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Heather M. Grifka-Walk , Brittany R. Jenkins and Douglas J. Kominsky*

Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States

Tryptophan (Trp) is an essential amino acid primarily derived from the diet for use by the
host for protein synthesis. The intestinal tract is lined with cells, both host and microbial,
that uptake and metabolize Trp to also generate important signaling molecules. Serotonin
(5-HT), kynurenine and its downstream metabolites, and to a lesser extent other
neurotransmitters are generated by the host to signal onto host receptors and elicit
physiological effects. 5-HT production by neurons in the CNS regulates sleep, mood, and
appetite; 5-HT production in the intestinal tract by enterochromaffin cells regulates gastric
motility and inflammation in the periphery. Kynurenine can signal onto the aryl
hydrocarbon receptor (AHR) to elicit pleiotropic responses from several cell types
including epithelial and immune cells, or can be further metabolized into bioactive
molecules to influence neurodegenerative disease. There is a remarkable amount of
cross-talk with the microbiome with regard to tryptophan metabolites as well. The gut
microbiome can regulate the production of host tryptophan metabolites and can use
dietary or recycled trp to generate bioactive metabolites themselves. Trp derivatives like
indole are able to signal onto xenobiotic receptors, including AHR, to elicit tolerogenic
effects. Here, we review studies that demonstrate that tryptophan represents a key intra-
kingdom signaling molecule.

Keywords: tryptophan, kynurenine, indole, microbiome & dysbiosis, mucosal immmunity, aryl hydrocarbon
receptor, serotonin
INTRODUCTION

The intestinal mucosa provides crucial metabolic functions and forms a barrier that protects host
tissue from foreign luminal content and pathogens. Intestinal epithelial cells (IECs) help form and
maintain the barrier between the luminal space and immune, nervous, and circulatory system
components on the basolateral side. Though it might seem that the mucosa defends against an army
of outsiders, mucosal defense depends upon “peacekeeping” molecules derived from the diet or
commensal microbes. It is well-supported that the gut microbiome and diet each influence host
metabolism, homeostatic processes, and inflammatory responses, and many of these functions are
modulated to a large extent by small molecule metabolites (1–4). There is currently much interest in
identifying beneficial metabolites, their source, and the mechanism(s) by which they elicit protective
host responses. The amino acid tryptophan (Trp) is a key cross-kingdom source of critical
downstream metabolites. Host cells metabolize dietary Trp into kynurenine (Kyn) and its
org June 2021 | Volume 12 | Article 6532081
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derivatives, 5-hydroxytryptophan (5-HT, serotonin) and
tryptamine. Microbes recycle free Trp to build proteins, but
also to generate poly-aromatic hydrocarbon compounds and
indole-containing compounds (5, 6). Some Trp metabolites,
both host- and microbe-derived, modulate intestinal mucosal
function as well as extra-intestinal tissue physiology through
direct binding to the host transcription factor aryl hydrocarbon
receptor (AHR) (7–9). Ligand biding to AHR leads to an array of
responses in various tissues. Here, we review Trp uptake and
metabolism by host and microbiome and its role in maintaining
mucosal tissue homeostasis and modulation of host
inflammatory responses, as well as the role of these metabolites
in the modulation of extra-intestinal tissue function.
TRP METABOLISM BY HOST
AND MICROBES

Most Trp found in the human gut is diet-derived. Trp is an
essential amino acid and thus is unable to be produced by most
animals. Some commensal bacterial species can generate Trp
de novo, however the overall contribution of these microbes to
the Trp pool in the intestinal tract is limited. Dietary Trp enters
the intestinal tract and reaches its highest relative concentration
in the distal colon, where most proteolytic metabolism occurs
(10). While the recommended amount of Trp for adults is 3.5-6
mg/kg/day, or 250-425 mg daily intake, adults ingest upwards of
1000 mg of Trp each day (11, 12). Nonetheless, circulating and
stored Trp concentrations are the lowest among all amino acids,
possibly indicating fast incorporation into these metabolic and
protein synthesis pathways. Several HPLC (and UHPLC)-MS/
MS-based analytical methods have been developed for detecting
Trp and its metabolites in serum, intestinal tissue, stool, urine,
and cerebral spinal fluid (13–17). Using stable isotope labeled
standards to minimize matrix effects during sample preparation,
Trp concentrations in healthy adult human serum fall in the
range of 1,000–50,000 ng/mL (40-100 µM) and 100–5,000 ng/mL
for Kyn (1.2-2 µM), with other serum Trp metabolites typically
falling in the 1-100 nM range (15, 18). Lower Trp concentrations
are associated with many diseases, neurologic and mood
disorders including inflammatory bowel disease (IBD), chronic
pain, and depression (11, 12, 15, 18, 19). In some cases, the
[Kyn]/[Trp] ratio is used as a biomarker for inflammatory and
psychiatric disorders, yet this approach remains controversial
due to a lack of understanding of the underlying cause(s) for
reduced Trp, whether it be reduced dietary Trp, malabsorption,
or alterations in Trp metabolism (e.g. conversion to downstream
metabolites like Kyn or microbial derivatives) (20, 21). There is a
growing appreciation for the range of responses to Trp
metabolites that contribute to human health, making it
important to also consider the concentrations of a variety of
Trp metabolites. Human stool samples and collection of various
tissues from animal models have shed more light into the
complex nature of Trp metabolism, local concentrations and
relative abundances of Trp derivatives, and mechanistic insights
into health and disease states (16, 20, 22).
Frontiers in Immunology | www.frontiersin.org 2
Host Uptake and Metabolism of Trp
Trp uptake in the intestine occurs via transport system proteins.
Transporters that facilitate neutral amino acid influx and efflux
include solute carrier proteins LAT1-4, B0AT1, and TAT1 (23).
Epithelial cells and other intestinal cells break down Trp into
metabolites to be utilized by the gastrointestinal tract. Some Trp
is transported into the bloodstream for metabolism at other sites
including the liver and CNS (24). Circulating Trp can enter
tissues via neutral or aromatic amino acid transporter proteins
located on endothelial cells. Once inside a cell, Trp is either
1) recycled for peptide synthesis, 2) converted into indole
ring-containing amines (i.e. 5-HT, melatonin, N-acetyl-5-HT), or
3) shunted into the Kyn pathway. Interestingly, a small amount the
Trp metabolite tryptamine is produced by hosts and intestinal
microbes, and can engage both AHR and 5-HT receptors (25).

A small proportion of Trp (estimated to be about 5% of that not
used for protein synthesis) is converted into serotonin (5-HT) (23).
5-HT is a neurotransmitter that regulates gut motility and secretion
in the intestine and serves an important role in the CNS by
controlling mood and physiological activities including sleep and
appetite. In order to produce 5-HT, free Trp is transported into the
cell and converted to 5-hydroxytryptophan by a tryptophan
hydroxylase (TPH) enzyme, then into 5-HT by aromatic L-
amino acid decarboxylase. Overwhelmingly, most physiological
5-HT is produced in the intestinal tract by enterochromaffin cells
by the enzyme TPH1 to act locally or to be carried by platelets to
distal sites including the liver, bone, and cardiovascular system. 5-
HT is unable to cross the blood brain barrier but is indispensable
for normal central and peripheral nervous system function (26). A
relatively small but critical amount of 5-HT is produced by neuron-
derived TPH2 in the CNS and periphery to act locally. The
responses exhibited by different cells and tissues to 5-HT
depends on the receptor expressed by that cell. For example, the
receptor 5-HT7 has been described as anti-inflammatory due to its
impacts on intestinal dendritic cells, while 5-HT4 elicits a
proinflammatory response from IECs (27). On the other hand,
5-HT4 receptor engagement on neurons is neuroprotective and can
promote neurogenesis (28). Extracellular 5-HT availability is
regulated by the transport protein SERT (SLC6A4), which
specifically imports 5-HT into the cell to be oxidized into 5-
hydroxyindole-3-acetic acid. Since 5-HT can have diverse and
potent effects on a wide number of cell types and tissues
depending on the 5-HT receptor expression profile, control of
available 5-HT receptor ligand via SERT is a primary method of
managing serotonin metabolism. SERT is downregulated in mouse
models of colitis as well as in human patients with irritable bowel
syndrome (IBS) and IBD, and SERT-deficient mice are highly
susceptible to colitis models (29–31). Altogether, Trp metabolism
into the small molecule 5-HT is a tightly regulated process that has
substantial effects in the GI tract as well as the CNS.

The majority of free, non-protein-building Trp is metabolized
by the host through the Kyn pathway. The enzymes indolamine 2,
3-dioxygenase (encoded by IDO1 or IDO2) and Trp 2,3-
dioxygenase (encoded by TDO2) perform the rate-limiting step
in the conversion of Trp to the AHR ligand, Kyn (32). These
enzymes use oxygen (O2) to break the carbon-carbon double
June 2021 | Volume 12 | Article 653208
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bond at the 2, 3 position of the indole ring of L-Trp to form
N-formylkynurenine in the first step of IDO/TDO-mediated Trp
metabolism (33). Transcription of IDO and TDO is tissue-
specific. Most TDO is produced in the liver to metabolize
circulating Trp; however, TDO production in the brain may
have an impact in the development and function of the central
nervous system (34, 35). IDO1, on the other hand, is widely
expressed and highly responsive to inflammation. At baseline,
IDO1 is responsible for homeostatic levels of Kyn and its
downstream metabolites, which ultimately include quinolinic
acid, kynurenic acid, NADH and niacin. In the setting of
inflammation, and especially in the presence of interferons,
IDO1 is upregulated in many cell types to metabolize Trp (and
bind to Trp mimetics) to limit available Trp. IDO-mediated Trp
metabolism is a key, long-understood mechanism of pathogen
control that limits an essential amino acid to decrease
pathogen fitness (36–39). This is one direct mechanism of
pathogen control that is regulated by the interferon response.
Although IDO and TDO are upregulated in response to the
innate immune response, their activity subdues inflammatory
processes via Trp limitation or generation of bioactive metabolites
like Kyn and NADH. IDO expression by dendritic cells during
inflammation controls extracellular Trp levels. In T cells,
decreased Trp sets off a stress response to limit T cell activation
and proliferation and promote suppressive and stable regulatory
T (Treg) cell polarization (40, 41). Due to the mostly anti-
inflammatory and cell-extrinsic effects of IDO1, its expression
has been described as problematic in the setting of many cancers.
Several tumor studies have demonstrated IDO1 upregulation that
inhibits the anti-tumor activity of innate and adaptive immune
cells. The activity and immune-suppressive function of this
enzyme can be inhibited with competitive Trp mimetics, which
is in early stages of exploration for cancer treatment (42–45).

Microbial Uptake and Metabolism of Trp
Trp metabolism by microbial enzymes has been shown to have
an extensive impact on the host (46). The evolutionary benefit
provided to the microbes generating these molecules is unclear,
but it has been speculated that the generation of modified Trp
derivatives can provide electron acceptors that offset
fermentation processes in an anaerobic environment (47).
Additionally, indole production has been shown to be
beneficial for bacterial quorum sensing, motility, antibiotic
resistance, biofilm production, and defense against non-indole
producers (48–51). In E. coli, Trp is imported via TnaB and
converted into indole via the tryptophanase TnaA. The amount
of indole produced by E. coli is limited simply by the amount of
free Trp, which could explain why human fecal indole
concentrations are relatively high, ranging from high µM to
low mM concentrations (52, 53). In other bacteria, Trp and
indole can be modified by other enzymes like aromatic amino
acid aminotransferase and variations of indoleacetate/
indoleacetaldehyde dehydrogenase/dehydratase enzymes that
covert Trp to different secondary, tertiary, and quaternary
metabolites, which include indole pyruvate, indole acetate,
indole-3-carboxaldehyde, indole-3-propionate, indole acrylate,
skatole, indirubin, and indigo (47, 54–56). Intestinal microbes
Frontiers in Immunology | www.frontiersin.org 3
are also able to produce small amounts of the neurotransmitter
tryptamine (57). Many of these metabolites have been shown to
be beneficial to the host as biologically active signaling molecules
recognized by host xenobiotic receptors.

The microbiome can also influence host Trp metabolism.
Commensal bacteria produce short chain fatty acids such as
butyrate from dietary fiber to promote expression of the gene
encoding TPH1 by enterochromaffin cells in the intestinal tract,
delivering a profound impact on intestinal 5-HT production and
Trp metabolism (58). Studies have shown that germ-free mice,
which lack any microbiome, have a reduced ratio of Kyn to Trp
presumably due unmetabolized free Trp and low expression of
IDO; IDO and Kyn levels are normalized upon colonization with
a conventional microbiome or probiotics (59–62). Altogether,
germ-free mice have lower levels of Kyn, 5-HT and microbe-
derived Trp metabolites in serum, which suggests that microbial
influence on Trp metabolites can be pervasive and alter
circulating metabolites to exert effects outside the intestine (63).

Given that intestinal microbes produce metabolites that can
signal to the host outside of the intestine, dietary intervention
and prebiotics or probiotics to increase beneficial Trp metabolite
production would be attractive alternative therapies. In mouse
models, Lactobacillus strains that are capable of metabolizing
Trp are protective in IBD and metabolic syndrome models (64,
65). Administration of Bifidobacteria infantis to rats altered
serum Trp and Kyn (66). Trp feeding was shown to be
protective in a mouse model of colitis, and another study
demonstrated enhanced mucosal immunity and fungal
colonization resistance in mice following expansion of indole
aldehyde-producing commensal Lactobacillus (7, 67). Despite
these promising experimental results, successful clinical trials or
interventions that manipulate Trp or its microbial derivatives to
benefit human disease have not developed. This could be due to a
lack of understanding of the Trp-metabolizing microbes in the
human microbiome, which are likely distinct from those in
rodents (68). It is especially difficult to establish candidate
probiotic strains as thriving members of complex the gut
microbiome ecosystem, so the current paradigm of probiotic
therapy could be transient at best. Currently, promising studies
are exploring small molecules that act directly on host proteins
such as IDO and AHR (69). A key hallmark of IBD is dysbiosis of
the gut microbiome, or alteration of the abundance and
distribution of gut bacteria (70, 71). The gut microbiome
normally provides molecular signals such as Trp metabolites
that promote mucosal homeostasis (2, 72, 73). IBD patients are
shown to have altered concentrations of these Trp metabolites,
highlighting the importance of these molecules in IEC barrier
restitution, regulating inflammation, and maintaining GI health.
ARYL HYDROCARBON RECEPTOR (AHR)
RECOGNITION OF TRP METABOLITES

AHR is a ligand-activated transcription factor that displays
promiscuous ligand-binding properties and an array of
pleiotropic effects across various tissues (55, 72, 74–88). Several
host and bacterial Trp metabolites are ligands for AHR, and
June 2021 | Volume 12 | Article 653208
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there are polymorphisms in the AHR gene among human and
other mammalian populations that result in differences in
binding affinities and subsequent cellular responses to certain
ligands (28, 89–92). AHR generally binds molecules that feature
polyaromatic hydrocarbon (PAH) rings, making Trp derivatives
a subset of many possible ligands and AHR a node in a versatile
intra-kingdom communication system. For example, Trp can be
converted by UV radiation in skin or chemical reactions in the
GI tract to create the high-affinity endogenous AHR ligand 6-
formylindolo [3,2-b]carbazole] (FICZ) (93). As mentioned
earlier, gut microbe-derived Trp metabolites largely stem from
the initial conversion to the AHR ligand indole, which can also
be converted by microbial enzymes to a variety of other AHR
ligands, either within the same bacterial cell or by exchanging
among other gut microbial communities for further processing.

The structure of AHR underscores its diverse range of effects.
This includes being a member of the bHLH domain family of
transcription factors involved in the DNA binding and
dimerization with its binding partner aryl hydrocarbon receptor
nuclear translocator (ARNT/HIF1b). AHR contains two PAS
domains (Period circadian protein, ARNT, and Single-minded
protein, PER-ARNT-SIM) that sense environmental changes and
regulate circadian rhythms through protein-protein interactions.
Ligand binding causes conformational changes that expose
nuclear localization signals and facilitate translocation to the
nucleus. In the nucleus, AHR forms a heterodimer with ARNT
and binds to the AHR response elements (a.k.a. AHRE, DRE or
XRE), which consists of the general DNA consensus sequences 5’-
TNGCGTG-3’ within or nearby promoters of gene targets (94).
Xenobiotic-metabolizing enzymes of the cytochrome P450 family
are main targets of AHR induction, including Cyp1a1 and
Cyp1b1, and are responsible for the degradation and clearance
of many AHR ligands, including Trp derivatives (95).

Since many Trp derivatives—host and microbial—can bind
and activate AHR, understanding AHR-mediated pathways
could il luminate the mechanisms of cross-kingdom
communication. AHR activation at mucosal sites is generally
thought to be beneficial due to the immunomodulatory role of
AHR signaling and supported by the generally protective role of
AHR signaling in mouse models of disease (96–99). A more
detailed look into the effects of AHR activation in epithelial and
immune cells is provided in the designated sections below. While
animal research is invaluable to biology, studies of AHR function
are sometimes confounded by the relevancy of mouse strains that
are typically used. For instance, AHR knockout (ahr-/-) mice
exhibit extensive abnormalities in vascular, hepatic, skin,
bladder, and hematopoietic functions (100), increased
susceptibility to experimentally induced colitis (67, 98, 101,
102), and exhibit higher prevalence of intestinal tumorigenesis
(103, 104). Thus, any conclusions to be made about a disease
model in these animals must consider that the animals are
developmentally distinct from C67Bl/6 wild-types and possibly
more susceptible to disease for physiological reasons. Ex vivo
models derived from these animals must also consider the
impact that congenital defects may impart to developmental
and epigenetic programs in these cells as well. One plausible
solution to this would be the use of a conditional AHR knockout
Frontiers in Immunology | www.frontiersin.org 4
using promoter-driven Cre systems. The most widely used (and
perhaps the only available) transgenic line that contains exons
within the AHR gene flanked by loxP sites was first published in
2004 and deposited at Jackson Labs (105, 106). Development of
these mice depended upon a clone derived from the AHR allele
carried by 129SvJ mice (107). 129SvJ mice carry the AHRd allele,
which has the weakest affinity for AHR ligands such as TCDD
relative to the high-affinity AHRb allele present in C57BL/6 mice
(four alleles of AHR have been described in laboratory mice)
(108). Indeed, mice expressing different variants of the AHR
allele have been reported to exhibit different responses to the
same ligand (91). Although mice expressing the human AHR
allele, where similarities have been drawn to the mouse AHRd allele
under certain contexts, has been shown to be more responsive to
some tryptophan metabolites compared to the mouse AHRb

receptor (90, 91), the response of the mouse AHRd receptor to
microbe-derived tryptophan metabolites requires further
investigation. Many mouse studies of AHR biology have used
ubiquitous C57Bl/6 strains, and so experimental controls and
subjects reflect the response of the AHRb allele. However, in
AHRfl/fl mice crossed to Cre transgenic lines, any cell that has
not undergone Cre-mediated recombination would express the
low-affinity AHRd allele, making that cell entirely distinct from
the orthologous cell type present in ubiquitous C57Bl/6 mice in the
exact gene that is under study. Thus, it is imperative that
experiments do not compare Cre-expressing AHRfl/fl mice with
C57Bl/6 “wild-type” lines without the inclusion of Cre-deficient
AHRfl/fl controls. Researchers should be considerate of this and
be clear in describing whether control mice are Cre-deficient
littermates or genetically distinct C57Bl/6 wild types. In fact,
some groups prefer to use the DBA/2 strain, which is genetically
nearly identical to C57Bl/6 except for being homozygous for AHRd.
and DBA/2 mice are healthy and lack the developmental defects
present in ahr-/- mice. Furthermore, the behavior of any murine
AHR may not necessarily reflect that of human AHR to the same
ligand (91, 109, 110). These comments are not an indictment of any
study, but this feature of AHRfl/fl mice is not often discussed. This
may present an opportunity for clarification on the role of AHR in
mice and human models.

While AHR is the best–described host receptor for Trp
metabolites, pregnane X receptor (PXR) is another ligand-activated
transcription factor with roles in metabolism of xenobiotic and drug
compounds, as well as endogenous molecules such as bile acids and
steroids (111). Indole propionic acid (IPA), a bacterial Trp
metabolite, was shown to interact with indole to activate PXR and
induce transcription of its target enzyme CYP3A4 (112). The same
study demonstrated that administration of Clostridium sporogenes,
which produces IPA, ameliorated intestinal inflammation in a PXR-
dependent fashion. IPA production by bacteria was also
demonstrated to modulate vasodilation and control endothelial cell
eNOS expression in a PXR-dependent manner (113). Recently,
additional bacterial Trp metabolites and their analogs have been
shown to activate PXR, albeit moderately (114–116). PXR has roles in
several diseases and is responsible for the metabolism and clearance
of many classes of drugs. Therefore, studies determining the extent
that microbial metabolites can influence the PXR pathway will better
elucidate mechanisms of host-microbiome metabolic cross-talk.
June 2021 | Volume 12 | Article 653208
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These studies also demonstrate that the biological signaling function
of Trp metabolites is not entirely AHR-dependent.
TRP METABOLISM IN THE INTESTINE
AND BEYOND

Intestinal Epithelial Cells
IECs are often considered to be front-line defenders that protect
hosts from foreign luminal content and pathogens. Importantly,
they serve as mediators between host and luminal content to
appropriately allow the symbiosis of beneficial microbes, inhibit
chronic inflammation in response to innocuous dietary antigens,
and provide defensive strategies if imbalance occurs. Activation
of AHR in IECs modulates a suite of phenotypic changes that
promote host health (Figure 1). Activation of AHR promotes
intestinal barrier function, resolves inflammation, and maintains
Frontiers in Immunology | www.frontiersin.org 5
overall mucosal homeostasis (55, 78, 117). The importance of
AHR signaling is exemplified by numerous in vivo studies
utilizing endogenously produced (93, 96, 103), exogenously
acquired (67, 101, 118), and microbe-derived ligands (7, 9, 65,
119) to ameliorate pathologies associated with IBD and
gastrointestinal infection. Multiple studies have demonstrated
that Trp feeding ameliorates DSS colitis in an AHR dependent
manner, and at least some of that protection can be recapitulated
by feeding with microbial metabolites (67, 120). Ligands like
indole and FICZ are shown to enhance IEC barrier function by
regulating tight junction protein expression and distribution
(121, 122). Indole acrylate produced by Peptostreptococcus spp
can stimulate mucus production (54), and IL-22-driven
antimicrobial peptide (AMP) secretion is enchanced by IAld
derived from Lactobacillus spp (7). Dietary and endogenously
produced ligands along with many microbe-derived metabolites
have all been shown to decrease susceptibility to infection (7, 8,
119), reduce inflammation and ameliorate pathologies related to
FIGURE 1 | Schematic of Trp metabolism, signaling pathways, and modulation of IEC and immune cell functions. On the left side, Trp enters host cells through
various amino acid transporters and is metabolized endogenously: TPH1 (or TPH2 in the periphery) is the rate-limiting enzyme in conversion to 5-HT, and IDO and
TDO enzymes convert Trp into Kyn. Gut microbes synthesize Trp de novo and convert this essential amino acid to numerous metabolites such as IPA, IAld, and
indirubin. These metabolites, as well as endogenous Trp metabolites like Kyn, are shown to bind the ligand-activated transcription factor AHR and in some cases
bind the transcription factor PXR. Both AHR and PXR are bound to chaperone proteins in the cytosol and ligand binding triggers nuclear translocation, heterodimer
formation with either ARNT or RXR, respectively, and regulation of gene expression through heterodimer binding of response elements on various promoters
throughout the genome (RE/Promoters). Genes upregulated by AHR and PXR include xenobiotic metabolizing enzymes (yellow lines), negative regulators (e.g. AHRR,
red line), and effector molecules that modulate other pathways important in barrier function, dampening inflammation, and resistance to pathogens (black and teal
lines; e.g. IL-10R, IL-22, IL-17). On the right side are other pathways involving IEC and immune cell functions that are influenced by Trp metabolite signaling: TJ
formation, AMP and mucus secretion, IFN-g signaling (influences IDO1 expression, alters Kyn metabolism and IL-10R expression), and the differentiation of immune
cell subsets that regulate inflammatory responses (e.g. Th17, Treg and ILC22 cells). This image was created in BioRender.com. Trp, tryptophan; IEC,intestinal
epithelial cells; TPH, tryptophan hydroxylase; 5-HT, serotonin; IDO, indolamine 2, 3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; Kyn, kynurenine;IPA, indole-3-
propionic acid; IAld, indole-3-carboxaldehyde; AHR, aryl hydrocarbon receptor; PXR, pregnane X receptor; ARNT, AHR nuclear translocator; RXR,retinoid X
receptor; AHRR, AHR repressor; TJ, tight junctions; AMP, antimicrobial peptides; Th and Treg, helper and regulatory T cells, respectively.
June 2021 | Volume 12 | Article 653208
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IBD or experimentally-induced GI injury (9, 32, 54, 74, 76, 96–
99, 123–127). Additional receptors can mediate the response of
IECs to Trp metabolites. SERT is expressed in high abundance by
IECs to regulate the amount of available 5-HT. 5-HT receptors
are expressed on epithelial cells to respond to serotonin
produced by enterochromaffin cells and serotinergic neurons
within the intestinal tract.

One area that remains controversial is the role of AHR
signaling in colorectal and other GI cancers, since AHR is
shown to have both pro- and anti- apoptotic and tumor
suppressor properties (55, 128). AHR-deficient cancer models
have demonstrated increased tumorigenesis while constitutive
activation of AHR induces gastric tumor formation (129–131).
Similarly, IDO/TDO, the rate-limiting enzyme that converts Trp
to the AHR ligand Kyn, is a target for anti-cancer therapies due
to its immunosuppressive functions within tumor cell
environments (132). Again, elucidating how AHR signaling
contributes to IEC differentiation and proliferation will further
our understanding of how the scales can be tipped away from
disease and towards GI health.

Immune Cells
As mentioned previously, Trp metabolism has a potent impact
on innate and adaptive immunity. IDO is upreguated in antigen
presenting cells and other innate immune cell types in response
to IFN-g, which is highly expressed in the setting of
inflammation. Once generated, Kyn and some of its
downsteam metabolites can bind AHR on diverse cell types to
alter the inflammatory response. Microbial and dietary Trp
metabolites are also able to bind AHR in immune cells within
and outside of the intestinal tract. AHR signaling on immune
cells is typically associated with immune regulation, thus increase
of exogenous or endogenous circulating AHR ligands could be
critical for controlling inflammatory diseases in any tissue. AHR
ligand binding can control differentiation of immune cell subsets.
For instance, AHR signaling regulates the Treg/Th17 axis, which
is involved in anti- and pro-inflammatory responses, respectively
(55, 84, 88, 133, 134), and the differentiation of innate immune
cells like dendritic cells (135) and macrophages (99, 136), which
are the first responders to injury and infection. AHR activation is
also shown to be necessary for the development of ILC22 cells (a
subset of group 3 ILCs) that serve as an important source of IL-
22 and contributes to protection against intestinal bacterial
infection (7, 102).

Other immunomodulatory roles of AHR signaling include
suppressing the activity of dendritic cells so that they are less able
to stimulate and polarize T cells (137). IDO1 is required for
lipopolysaccharide (LPS) tolerance, which is a bacterial product
shown to trigger in inflammation, via its production of AHR
ligands (119). Several inflammatory diseases show altered Trp
metabolism, including changes in circulating Trp, decreased
IDO, and decreased AHR expression, although whether those
observations are cause or effect in disease is unclear (9, 19, 138,
139). While many recent studies have focused on IL-22 as an
effector molecule in Trp metabolism and AHR activity, AHR
ligands can elicit an array of antinflammatory molecules,
Frontiers in Immunology | www.frontiersin.org 6
including the upregulation of IL-10 and its receptor IL-10R1
(9, 140).

The Central and Peripheral Nervous
Systems
Dietary Trp enters the central nervous system via endothelial
transporter proteins specific for large neutral amino acids. The
amount of free Trp available to cross the blood-brain barrier via
these transporters depends on the amount of Trp that is
unbound to albumin, which is at baseline approximately 10%
of the Trp in plasma (141). As seen in other tissues like the
intestinal tract, once Trp crosses into the CNS, it can be applied
to protein assembly, 5-HT, melatonin, and tryptamine
production, or applied to the Kyn pathway (Figure 2). Due to
the roles of 5-HT in mood, depression, anxiety, sleep, and
appetite, studies have attempted to acutely alter Trp levels and
determine the impact on 5-HT production and function. Trp
supplementation, usually via increasing carbohydrates and
decreasing protein, in humans and animal studies has been
shown to improve mood, cognition, memory, and sleep, while
acute Trp depletion inhibits those functions (142, 143). In
human studies, most significant effects were seen in susceptible
individuals (e.g. subjects with a history of aggression or
depression) compared to individuals with no known history of
such behaviors (144, 145). Mutations in tph2, the Trp
hydroxylase gene expressed specifically in the CNS and not in
the periphery, have been linked to mood disorder, schizophrenia,
and increased likelihood of suicide (146, 147). Peripheral
serotonin is elevated in patients with autism spectrum
disorder, but in a mouse model of autism serotonin levels were
decreased in the intestinal tract to promote intestinal symptoms
like constipation and reduced gut transit like that seen in autistic
patients (148, 149).

Kyn can cross the blood brain barrier or become synthesized in
the CNS. As in all tissues, Kyn can then act as an AHR agonist or
be further metabolized into quinolinic acid or kynurenic acid by
two distinct pathways. Kyn is metabolized into 3-
hydroxykynurenine by the enzyme KMO prior to being further
metabolized into quinolinic acid, or Kyn is metabolized into
kynurenic acid by KAT enzymes. Quinolinic acid is neurotoxic
due to its role as a NMDA agonist and because it promotes
glutamate release and inhibits glutamate reuptake (150).
Quinolinic acid is found at high concentrations in the CNS of
patients with ALS, which is also linked to glutamate toxicity (151).
On the other hand, kynurenic acid is neuroprotective due to its
role as a NMDA antagonist and may inhibit glutamate toxicity
(152). NMDA antagonism by kynurenic acid is thought to be a
mechanism for recovery and protection from stroke, epilepsy, and
Huntington’s disease (153–155). Interestingly, kynurenic acid has
been also shown to be an AHR ligand and likely exerts anti-
inflammatory effects in the CNS and periphery via pathways
discussed above. IDO1 is highly expressed in patients with
autism spectrum disorder, and autistic patients have a build-up
of quinolinic acid but low levels of kynurenic acid in the CNS
(156). While Kyn levels are typically thought to be protective, an
increase in Kyn was observed in rats that received fecal
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microbiome transplants from depressed donors as well as the
donors themselves. In another study, mice subject to chronic stress
had an increase in IDO1 expression that could be ameliorated by a
probiotic that inhibited IDO1 function (157, 158). These studies
offer evidence that Trp metabolism may be imbalanced away from
serotonin in mood and depressive disorders.

Trp metabolism in the CNS is the result of multiple cell types.
While neurons are the primary serotonin producers in the CNS,
glial cells have a major role in generating and responding to
bioactive metabolites from the Kyn pathway (159). Microglia and
astrocytes, as well as infiltrating and immune cells, can express
IDO1. Microglia that lack AHR promote autoimmune
demyelination via their role in promoting astrocyte-driven
inflammation. This same study also showed that Trp depletion
exacerbated disease, which could be rescued by the
administration of indoxyl-3-sulfate, a derivative of bacterially
generated indoles (160, 161).

Several studies have demonstrated the impact of Trp
metabolites on the enteric nervous system (ENS) and the
Frontiers in Immunology | www.frontiersin.org 7
cross-talk between intestinal epithelial and immune cells, the
ENS, and the CNS—the gut-brain axis. Due to the constant
influx of foreign elements into the lumen, the intestinal tract
must constantly sense stimuli to generate sympathetic and
parasympathetic responses. The intestinal tract is innervated
extrinsically by vagal and pelvic neurons and intrinsically by
local neurons located in the submucosal plexus and the
myenteric plexus of the small and large intestines. Intestinal
epithelial and immune cells respond to nutrients, microbial
metabolites, and physical factors to produce neuroactive
molecules including hormones, neuropeptides, and small
metabolites. These molecules can signal onto extrinsic and
intrinsic neurons to promote or regulate local and peripheral
reflexes such as peristalsis, secretion, and hunger. Trp
metabolites produced by host and microbial cells can influence
the ENS directly or indirectly. 5-HT production in the gut and
neuronal responses to 5-HT is a prominent example of the
impact of Trp metabolism in the intestine. Epithelial cells,
specifically enterochromaffin cells (ECs), express TPH1 to
FIGURE 2 | Summary of Trp-centric gut-brain axis. Trp from food or microbes is absorbed in the intestine. From there, it can be metabolized by IECs or immune
cells in the intestinal mucosa, or it can enter the blood stream (as free Trp or bound to albumin). Once in the blood stream it is absorbed by other tissues in the
periphery like the liver or continues to the brain through the blood-brain-barrier to get metabolized by neurons, astrocytes and glial cells. Trp is metabolized by TPH1/
2 and further metabolized by DDC to serotonin (5-HT). Intestinal epithelial enterochromaffin cells are the major source of 5-HT in the gut and is important in gut
motility and in communicating nutritional status to the brain via the ENS. Depending on the receptor, 5-HT can also impact inflammatory responses in other IECs or
local immune cells. SERT is responsible for breaking down 5-HT, and reduced SERT levels has been linked to IBD and IBS. In the brain, 5-HT is important in
neuroprotection and neurogenesis. In general, the levels of Trp and its metabolites are linked to many brain functions, mood, and mental health disorders (e.g.
mutations in TPH2, the balance of Kyn metabolism into QUIN and KYNA). This image was created in BioRender.com. Trp, tryptophan; IEC, intestinalepithelial cells;
TPH, tryptophan hydroxylase; DDC, dopa decarboxylase; 5-HT, serotonin; ENS, enteric nervous system; SERT, SLC6A4, 5-HT transporter; IBD,inflammatory bowel
disease; IBS, irritable bowel syndrome; Kyn, kynurenine; QUIN, quinolinic acid; KYNA, kynurenic acid.
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generate 5-HT that acts locally and distally on multiple cell types
including the ENS (162). 5-HT can also be generated by the
neurons in the ENS via TPH2, which is critical for normal ENS
development and functions like motility (163). 5-HT is released
following food intake and gastrointestinal distention to stimulate
peristalsis and gut motility and relay messages between the ENS
and the CNS (164–166). Serotonergic neurons also promote
epithelial cell homeostasis by engaging the receptor 5-HT2A on
enteric cholinergic neurons in the myenteric plexus, which may
then produce signals to promote epithelial cell proliferation
(167). 5-HT signaling has complicated roles in intestinal
inflammation: One study found that 5-HT signaling was
reduced in IBD (notably in patients suffering from both IBD
subtypes, ulcerative colitis and Crohn’s disease), though it’s
difficult to parse whether this is due to inflammation-mediated
loss of enterochromaffin cells or whether the loss of 5-HT
production can influence or be influenced by inflammatory
processes (168). The role of 5-HT and its signaling onto
enteric neurons has a strong link to IBS. IBS is similar to IBD
in that the etiology involves a combination of genetic,
environmental, and gut microbial factors. IBS is characterized
by aberrant gut motility and visceral hypersensitivity that
collectively contribute to bouts of diarrhea and constipation
and heightened pain perception during digestion and bowel
movements (169) IBS patients may express lower levels of
SERT, and certain SERT alleles may present an increased risk
for developing IBS and other 5-HT-related pathologies, though
this finding is inconsistent across studies (29, 170, 171). There is
also reported link between IBS and increased levels of 5-HT,
possibly as a result of dysfunctional SERT (172, 173). 5-HT acts
on neurons via the receptors 5-HT3 and 5-HT4. 5-HT3 signaling
activates intrinsic and extrinsic neurons to promote secretion
and motility, thus 5-HT3 antagonism is an attractive therapy in
diseases like IBS (174). Similarly, 5-HT4 binding increases gastric
motility and acetylcholine release, which promotes epithelial cell
secretory pathways; 5-HT4 agonists could provide therapy to IBS
patients with chronic constipation (175, 176). Interestingly, 5-
HT4 also promotes neuron survival and development and
inhibits pain perception in the intestine (28, 177, 178).
Altogether, inhibitors of 5-HT receptors and SERT, including
selective serotonin reuptake inhibitors (SSRIs) have been studied
and reported on extensively for therapeutic interventions for
treating the various presentations of IBS (179–181). Additionally,
promising data has been published to demonstrate a TPH
inhibitor that is unable to cross the blood brain barrier could
improve IBS symptoms without influencing 5-HT signaling in
the CNS (182). Perhaps other mechanisms to regulate 5-HT
signaling via dietary or microbial interventions of Trp
metabolism could result in additional possibilities.

The ENS, like other neurons, can be influenced by additional
Trp metabolites. The microbiome can stimulate expression of
AHR in enteric neurons, and AHR activity promotes enteric
neuron function and intestinal peristalsis (183). Limited studies
exist that explore the effects of quinolinic acid and kynurenic acid
on enteric neurons (184). Excitatory NMDA receptors are
responsible for peristalsis and nociception, and intestinal
Frontiers in Immunology | www.frontiersin.org 8
inflammation has been linked to their upregulation in animal
models (184–186). Kyneurinic acid or manipulation of the
balance between kynurenic acid and quinolinic acid could
inhibit these pathways to limit motility and pain and reduce
glutamate toxicity in enteric neurons during inflammation.
CONCLUDING REMARKS AND FUTURE
CONSIDERATIONS

Elucidating the metabolic currency exchanged between the diet,
the intestinal microbiota and the host is crucial for the
development of new therapeutics to modulate intestinal
microbial dysbiosis and maintenance of tissue homeostasis,
both locally and systemically. Our comprehension of the
interactions between host- and microbiota-mediated Trp
metabolism, mucosal tissue homeostasis, and host immunity
has grown immensely over the past decade. For instance, the
role of Kyn, the predominant endogenous Trp metabolite, is well
established as a potent mediator of host inflammatory responses,
exerting effects on a number of immune cells through AHR
signaling. While much of this work has been gut-centric, it has
become clear that the endogenous Trp metabolites impact many
extra-intestinal tissues including the nervous system. Thus, host
metabolism of dietary or microbially produced Trp has both
systemic and pleiotropic implications. Expansion of our
understanding of these pathways will have important
implications for the potential treatments of a number of
human ailments.

While the scientific community has made great strides in
elucidating the influences of endogenous Trp metabolism on
host health, our understanding of microbial Trp catabolism, both
within the microbiome and its impact on the host, is less
advanced. Studies have demonstrated that Trp availability and
metabolism impact both structure and function of the
microbiome. Additionally, it is clear that a number of bacteria
can generate Trp metabolites including indoles and an array of
indole-containing compounds. These microbial Trp derivatives,
both directly and indirectly, have critical roles in the regulation
of tissue homeostasis and host immune responses through
activation of host AHR and PXR proteins. Examples include
modulation of intestinal epithelial barrier and mediation of host
immune tolerance of the gut microflora. Furthermore, many
microbial-derived Trp metabolites have been identified in
circulation, indicating the ability to exert systemic effects.
However, there remains much work to do to expand our
understanding of the microbiota members that contribute to
Trp metabolism, the breadth of Trp metabolites produced, and
the impact of these molecules on the host.

It is enticing to envision potential therapeutics arising from
these studies involving perturbation of Trp metabolic pathways or
Trp metabolite administration for a number of human disease
states, including inflammatory and metabolic diseases, depression
and mood disorders, as well as cancer. However, there is much
more work to be done to increase our understanding of the
mechanistic underpinnings of Trp metabolism and the
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modulation of these dynamic pathways. These future studies
must take care to recognize the limitations of existing ex vivo
and in vivo model systems as new models are developed that will
enable a more complete elucidation of these metabolic pathways.
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