occurring
cell motility. However, CDK5 may also regulate cancer metastasis of some forms of cancer,
including gastric, prostate, breast, lung, pancreatic, and melanoma [230].
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CDK5 may promote cell migration by enhancing pro-migratory Pl3K-Akt Pathway.
Recent data show that CDK5 phosphorylates the Gα–interacting vesicle-associated pro-
tein (GIV), a protein upregulated in numerous metastatic cancers, which promotes GIV
interaction with Gαi, thereby promoting protein kinase B (PKB, Akt) phosphorylation,
enzyme important in regulation of metabolism, cell survival, motility, transcription, and
cell-cycle progression, actin remodeling, cell migration, and cell survival in podocytes
(highly specialized cells of the kidney glomerulus) [230,231].

6.5. CDK7

To consider CDK7 as a potential drug target, its dual functions in cell cycle control
and gene transcription must be taken into account. Initially it was assumed that inhibition
of this enzyme could be prohibitively toxic to normal cells, due to its involvement in
gene expression. This assumption should be re-evaluated for two reasons [58]. Firstly,
genetic separation of the two CDK7 complex functions is possible by specific mutagenesis,
selectively impairing one process [232,233]; or biochemically, by manipulating subunit
composition and modification state of the TFIIH-associated CAK [234,235]. The recently
published crystal structure of monomeric, inactive CDK7 definitely facilitates the design
of such inhibitors [236]. Secondly, transcription by RNA polymerase II depends upon the
catalytic activity of CDK7. If CDK7 activity preferentially affects transcripts necessary for
transformed dividing cells, targeting this kinase for anti-tumor therapy can be doubly
attractive. Inhibition of CDK7 could simultaneously deprive tumor cells of the high CAK
activity required for faithful mitoses [237] and limit the synthesis of mRNAs required for
other steps in the cell cycle [238], without affecting global transcription in non-dividing
cells. It is well known that normal dividing cells have low sensitivity to apoptotic stimuli
and exposure to RNAPII inhibition results in growth arrest. Oncogenically transformed
cells, on the other hand, are highly sensitive to apoptotic stimuli. This apoptotic sensitivity
is counteracted by the induction of one or more survival genes, or apoptotic inhibitors,
whose expression depends on sustained RNAPII activity. RNAPII inhibition suppresses the
apoptotic inhibitors and leads to apoptosis [239]. However, nuclear receptors, the essential
targets for positive regulation by mammalian CDK7, have various functions and important
roles in differentiation of numerous tissues. Further careful investigation of interference
with these functions and systematic analysis of the role of CDK7 in mammalian gene
expression are therefore required. Most recent evidence shows that targeting CDK7 by
BS-181 resulted in reduced rates of proliferation, migration, and invasion of gastric cancer
cells [239], as well as in combination with BCL-2/BCL-XL inhibitors as a mechanism-based
therapeutic strategy could be beneficial in the treatment of Triple-negative breast cancer
(TNBC) patients [240].

6.6. CDK9

The human body possesses a natural protein p53 that protects cells when exposed
to stress caused by oncogenes or DNA damage, by arresting the cell cycle or causing
programmed cell death [241]. Mutations of p53 along with pRb are associated with
the malignancies in human cells. Knowing that p53 is a transcriptional regulator and
a tumor suppressor its absence or deregulation during cell cycle checkpoints results
in uncontrolled carcinogenesis. CDK9 is also responsible for transcription of anti-
apoptotic factors, that belong to Bcl-2 superfamily: Mcl-1 (Myeloid cell leukaemia-1),
Bcl-2 (B-cell CLL/Lymphoma 2), and XIAP (X-linked inhibitor of apoptosis) [242],
making CDK9 potential source of inhibition for anti-tumor purposes.

There are two major pathways that can trigger apoptosis. The extrinsic pathway is
cell surface dependent, being activated by binding of death ligands to death receptors. The
intrinsic, more sensitive pathway occurs in response to cellular stress and is stimulated
by the release of mitochondrial cytochrome c [243]. Extrinsic apoptosis can be initiated
from outside the cell by activation of a number of pro-apoptotic receptors on cell surface by
pro-apoptotic ligands, including Apo2L/TRAIL (receptors DR4, DR5), and CD95L/FasL
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(receptor CD95/Fas) [244]. Once activated, the death domains of these receptors react with
the adaptor protein Fas-associated death domain (FADD) to release the death-induced
signaling complex (DISC), and intracellular enzymes, caspases 8 and 10, which later activate
caspases 3, 6, and 7 [245], finally converging with the second intrinsic pathway [246].

The intrinsic (mitochondrial) pathway is initiated in response to all sort of cellular
stress signals, specifically mitochondrial stress caused by DNA damage or hypoxia and
is regulated by p53. This triggers activation of apoptogenic factors, such as cytochrome
c in the intermembrane space of the mitochondrion. Once in cytoplasm, cytochrome c
binds to apoptotic protease activating factor 1 (Apaf-1), resulting in activation of caspase-
9 [247]. Caspase-9, in turn, initiates caspases 3, 6, and 7 to induce apoptosis [248]. This
pathway is maintained by a balance between the proapoptotic and antiapoptotic members
of Bcl-2 protein superfamily. In the case of carcinogenesis, this balance is corrupted with
over-expression of anti-apoptotic factors (Mcl-1, Bcl-2, and XIAP). High levels of Mcl-1 and
Bcl-2 have been identified in B-cell chronic lymphocytic leukemia (CLL) [242], a type of
cancer that is extremely resistant to many types of treatment. It would then seem valuable
to inhibit CDK9 with the aim to suppress the anti-apoptotic transcripts and their proteins,
and leading to cell death.

It is well known that normal dividing cells possess low sensitivity to apoptotic stimuli
and exposure to RNAPII inhibition results in growth arrest. Because oncogenically trans-
formed cells are highly mutated cells, they are able to escape programmed cell death by
the induction of survival genes, or apoptotic inhibitors, including Bcl-2, Mcl-1, IAPs, and
surviving [249,250], whose expression depends on sustained RNAPII activity. RNAPII inhi-
bition suppresses the transcription and expression of apoptotic inhibitors resulting in tumor
cell death [251]. Normal cells, however, should not be affected by transcriptional inhibition,
as majority of normal cells are in quiescent phase and do not require transcription.

6.7. CDK11

The larger CDK11p110 protein isoform is expressed in many human cancer cell lines
such as: osteosarcoma, T-cell leukemia, chronic myelogenous leukemia, and adenocar-
cinoma [252]. The CDK11p58 protein is a mitotic protein kinase, which is specifically
expressed only in the G2/M phase of the cell cycle [253], and is closely related to G2/M
arrest and apoptosis in a kinase-dependent manner [254–256]. CDK11p58 is more difficult
to detect than CDK11p110 and its detection depends primarily on the mitotic character-
istics of a particular cell type. Although both isoforms CDK11p58 and CDK11p110 share
the same kinase domain at its C-terminal sequence, the two isoforms possess different
functions. Recent studies have shown that CDK11p58 is involved in the negative regulation
of breast cancer invasion [257,258]. While the larger CDK11p110 isoform kinase expression
is critical for osteosarcoma and liposarcoma cell growth and proliferation, which have
been confirmed via a genome-wide shRNA screening [252,259]. Although, the function
of CDK11p110 in human breast cancer cell proliferation and growth remains unclear, it
has been found that breast tumor tissues and cell lines have high level of expression
of CDK11p110. In vitro RNAi-mediated knockdown of CDK11p110 lead to the inhibition
of human breast cancer cell survival and proliferation. Therefore, CDK11p110 plays an
important role in the proliferation and growth of human breast cancer cells [260].

6.8. CDK12/CDK13

The absence of CDK12 in developing mouse embryos and murine cells, especially in
neural progenitor cells (NPCs), usually results in their death during or shortly after birth.
These mice exhibit microcephaly and their NPCs accumulate at G2 and M phase, and have
lower expression of the cellular DNA damage response (DDR) genes, increased double-
strand breaks (DSBs) and increased apoptosis [261]. Moreover, a protein involved in normal
cell growth, human epidermal growth factor receptor 2 (HER2), when overexpressed,
may promote the growth of cancer cells, including breast, ovarian, bladder, pancreatic,
and stomach cancers. High CDK12 expression is significantly correlated with HER2
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status, suggesting that aberrant CDK12 expression may have oncogenic properties [262].
Furthermore, carcinogenic role of CDK12 was demonstrated through the expression and
alternative last exon (ALE) splicing of genes with long transcripts and large numbers of
exons, such as DNAJB6 (DnaJ Heat Shock Protein Family (Hsp40) Member B6), promoted
cell invasion and migration in HER2-amplified breast cancer cells [146]. In addition,
disruption of CDK12 leads to sensitivity to PARP inhibition, and forced expression of
wild-type CDK12 in a CDK12-null cell line model exhibited relative resistance to PARP
inhibition [263]. In gastric cancer cells (MKN-7), which display HER2 gene amplification,
gene fusions involving CDK12 and HER2 were identified. This data was consistent with
the predicted CDK12 protein truncation resulting from the fusion transcripts, but was
not in-frame to HER2 [264]. Moreover, enhanced sensitivity to CDK12 has been found
to influence tumor-specific (genetic or cellular) expression, such as MYC dependency,
EWS/FLI rearrangement and PARP inhibition.

The MYC protein is a transcription factor, which has been demonstrated to regulate a
vast number of processes in, both healthy and malignant, cells that impact cell proliferation,
growth, metabolism, DNA replication, cell cycle progression, cell adhesion, differentiation,
and metastasis [265]. Additionally, it has been identified to influence RNA polymerase II
and cell cycle checkpoint control, including GTF2H4, POLR2E, RAD21, and WEE1 [266],
as well as induce replicative stress by accelerating the rate of DNA replication, pointing
to replication-coupled DDR as a targetable weakness in MYC-driven tumors [267,268].
As MYC governs this many processes, the notion that it could be modulated directly has
proven to be difficult [269,270]. However, the overlap between the MYC and cellular
functions of CDK12 indicate that CDK12 could be an effective therapeutic target for MYC-
dependent cancers. Similarly, suppression of wild-type CDK12 in Ewing sarcoma cells
driven by the EWS/FLI fusion oncoprotein, a potent transcriptional activator and trans-
forming gene in this disease, using type VI inhibitor THZ531 (a selective covalent inhibitor
of CDK12/13) preferentially decreased expression of DDR genes and was synergistic with
PARP inhibitors [271]. Hence, CDK12 loss of function, whether spontaneous or induced,
appears to preferentially affect genes that have prominent roles in DNA repair. Some
cancer types driven by proto-oncogenes, such as MYC and EWS/FLI, are highly dependent
on RNA Pol II transcription [272,273], and the DDRs to maintain genomic integrity during
replication [274]. Thus, dual targeting of CDK12 as both a transcriptional coactivator and a
DDR regulator could be very beneficial in identifying a promising therapeutic strategy for
these cancer types.

CDK12 may have a particularly interesting role as a new therapeutic target in oncology
as it has been found to be a clinically relevant biomarker of PARP1/2 inhibitor sensitivity as
its inhibition acts synthetically lethal with PARP1 inhibition [275]. Moreover, most of these
CDK12 mutations were mutually exclusive with alterations to the breast cancer type 1 and
2 susceptibility proteins (BRCA1 and BRCA2), a tissue-specific tumor suppressor, and a
well-recognized DNA repair pathway component. This suggests that primary and acquired
resistance to PARP inhibitors could be overcome by CDK12 inhibition in BRCA wild-type
and mutated models of triple negative breast cancer [276]. Additionally, CDK12-deficient
or BRCA1-deficient cells depend upon the downstream S phase checkpoint kinase CHK1
for survival, and loss of CDK12 or BRCA1 sensitizes cells to CHK1 inhibitors irrespective
of p53 status [277].

7. Role of CDKs in Rare Developmental Disorders
7.1. CDK4/6

Autosomal recessive primary microcephaly (MCPH), also known as Microcephalia
vera, is a rare congenital disorder. Patients with MCPH exhibit reduced head circumference
and cerebral cortex size, and non-progressive intellectual disability. To date, more than
25 genes have been implicated with MCPH in humans [278]. Following an extensive
analysis of databases of genome sequences of consanguineous patients affected by MCPH
a single nucleotide mutation was identified in exon 5 of CDK6. This mutation substitutes
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alanine into threonine at residue 197 within the kinase, which leads to disorganization
of microtubules, mitotic spindles and nuclear morphology, resulting in centrosome dys-
function and impaired cell division. In addition, fibroblast cell lines of MCPH patients
showed significantly lower growth rate because of a higher rate of spontaneous apoptosis.
Although, the biochemical effects of this mutation are yet to be determined, nonetheless
first observations have been made. Molecular dynamics simulations revealed that this
particular mutation was found in a loop away from the catalytic center, as well as from
cyclin and INK binding domains. Interestingly, the patient-derived fibroblasts acted as
a loss-of-function mutation because the cellular defects observed were similar in both
patient primary fibroblasts and CDK6-knockdown cells. Additionally, the MCPH-causing
mutation is limited to a loss of the centrosome-associated functions of CDK6 without
affecting its transcriptional activity in hematopoiesis and differentiation [279].

Megalencephaly-polymicrogyria-polydactyly-hydrocephaly (MPPH) syndrome is a
rare overgrowth disorder which affect the development of brain architecture associated
with intellectual disability and global developmental delay. Few mutations were found in
the CCND2 gene encoding for cyclin D2 by whole exome sequencing in many MPPH cases.
However, the missense mutation on threonine 280 (Thr280) in the overwhelming majority of
patients is most significant because of its involvement in ubiquitin/proteasome-dependent
degradation [280,281]. Both glycogen synthase kinase 3b (GSK3b), an enzyme involved
in neuronal cell development, energy metabolism and apoptotic pathways, and mitogen-
activated protein kinase (MAPK, p38), which is activated in response to oxidative stress, can
phosphorylate cyclin D2 on Thr280 to initiate its degradation within the proteasome [282].
The mutated form of CCND2 present in MPPH patients induces a gain-of-function mutation
of cyclin D2, meaning it remains stabilized during neural progenitor cell proliferation,
which result in uncontrolled cell growth, leading to megalencephaly exhibited in these
patients [283].

Since CDK6 loss-of-function mutation causes microcephaly and cyclin D2 gain-of-
function mutation results in megalencephaly there should not be a surprise that these two
proteins form a heterodimer to obtain an active protein kinase. This unique partnership
between CDK6 and cyclin D2 in the regulation of neural cell growth is very rarely seen
among other CDK/cyclin pairs governing different processes. Moreover, it has been
suggested that cyclins D1 and D2 demonstrate different functions in neurogenesis as they
showed differences in expression patterns during forebrain development [283].

7.2. CDK5

Recently, a homozygous point mutation of CDK5 has been reported in human
lissencephaly (of Latin origin, meaning “smooth brain”) a hereditary brain malforma-
tion characterized by the absence or paucity of normal convolutions (folds) present in
the cerebral mantle. A group of newborn babies, from a highly consanguineous family
in Israel, suffering from a rare and lethal variant of autosomal recessive lissencephaly
with cerebellar hypoplasia (LCH) exhibited an agenesis of the corpus callosum, ab-
normally small heads (microcephaly), as well as severe neurological, dermatological,
and facial defects [284]. A pathogenic point mutation was present in intron 8 of CDK5,
which was further verified by a whole exome sequencing on one of the affected in-
fants. The same mutation was not detected in more than 200 racially and ethnically
matched control individuals. In addition, both patient-derived dermal fibroblasts and
brain tissue at mRNA and protein levels showed no detectable levels for the CDK5
protein, in contrast to what was observed in unrelated control. This result is consis-
tent with nonsense-mediated mRNA decay (NMD), a surveillance mechanism that
target messenger RNAs (mRNAs) with structural alterations that would otherwise
lead to mistakes in protein synthesis, as well as to eliminate any other incorrectly
spliced or defective cellular RNAs. Moreover, this mutation causes the complete loss
of the CDK5 activity what was confirmed by using a yeast-based complementation
assay [285]. Various mice knockout models showed that CDK5 is implicated in normal
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brain development [286]. Hence, heterozygous silent and intronic mutations in human
CDK5 have also been identified in patients with non-syndromic intellectual disability
(NS-ID) [287]. However, the detailed mechanism of functional consequences caused
by a total CDK5 knockdown resulting in NS-ID have yet to be investigated.

7.3. CDK8/CDK19

CDK8, and its paralog CDK19 (>90% sequence similarity between them), together
with their regulatory subunit cyclin C form two distinct mediator kinase modules. The
Mediator complex is a multisubunit coactivator which allows the assembly of the pre-
initiation complex (also called the basal transcriptional machinery) which is involved in the
regulated transcription of nearly all RNA polymerase II-dependent genes. Moreover, CDK8
or CDK19 form a four-subunit Mediator kinase modules with MED12, MED13, and cyclin
C by reversibly associating with the rest of Mediator complex, which contain enzymatic
activity [288]. Although not much is known about the mechanisms by which Mediator
kinases exert their functions a several key signaling pathways have been implicated to
be governed by these enzymes during development. CDK8 has been demonstrated to
regulate Notch, Wnt/β-catenin, and Sonic Hedgehog (Shh) pathways [289], while CDK19
was found to be highly expressed in a wide range of tissues including fetal eye and fetal
brain [290]. Thus far, only one female patient has been identified to be affected by one deep
intronic mutation in CDK19. She suffered from microcephaly, multiple café-au-lait spots,
congenital retinal folds, hearing loss, and psychomotor retardation. In relation to CDK8,
eight heterozygous missense mutations were found by whole-exome sequencing (WES)
and whole-genome sequencing (WGS) in twelve unrelated individuals in two different
trials. All of these mutations were clustered within the kinase domain, around the ATP
binding pocket, without causing major protein instability. This indicates that the CDK8
mutant proteins can still retain some partial ability to bind ATP and cyclin C. Therefore,
these numerous phenotypic presentations might stem from small differences in the residual
levels of CDK8 activity. The patients exhibited mild to moderate developmental delay, facial
dysmorphisms, motor unit hypotonia, as well as emotional and psychological symptoms
of behavioral disorders, such as autism spectrum disorder (ASD) and attention deficit
hyperactivity disorder (ADHD). Some of these individuals presented congenital heart
defects, sensorineural hearing loss, agenesis of the corpus callosum, as well as ocular and
anorectal malformations [290].

7.4. CDK10

In the absence of CDK10, endogenous ETS2 protein levels are increased. The over-
expression of ETS2 have been implicated in the pathophysiological features of Down
syndrome (DS), and alterations in its expression in mice result in spine malformations [291].
On the other hand, CDK10 mutations lead to Al Kaissi syndrome, an autosomal recessive
developmental disorder characterized by growth retardation, spine malformation, partic-
ularly of the cervical spine. These mutations result in frameshifts or internal truncations
which lower CDK10 levels probably through NMD of the mRNAs. Hence, these anomalies
are thought to be the loss-of-function CDK10 mutations [113]. Conversely, another study
showed that one 11-year old female patient with globally similar symptoms, but also
with abnormal primary cilia, which is observed in STAR syndrome patients with cyclin
M loss-of-function mutations or in the experimental CDK10/cyclin M knockdown. The
homozygous single nucleotide deletion in the 11th of the 13 exons of CDK10 results in
shorter, less abundant primary cilia. The mutant CDK10 mRNA does not undergo the
NMD pathway. It is assumed that a shorter, 307 residues long CDK10 protein is produced,
instead of the wild-type isoform (360 amino acids), which contains 17 missense amino
acids at its C-terminal. If expressed, this shorter isoform of CDK10 would be devoid of
the C-terminal bipartite nuclear localization sequence, which is usually produced in the
wild-type protein system [292]. Therefore, it can potentially retain its interaction with
cyclin M, as well as keep some functionality exerted by the wild-type CDK10 [112,115].
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Moreover, one single nucleotide polymorphism (SNP) located in CDK10 was found to be
associated with familial short stature (FSS) in Han Chinese in Taiwan, which was confirmed
in a genome-wide association studies (GWAS) [119].

Mutations in FAM58A gene cause a severe human developmental disorder, called
STAR syndrome, which is characterized by toe syndactyly, telecanthus, and anogenital and
renal abnormalities [293]. All patients suffer from growth retardation, and some of them
presenting additional malformations such as multiple ocular abnormalities, skeletal defects,
tethered spinal cord or lax joints [294–296]. It is worth noting that these malformations
affecting the FAM58A gene are positioned on the X-chromosome, which is consistent with
the fact that only females suffer from this syndrome. All deletions or mutations seem to
be very rare (apart from the four mother–daughter pairs reported), and the majority of
these additional anomalies are associated with the significant deletions which are broader
than just the FAM58A locus [296]. In most cases, these massive deletions prevent cyclin
M expression, which leads to the conclusion that the heterodimer of CDK10/cyclin M is
impaired in STAR syndrome. This results in higher levels of ETS2 protein [116], which in
Ets2 transgenic mice leads to skeletal and cranial abnormalities [297]. Since suppression of
either cyclin M or CDK10 promotes ciliogenesis, it can be argued that Star syndrome can
be classified as another type of ciliopathy [109].

The distinction between the STAR and the Al Kaissi syndromes is not always clear,
as it is difficult to group patients under particular syndrome label, because both cyclin M
and/or CDK10 exert more functions than those exerted by the protein kinase heterodimer.
Furthermore, an extensive investigation whether these functions can be at least partially
compensated by other members of cyclins or CDK kinases is needed to better under-
stand the complex mechanisms underlying these syndromes. One of such examples is
co-precipitation of cyclin G2 with either exogenous or endogenous CDK10 [297,298].

7.5. CDK12/CDK13

Like CDK12, CDK13 has also been found to be involved in pre-mRNA splicing reg-
ulation because it possesses serine-arginine (SR)-rich region in its N-terminus. CDK13
interacts with cyclin K as its regulatory subunit. The CDK13/cyclin K heterodimer phos-
phorylates the highly repetitive carboxy terminal domain (CTD) of RNA polymerase II and
participates in gene expression control [299].

The great number of clinical cases described in the studied area demonstrate missense
mutations in CDK13 kinase domain, with many variants targeting the highly conserved
asparagine residue at position 842. These mutations have been identified as a new source
of syndromic intellectual disability in which diagnosed patients exhibit distinctive cran-
iofacial characteristics, feeding problems in infancy, as well as the brain malformations
and structural heart defects [300–303]. Moreover, four unrelated Chinese children affected
by neurodevelopmental disorder with facial dysmorphism have been reported to harbor
potentially pathogenic CCNK gene (gene responsible for coding of cyclin K) mutations
with de novo inheritance. Three of them harboring specific deletions in the 14q32.3 re-
gion, which is involved in the expression of 3 different genes other than CCNK and one
individual harboring a missense mutation in the CCNK gene (replacement of Lys111 with
Glu). All patients presented poor intellectual, motor, language skills, and abnormal dys-
morphic facial features. Since all four patients displayed similar phenotypic profiles, a de
novo missense variant of CCNK, found in the fourth individual, was chosen for in silico
atomic structure analysis. This experiment has demonstrated that the mutated residue was
mapped in the heterodimeric interfaces with CDK12 and CDK13. The adjacent amino acid
is likely to destabilize both complexes, leading to the inhibition of both kinases. The above
data indicate that the most likely pathogenic mechanism, in all four patients, may be a
result of haploinsufficiency [304].

The exact functions of CDK13 and cyclin K in development are still to be explored.
However, CDK12, CDK13 and cyclin K proteins are highly expressed in murine embryonic
stem cells self-renewal [305], as well as both CDK12 and CDK13, were demonstrated to
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promote axonal elongation through a common signaling pathway which controls CDK5
expression at the RNA level [306]. Functional assays in zebrafish larvae produced similar
dysmorphic features, being reminiscent of those identified in the Chinese children, support
a causal role of CCNK variants in neurodevelopment [304]. Additionally, cyclin K was
found to function as a CDK9 regulatory subunit, which would suggest that cyclin K
interacts with multiple protein kinases, not only with CDK12 and CDK13 [101].

8. Role of CDKs in Other Disorders
8.1. CDK5 and Neurological Diseases

Due to the fact that CDK5 plays important roles during the development of the ner-
vous system; therefore, any disruption of CDK5 activation can lead to many neurological
diseases. For example, Alzheimer’s disease is characterized by the formation of neurofib-
rillary tangles, which arise in response to hyperphosphorylation of CRMP-2 responsible
for axonal growth, as well as the Tau protein [307–309]. Cellular stress also over-activates
CDK5 because it leads to the formation of p25, and thus to hyperphosphorylation of
the Tau protein, leading to abnormal cell cycle, disruption of synapses (synaptotoxicity),
and neuronal loss [310]. The reduction or complete inactivity of CDK5 is also harmful,
which can cause neurological diseases or intellectual disorders, such as severe type 1
neurofibromatosis or schizophrenia [311,312] and spontaneous attacks [313].

Amyotrophic lateral sclerosis (ALS) is a fatal disease, which is characterized by the
progressive death of upper and lower motor neurons within the brain and the spinal cord,
and eventual loss of motor function. The presence of ubiquitinated protein aggregates
in affected motor neurons, and their progressive buildup leads to abnormal functioning
of muscle tissues. This causes myasthenia, dysphagia, atrophy, and, eventually, loss of
control of all muscles responsible for voluntary movements. Abnormal CDK5 activity
hyperphosphorylates tau and neurofilament (NF) proteins, leading to microtubule network
destabilization, neuronal retraction, and apoptosis [314]. Neurofilament proteins constitute
the cytoskeletal elements that form and maintain cell shape and facilitate the transport
of particles and organelles within the cytoplasm. Neurofilament proteins have long been
assigned a role in the pathogenesis and progression of ALS [315]. CDK5 is considered the
most important neurofilament kinase that is involved in other signal transduction pathways,
such as the mitogen-activated protein kinase and myelin-associated glycoprotein pathways,
which, in turn, influence the phosphorylation of neurofilaments and other cytoskeletal
proteins [316].

Mutations in the gene encoding the superoxide dismutase 1 (SOD1), have been first
implicated in progressive motor neuron death and paralysis as a cause of familial forms of
ALS [317]. Most recent studies point to an involvement of deregulated CDK5 activity in the
pathogenesis of mutant SOD1-mediated disease and that the inhibition of this activity may
enhance motor neuron survival [318]. Transgenic mice expressing a mutant SOD1 gene
display increased ratio of p25/p35, in addition to hyperactivation and aberrant localization
of CDK5. CDK5/p25 complex results in hyperphosphorylation and abnormal accumulation
of the neurofilament protein, its heavily phosphorylated axonal variant (NF-H), a common
feature of ALS. An overexpression of NF-H in mutant SOD1 mice significantly increases
their lifespan, which implies that NF-H might act as a competitive substrate for CDK5 [319].
Hence, developing efficacious therapeutic strategies for treatment of ALS must consider
the potential of CDK5 inhibition.

8.2. CDK9 and HIV

Many viruses exploit host cell forcing it to replicate and transcribe their genomes,
including human immunodeficiency virus type 1 (HIV-1). Numerous antiretroviral forms of
treatment are being introduced to suppress HIV-1 transcription. However the development
of mutations of HIV-1 led to the emergence of multidrug-resistant viruses, urging the need
for new anti-HIV treatment strategies [320].
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It has been found that transcription of HIV-1 mRNA is facilitated by phosphorylation
of RNAP-II CTD by CDK9 [321]. HIV transcription from the long terminal repeat (LTR) is
modulated by the combined activity of cellular initiation factors and the virally encoded
regulatory protein, the transcriptional transactivator (Tat) [322,323]. This polypeptide of
86–101 amino acids, which is required for efficient virus replication, interacts with P-TEFb
resulting in a recruitment to the HIV promoter ipso facto depriving BRD4 its role as a
recruitment protein [324]. Tat directs P-TEFb to RNAP-II through cooperative binding to
TAR, transactivation response element, a viral RNA stem-loop structure [325]. This trimer,
containing Tat, TAR and P-TEFb leads to conformational changes that activate the CDK9
kinase. Tat-activated CDK9 phosphorylate RNAP-II CTD heptapeptide at serines 2 and 5
and the presence of CDK7 is not required [326]. Next, Tat-P-TEFb phosphorylates some
specific elongation factors, such as Spt5, a subunit of the DRB sensitivity-inducing factor
(DSIF) [327], and the RD subunit of the elongation repressive factor (NELF) [328]. These
phosphorylations enhance the processivity of the transcription elongation complex.

The latest research shows that Tat interacts solely with the active P-TEFb complex.
Thus the coordinated inhibitory action of HEXIM1/7SK snRNA complex prevents Tat
binding. It is thought that Tat overcomes this obstacle by liberating P-TEFb from its
negative factors HEXIM1 and 7SK snRNA by hijacking it from these regulators. This allows
Tat to antagonize the HEXIM1 interaction with cyclin T1, disrupting the 7SK snRNA of its
function to turn the HEXIM1 into a P-TEFb inhibitor leading to a significant increase of the
free form of P-TEFb for recruitment for efficient HIV-1 transcription [329,330].

8.3. CDK9 and Cardiac Disorders

Cardiac hypertrophy is the result of cardiomyocyte enlargement of the heart mus-
cle (myocardium) as a response to myocardial injury, such as myocardial infarction or
prolonged periods of high blood pressure (hypertension). Normally hypertrophy can be
seen during embryonic stages of heart development, where CDKs 7 and 9 function as
stimulators of hypertrophic effects of a growing heart. The activity of these two enzymes
dramatically decreases during adulthood [331]. However, this process is reverted during
chronic cardiac hypertrophy when both CDKs 7 and 9 levels are elevated again. Neverthe-
less, there is a preference to consider CDK9 only as the more important enzyme due to the
fact that dominant-negative form of CDK9 was effective in blocking cardiac hypertrophy,
whereas dominant-negative form CDK7 was not [332]. Although initially compensatory,
enlargement of myocytes can lead to heart failure due to prolonged expression of high
levels of CDK9/cyclin T2a.

The immediate response to hypertrophic stimuli is achieved through the activation of
the transcriptional mechanism, where P-TEFb complex by phosphorylation of the RNAP-II
CTD governs cardiomyocyte specific genes for cell growth and differentiation. Overexpres-
sion of CDK9/cyclin T2a complex induces the expression of transcription factors, such as
MyoD and enhances myocyte differentiation [333]. In addition, microRNAs were found to
have regulatory functions in the progression of cardiac hypertrophy. Especially overexpres-
sion analysis of the muscle-specific microRNA-1 (miR-1), a short non-coding RNA involved
in muscle differentiation and growth inhibition showed that miR-1 downregulates many
growth-related target genes, including CDK9 [334]. Activation of CDK9 in chronic cardiac
disorders not only leads to myocyte enlargement, but also suppression of the function of
peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) [335]. This coactivator
is necessary in stimulating mitochondrial function and protein biogenesis, suggesting
that suppression of its gene is responsible for the development of heart failure [336]. By
developing CDK9 targeted therapies, cardiac hypertrophy or even long term heart diseases
could be treated effectively.

9. Conclusions

Members of the cyclin-dependent kinase (CDK) family have diverse and unique
tissue specific functions. Numerous structural studies have provided detailed mechanistic
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insights into their distinguishing features and activities. This structural diversity provides
useful information for active inhibition which helped to develop new CDK4/6-selective
inhibitors to be registered for clinical use in breast cancer treatment. Dysregulation of
CDKs and their cyclin partners is observed in a range of tumor types, and some of them
have emerged as promising therapeutic targets in cancer. The major challenges in the
CDK-targeted drug discovery are selectivity and bad responses, or resistance to treatments.
However, the latest advancements in the field provide encouragement that highly selective
and potent inhibitors of human cyclin-dependent kinases with favorable pharmacokinetic
properties will be identified.
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94. Roninson, I.B.; Győrffy, B.; Mack, Z.T.; Shtil, A.A.; Shtutman, M.S.; Chen, M.; Broude, E.V. Identifying Cancers Impacted by
CDK8/19. Cells 2019, 8, 821. [CrossRef] [PubMed]

95. Becker, F.; Joerg, V.; Hupe, M.C.; Roth, D.; Krupar, R.; Lubczyk, V.; Kuefer, R.; Sailer, V.; Duensing, S.; Kirfel, J.; et al. Increased
mediator complex subunit CDK19 expression associates with aggressive prostate cancer. Int. J. Cancer 2019, 146, 577–588.
[CrossRef] [PubMed]

96. Audetat, K.A.; Galbraith, M.D.; Odell, A.T.; Lee, T.; Pandey, A.; Espinosa, J.M.; Dowell, R.D.; Taatjes, D.J. A Kinase-Independent
Role for Cyclin-Dependent Kinase 19 in p53 Response. Mol. Cell. Biol. 2017, 37, e00626-16. [CrossRef]

97. Mallinger, A.; Schiemann, K.; Rink, C.; Sejberg, J.; Honey, M.A.; Czodrowski, P.; Stubbs, M.; Poeschke, O.; Busch, M.; Schneider,
R.; et al. 2,8-Disubstituted-1,6-Naphthyridines and 4,6-Disubstituted-Isoquinolines with Potent, Selective Affinity for CDK8/19.
ACS Med. Chem. Lett. 2016, 7, 573–578. [CrossRef]

98. Bergeron, P.; Koehler, M.F.T.; Blackwood, E.M.; Bowman, K.; Clark, K.; Firestein, R.; Kiefer, J.R.; Maskos, K.; McCleland, M.L.;
Orren, L.; et al. Design and Development of a Series of Potent and Selective Type II Inhibitors of CDK8. ACS Med. Chem. Lett.
2016, 7, 595–600. [CrossRef]
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