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Graphitic carbon nitride (g-C3N4) was successfully functionalized with a low platinum

loading to give rise to an effective and stable catalytic material. The synthesized

g-C3N4/Pt was fully characterized by XRD, N2 physisorption, XPS, SEM-Mapping, and

TEM techniques. Remarkably, XPS analysis revealed that Pt was in a dominant metallic

state. In addition, XPS together with XRD and N2 physisorption measurements indicated

that the g-C3N4 preserves its native structure after the platinum deposition process.

g-C3N4/Pt was applied to the catalytic conversion of levulinic acid to N-heterocycles

under continuous flow conditions. Reaction parameters (temperature, pressure, and

concentration of levulinic acid) were studied using 3 levels for each parameter, and the

best conditions were employed for the analysis of the catalyst’s stability. The catalytic

system displayed high selectivity to 1-ethyl-5-methylpyrrolidin-2-one and outstanding

stability after 3 h of reaction.

Keywords: N-heterocycles, heterogeneous catalysis, graphitic carbon nitride, continuous flow, platinum,

Levulinic acid

INTRODUCTION

Biomass has emerged as a competitive alternative for the generation of highly sustainable fuels,
chemicals, and drugs (Tuck et al., 2012; Sankaranarayanapillai et al., 2015; Ruppert et al., 2016;
Hu et al., 2017; Tang et al., 2017; Filiciotto et al., 2018; Kucherov et al., 2018; Xu W. et al.,
2018). A useful strategy for converting biomass feedstocks into fuels and chemicals is based on
the transformation of platform molecules, which exhibit high functionality, to form added-value
compounds (Serrano-Ruiz et al., 2011; Verma et al., 2017). In this direction, levulinic acid (LA) is a
well-known platform molecule that has been widely used toward the fabrication of several valuable
compounds such as γ-valerolactone (GVL), which represent a promising fuel source, levulinate
esters, which are viable additives for gasoline and diesel transportation fuels, and pyrrolidones,
which are involved in industry as surfactants, intermediates for pharmaceuticals, dispersants in
fuel additive compositions, solvents and agrochemicals (Huang et al., 2011; Bermudez et al., 2013;
Colmenares and Luque, 2014; Touchy et al., 2014; Chatzidimitriou and Bond, 2015; Yan et al., 2015;
Ruppert et al., 2016; Gao et al., 2017; Sun et al., 2017; Xu C. et al., 2018).

In the last years, the use of heterogeneous catalysts for the valorization of LA into useful
compounds, especially pyrrolidones, has been widely applied (Du et al., 2011; Ogiwara et al., 2016).
For instance, the reductive amination of LA with amines in liquid phase has been described using
precious metals such as Au, Pd, Pt, Ru, In, and Ir, supported on carbon or metal oxides owing
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to their large portfolio of versatile applications (Du et al.,
2011; Chatzidimitriou and Bond, 2015; Ogiwara et al., 2016;
Zhang et al., 2017). Additionally, a number of endeavors
have been made to synthesize novel materials with desirable
catalytic properties in order to improve the efficiency of the
LA catalytic upgrading toward the production of pyrrolidones
(Gao et al., 2017; Sun et al., 2017; Wu et al., 2017). Ultimately,
innovative advancements on the design of active and stable
heterogeneous catalysts composed of carbon-based materials
have been proposed. Zheming Sun et al. have reported a new
class of solid molecular N-heterocyclic carbon (NHC) catalysts
for the solvent-free reductive amination of biomass-derived
levulinic acid to obtain a large variety of interesting structural
configurations ofN-substituted pyrrolidones (Sun et al., 2017). In
this regard, NHC-Ru polymer showed high catalytic performance
and remarkable reusability, allowing the development of one-pot
tandem reductive reactions of LA with aldehydes or ketones.

Graphitic carbon nitride, generally known as g-C3N4, is
recognized as the most stable allotrope among various carbon
nitrides under ambient conditions. The surface chemistry of
its polymeric structure can be easily controlled via molecular-
level modification and surface engineering. Additionally, the
polymeric nature of g-C3N4 guarantees sufficient flexibility of
the structure, which can serve as a compatible matrix for the
anchorage of various inorganic nanoparticles and consequently
can be successfully applied in a myriad of photocatalytic
applications (Muñoz-Batista et al., 2015b, 2016, 2018; Xue et al.,
2015; Fontelles-Carceller et al., 2016; Sastre et al., 2016; Zeng
et al., 2017; Hak et al., 2018; Majeed et al., 2018). Despite the
mentioned applications, graphitic carbon nitride-based materials
have not been broadly employed toward the catalytic valorization
of biomass-derived chemicals. A representative example in which
an organic sulfonated graphitic carbon nitride was used for
conversion of carbohydrates into furanics and related value-
added products can be highlighted (Verma et al., 2017).

We report herein the reductive amination of levulinic acid into
highly valuable pyrrolidones driven by g-C3N4/Pt composites as
a competitive catalyst. The catalytic processes were performed
under flow conditions which ensure high control over reaction
conditions, fast and effective reagent mixing and shorter times of
reactions (Bermudez et al., 2013; Chen et al., 2015; Gemoets et al.,
2016; Muñoz-Batista et al., 2018).

EXPERIMENTAL

Materials
All chemicals were obtained from Sigma–Aldrich with pure
analytical degree.

Synthesis of g-C3N4/Pt Composites
The graphitic carbon nitride was obtained by calcination of
melamine in a semi-closed system at 580

◦

C for 4 h using a
heating rate of 5

◦

C min−1. In order to improve its superficial
area, the obtained bulk g-C3N4 was treated by ultrasonication
for 5 h in deionized water using 1mg mL−1. The platinum
component was deposited using a simple chemical reduction
method. The g-C3N4 support was suspended by stirring in

deionized water solution for 30min. Then, the proper quantity
of H2PtCl6 was added to the solution to get 1 wt.% of Pt
on metal basis and kept under stirring for 15min. Finally, a
hydrazine aqueous solution was quickly added, where the molar
ratio between Pt and hydrazine was fixed to 1:5. The resulting
mixture was stirred for 30min and separated by filtration.
The separated solid was rinsed with distilled water and dried
at 80◦C for 16 h. The Pt loading in the sample was 1 wt.%,
confirmed by ICP-MS analysis in an Elan DRC-e (PerkinElmer
SCIEX) spectrometer.

Catalyst Characterization
XRD experiments were performed in the Bruker D8 Advance
Diffractometer with the LynxEye detector. The XRD patterns
were recorded in a 2θ scan range from 10 to 80◦. Phase
identification was carried out using Bruker Diffrac-plus Eva
software, supported by the Power Diffraction File Database.
N2 physisorption experiments were accomplished with the
Micromeritics ASAP 2000 instrument. The sample was
previously degassed for 24 h under vacuum (p < 10−2 Pa).
Moreover, TEM images were recorded in the JEOL JEM 1400
instrument and assembled with a charge-coupling camera device.
Samples were previously suspended in ethanol and deposited
on a copper grid. SEM-EDX micrographs were acquired
in the JEOL-SEM JSM-7800 LV scanning microscope. XPS
measurements were accomplished with an ultrahigh vacuum
multipurpose surface analysis instrument, SpecsTM. Prior to
the analysis, the sample was evacuated overnight under vacuum
(10−6 Torr). XPS spectra were acquired at room temperature
using a conventional X-ray source with a Phoibos 150-MCD
energy detector. XPS CASA software was employed to analyze
the obtained results.

Catalytic Experiments
Catalytic performance of the obtained catalytic materials was
evaluated in the H-Cube Mini PlusTM flow hydrogenation

FIGURE 1 | XRD patterns of g-C3N4/Pt sample and g-C3N4 reference.
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FIGURE 2 | (A) TEM image of g-C3N4/Pt (Inset: size distribution of Pt nanoparticles), (B) SEM image of g-C3N4/Pt, SEM-mapping micrograph of g-C3N4/Pt for

(C) carbon, (D) nitrogen, and (E) platinum.

TABLE 1 | Morphological properties of g-C3N4/Pt sample and g-C3N4 reference.

Sample BET surface area

(m2 g−1)

Pore volume

(cm3 g−1)

Pore size

(nm)

Pt particle

size (nm)

g-C3N4 58 0.2 15.7 –

g-C3N4/Pt 54 0.2 15.8 2.5

reactor. The catalysts were packed (ca. 0.1 g of catalyst per
cartridge) in 30 mm-long ThalesNano CatCarts. The system
was firstly washed with (1) methanol and (2) acetonitrile (0.3
mL/min, 20min for each solvent). A solution of levulinic acid in
acetonitrile was subsequently pumped through and the reaction
conditions were set. The required hydrogen was generated
in situ during the reaction by water electrolysis in the H-Cube
equipment. The reactions were followed for 120min, where a
stationary situation was reached, and the collected samples were
analyzed by GC-MS.

The conversion, selectivity and stability achieved for the
catalyst in the reaction were investigated by gas chromatography
(GC) in an Agilent 6890N gas chromatograph (60mL min−1

N2 carrier flow, 20 psi column top head pressure) using
a flame ionization detector (FID). The capillary column
HP-5 (30m × 0.32mm × 0.25mm) was employed. In
addition, the collected liquid fractions were analyzed
by GC-MS—using the Agilent 7820A GC/5977B High
Efficiency Source (HES) MSD—in order to identify the
obtained products.

RESULTS AND DISCUSSION

X-ray diffraction analysis was employed to identify the structure
and arrangement of the synthesized graphitic carbon nitride as
well as the platinum-modified sample. As shown in Figure 1,
both samples presented the typical interlayer-stacking (002)
reflection of disordered carbon in a graphitic g-C3N4 layered
structure and a peak around 13.1◦, associated to the (100)
reflection (Muñoz-Batista et al., 2016). The position of the (002)
plane also showed the typical shift (∼0.3), in comparison with
the bulk counterpart, which can be related to the decrease
of the interlayer distance, which takes place during the ultra-
sonication process (Muñoz-Batista et al., 2017). As has been
analyzed in previous reports, the limitation of the number of
sheets stacked produces the weakening of interlayer forces with
effect in the corrugation of the layers and the subsequent decrease
of the corresponding distance between layers (Niu et al., 2012;
Muñoz-Batista et al., 2017). The XRD pattern of g-C3N4/Pt
has not displayed considerable changes in comparison with the
unmodified material and therefore did not offer information
about the Pt phases, most likely due to the relatively limited
amount of the noble metal in the final material.

Morphology of the synthetized g-C3N4/Pt was studied
by microscopy (TEM and SEM) analyses (Figure 2). g-
C3N4/Pt exhibited a laminar structure, as can be observed
in Figure 2A. TEM analyses also allowed the identification
of small platinum nanoparticles with a mean diameter of
2.5 nm on the g-C3N4/Pt surface (Table 1). Importantly,
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FIGURE 3 | High-resolution XPS spectra of (A) C1s, (B) N1s, and (C) Pt4f in g-C3N4/Pt sample and g-C3N4 reference.

TABLE 2 | C1s and N1s XPS region fitting results of g-C3N4 and g-C3N4/Pt.

N1s

Sample C-N-C % (C)3-N % N-H % Pi-exc. %

g-C3N4 397.5 58.5 399.2 24 400.5 12 403.4 5.5

g-C3N4/Pt 397.2 58 399.0 24 400.4 12.5 403.6 5.5

C1s

Sample C-C % (C)3-N % C-N-C %

g-C3N4 284.6 8 286.2 5 287.6 87

g-C3N4/Pt 284.6 9 286.2 5.5 287.5 85.5

EDX-mapping micrographs of g-C3N4/Pt also confirmed the
successful functionalization of graphitic carbon nitride with
platinum, which depicts a relative homogeneous distribution.
As is summarized in Table 1, the Pt-modified material showed
rather similar values to the pure g-C3N4 reference in all the
parameters determined by N2 physisorption (BET Surface area,
pore volume, pore size). BET surface area above 50 m2 g−1

and a dominant mesoporous structure could be originated
from the void volume created by the agglomeration of the g-
C3N4 sheets, allowing an efficient deposition of the metallic
entities (Table 1).

The structural analysis of g-C3N4/Pt and g-C3N4 was
completed with the help of X-ray photoelectron spectroscopy.
XPS measurements were carried out in order to provide
information related to the carbon, nitrogen, and platinum
components. Figure 3 shows the XPS spectra for the two catalytic
systems, including C1s (Figure 3A), N1s (Figure 3B), and Pt4f
(Figure 3C) regions. The summary of the N- and C-containing
species contributing to the C1s and N1s peaks of the sample
and g-C3N4 reference is presented in Table 2. The C1s XPS
region showed contributions from C3-N (∼286.2 eV), N-C-N
(∼287.6 eV) and C-C (∼284.6 eV) (Muñoz-Batista et al., 2015a).
C3-N and N-C-N can be exclusively ascribable to g-C3N4 while
C-C contribution, which was also used as reference, energy can
be associated with surface residues or defects in the nanopolymer
structure (Wanger et al., 1979). For the N1s XPS region,
besides C3-N (∼399.1 eV) and N-C-N (∼397.5 eV), two more

contributions were used during the deconvolution procedure; N-
H (∼400.4 eV) and the typical broad pi-exc (∼403.5 eV) (Muñoz-
Batista et al., 2015a). In conclusion, Figures 3A,B as well as the
data of Table 2 provide evidence of the strong similitude detected
between the pure g-C3N4 and Pt/g-C3N4 samples. XPS also
allowed the detection of minority components in the structure,
namely Pt nanoparticles. Although the signal-to-noise ratio of
the Pt XPS region (Figure 3C) is relatively low, the shape of
the Pt4f is indicative of a dominant metallic state (∼71 eV)
(Fontelles-Carceller et al., 2017).

The catalytic performance of the prepared materials was
evaluated in the conversion of levulinic acid to nitrogen-
heterocycles under continuous flow conditions. N-heterocycles
were obtained via condensation of levulinic acid, an 1,4-
dicarbonyl compound, with an excess of ethylamine (Scheme 1)
(Li, 2014). In this case, acetonitrile acts both as solvent and
reactant, giving rise to ethylamine by in situ hydrogenation. The
cyclization step involves a nucleophilic addition on a carbonyl
group by the nitrogen of an intermediate. Levulinic acid acts as
an electrophile both in the initial step of the reaction with the
amine and in the cyclization step. After formation of the cyclic
compound, the reaction proceeded via alcohol dehydration to
produce the corresponding alkene. The hydroxyl (OH) group
donates two electrons to H+, generating an alkylloxonium ion,
which can act as a good leaving group. The formed alkene is
effectively hydrogenated under hydrogen pressure to give rise to
1-ethyl-5-methylpyrrolidin-2-one, C7H13NO (127.10 g/mol).
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SCHEME 1 | Proposed mechanism for the conversion of levulinic acid to N-heterocycles.

In addition, the formation of 1-ethyl-2-(ethylideneamino)-
5-methylpyrrolidin-2-ol, C9H18N2O (170.14 g/mol)
can be understood if we take into account that
hydrogenation of acetonitrile did not just give rise
to ethylamine but also to ethanimine, which can
further attack the carbonyl group of 1-ethyl-5-
methylpyrrolidin-2-one with the consequential formation
of 1-ethyl-2-(ethylideneamino)-5-methylpyrrolidin-2-ol.

Firstly, a complete parametric analysis was accomplished
in order to optimize the reaction conditions. In this regard,
three levels of temperature, pressure and concentration were
explored in the reaction of levulinic acid to N-heterocycles for
120min (Figure 4). Carbon balance was achieved above 97% in
all catalytic tests. Influence of the concentration in conversion
and selectivity values was unraveled, as shown in Figure 4A.
0.3 mol/L was selected as the optimum concentration for the
employed catalytic system. Although a lower concentration
(0.1 mol/L) resulted in higher selectivity to 1 ethyl-5-
methylpyrrolidin-2-one and the 0.5 mol/L concentration showed
similar selectivity values, 0.3 mol/L gave rise to the best balance
between conversion and selectivity.

The effect of temperature in the catalytic performance has
been investigated by performing the reaction at 80, 90, and
100◦C (Figure 4B). Additionally, influence of the system pressure
was evaluated by accomplishing the reaction at 40, 50, and 60
bars (Figure 4C). In both cases an increment of the conversion
and a decrease of the selectivity (1-ethyl-5-methylpyrrolidin-
2-one) was observed for higher pressure and temperature
values. Although 60 bars and 100◦ C conditions showed similar
catalytic performance, 50 bars and 90◦ C were selected as the
optimum pressure and temperature due to the good balance in
conversion and selectivity, avoiding higher energy consumption
reaction parameters. In addition, blank measurements were
performed without a catalyst or employing g-C3N4, revealing
that the reaction does not proceed in absence of an effective
catalytic system.

Once the reaction parameters were optimized, the stability
of the prepared catalytic system was investigated by performing
the reaction for 3 h. After obtaining a stationary state (typically
obtained after 120min of reaction), a conversion of 36.8%
employing g-C3N4/Pt was achieved. Figure 5 shows details of the
flow catalytic process in terms of conversion and selectivity. The
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FIGURE 4 | (A) Catalytic performance of g-C3N4/Pt at different

concentrations of levulinic acid, (B) catalytic performance of g-C3N4/Pt at

different temperatures, (C) catalytic performance of g-C3N4/Pt at different

pressures. SP1: selectivity to 1-ethyl-5-methylpyrrolidin-2-one, SP2: selectivity

to 1-ethyl-2-(ethylideneamino)-5-methylpyrrolidin-2-ol.

performed reaction gave rise to 1-ethyl-2-(ethylideneamino)-5-
methylpyrrolidin-2-ol, C9H18N2O (170.14 g/mol), and 1-ethyl-
5-methylpyrrolidin-2-one, C7H13NO (127.10 g/mol), with the
last being the major product (67.6% of selectivity). Remarkably,
the catalytic system displayed outstanding stability without
considerable loss of activity for up to 3 h of reaction.

The structure of both products was proposed considering
the fragmentation pattern in the MS spectra (Figure S1). The

FIGURE 5 | Catalytic performance of g-C3N4/Pt nanocatalyst during 180min

of reaction. Reaction conditions: 0.3M levulinic acid solution in acetonitrile,

0.1 g of catalyst, T = 90 ◦C, P = 50 bar, Flow = 0.3 mL/min. SP1: selectivity

to 1-ethyl-5-methylpyrrolidin-2-one, SP2: selectivity to

1-ethyl-2-(ethylideneamino)-5-methylpyrrolidin-2-ol.

aforementioned compounds have a common fragmentation
pattern and therefore a common skeleton. The molecular ions
of C7H13NO and C9H18N2O were found at m/z 127.1 and
169.1, respectively.

CONCLUSIONS

In summary, this contribution has aimed to explore a strategy
for biomass valorization through the catalytic conversion of
levulinic acid, a platform molecule, to N-heterocycles. A simple
procedure has been applied for the synthesis of an active,
effective and stable catalytic system with a low noble-metal
concentration (g-C3N4/Pt). The catalytic performance of the
aforementioned material was investigated in the continuous
flow transformation of levulinic acid to valuable N-heterocycles.
A complete parametric analysis was performed by changing
the reaction conditions, namely temperature, pressure and
concentration of levulinic acid. The optimum balance between
conversion and selectivity was found by using 3M levulinic acid
solution in acetonitrile at T= 90◦C and P= 50 bars. Remarkably,
the catalyst was highly selective (67.5%) to the formation of 1-
ethyl-5-methylpyrrolidin-2-one and exceptionally stable during
3 h of reaction.
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