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Type 1 diabetes (T1D) results from autoimmune destruction
of the insulin-producing b-cells in the endocrine pancreatic
islets of Langerhans. Patients are thus dependent on exog-
enous insulin therapy delivered by multiple daily injections
or continuous subcutaneous infusion pumps to control
elevated glucose levels and prevent the development of
life-threatening ketoacidosis. Due to the pharmacokinetic
and pharmacodynamic limitations and complexity of sub-
cutaneous insulin delivery, most patients living today with
T1D cannot achieve levels of glucose control recommended
for the prevention of diabetes complications (1). Therefore,
biologic insulin therapy delivered by b-cell replacement has
long been hoped to supplant exogenous insulin therapy for
T1D but has been realized only in the limited context of
pancreas or isolated islet transplantation using deceased
donor organs (2). Recent progress in the generation of
functional islet b-cells from human stem cell sources (3)
has reinvigorated hope for a one day limitless supply of islets
for transplantation therapy (4).

Human embryonic stem cells (hESCs) differentiated to
a pancreatic endoderm progenitor stage in vitro have the
potential to further differentiate into functional pancre-
atic islets in vivo (5,6). Further differentiation to a pan-
creatic islet stage in vitro can generate cell clusters with the
capacity for glucose-dependent insulin secretion before
transplantation (7,8). While both approaches are capable
of reversing streptozotocin-induced diabetes in immuno-
deficient mouse models, the use of pancreatic endoderm
cells (PECs) has previously been accompanied by the
sporadic growth of mesodermal cells reminiscent of the
formation of teratomas. The use of pancreatic islet stage
cells is hoped to minimize off-target differentiation; how-
ever, these later stage endocrine cells still undergo further
in vivo differentiation and so may not fully eliminate the
potential risks associated with transplanting immature
stem cell–derived tissue.

In this issue of Diabetes, Pepper et al. (9) provide a long-
term functional and histologic characterization of hESC-
derived PECs transplanted in an immunodeficient mouse
model with streptozotocin-induced diabetes using a sub-
cutaneous “device-less” site. All PEC recipient mice estab-
lished normoglycemia by 200 days, consistent with the
in vivo differentiation and functional maturation of the
pancreatic islet graft and which was maintained for over
500 days until graft removal. Functionally, the matured
grafts demonstrated glucose-responsive insulin secretion
assessed both in vivo by measurement of human C-peptide
and ex vivo by measurement of insulin secretion during
dynamic perifusion following explant. Histologically, the
PEC differentiated to mostly islet tissue; however, all PEC
recipient grafts also developed small palpable cysts by
200 days that constituted metaplastic pancreatic ductal
mucinous hyperplasia. While the low proliferation evi-
denced by Ki-67 staining that did not change by the
over 500 days of observation supports a benign classifi-
cation for these lesions, cystic structures originating from
native pancreatic ductal tissue that produce mucus can
become neoplastic (10). The PEC grafts demonstrated
no evidence of teratoma formation, suggesting that the
risk for mesodermal differentiation may be eliminated.
Whether further in vitro differentiation to pancreatic islet
stage tissue prior to transplantation might eliminate the
development of unwanted ductal cysts requires additional
long-term studies (Fig. 1).

Importantly, the long-term functional regulation of
glucose homeostasis was achieved by transplantation of
the PEC graft in a subcutaneous “device-less” site that is
readily accessible to monitoring, including by biopsy and
by retrieval. The device-less site has previously been de-
scribed by Pepper et al. (11) where a vascular catheter is
placed subcutaneously to generate a foreign-body response
that includes neovascularized collagen; removal of the
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catheter after 1 month terminates the foreign-body re-
sponse and leaves a pocket of vascularized matrix that
provides a bio-scaffold to support engraftment of trans-
planted cells. This prevascularization of the compartment
prior to cellular transplantation likely enhances oxygen
delivery during engraftment and revascularization of the
graft that is critical to support the high metabolic activity of
islet tissue and physiologic glucose sensing and hormone
secretion that is otherwise impaired when encapsulating
islets in devices. Encapsulation devices elicit an ongoing
foreign-body response resulting in surrounding fibrosis that
further prevents oxygen delivery to contained islets and
represents a major barrier to the promise that islet encap-
sulation will provide a path for immunosuppression-free
transplantation. Clinical studies have failed to show efficacy
of micro- (12) or macroencapsulated (13) human islets
except when coupled to a refillable oxygen chamber con-
tained within the device (14). The ViaCyte phase I/II clinical
trial transplanted PEC grafts subcutaneously in an Encaptra
macroencapsulation device that contains a cell impermeable
inner membrane and permeable outer membrane that does
allow vascularization in rodent models (ClinicalTrials.gov
identifier NCT02239354). Preliminary results in humans
indicated cell survival was significantly limited by a for-
eign-body response with fibrosis that impeded vasculari-
zation of the cell permeable outer membrane (15). Thus,

the device-less site reported here may be an attractive
alternative for transplantation of stem cell–derived islets,
albeit with the requirement in humans for immunosup-
pression as for deceased donor islet transplantation.

In addition to b-cells, human islets also contain gluca-
gon-producing a-cells and smaller proportions of somato-
statin-producing d-cells, ghrelin-producing e-cells, and
pancreatic polypeptide–producing F cells (PP-cells), as
well as neurovascular elements that include both the
sympathetic and parasympathetic nervous systems that
modulate islet activity and hormone secretion. PEC grafts
have shown endocrine differentiation to b-, a-, d-, e-, and
PP-cells, resembling the make-up of mature human islets
(16). In human T1D, the loss of functional b-cells from
within the native islet disrupts paracrine regulation of
a-cell function. As a result, during the development of low
blood glucose, a-cells fail to release glucagon that is
necessary to increase hepatic glucose production and pre-
vent or correct hypoglycemia. Therefore, cellular therapy
for treatment of T1D requires replacement of intact islets
with normally functioning a-cells in addition to b-cells. To
that end, it is important that the differentiated PEC grafts
described here contain both b- and a-cells, as is also
the case for stem cells further differentiated to a pan-
creatic islet stage in vitro prior to transplantation (7,8).
Still required is more complete assessment of the

Figure 1—Left: In vivo islet differentiation during normal embryonic and fetal development. Right: In vitro islet development of hESCs or
inducible pluripotent stem cells (iPSC) designed tomimic normal differentiation (adapted from Jennings et al. [3]). In the report by Pepper et al.
(9), no mesodermal or acinar cell tissue was identified following in vivo maturation of transplanted stage 4 PECs into functional islet grafts;
however, all grafts contained mucinous ductal tissue organized in cystic structures by 200 days. Whether further in vitro differentiation and
transplantation of, for example, stage 7 pancreatic islet cells may eliminate the development of ductal tissue during in vivo maturation
requires additional long-term studies.

902 Commentary Diabetes Volume 68, May 2019



responsiveness of matured PEC and other stem cell–derived
islet graft b-cells to turn off insulin secretion and the a-cells
to turn on glucagon secretion appropriately to defend against
the development of low blood glucose (17).

To date, the liver is the only site that has enabled
sufficient survival of transplanted islets to consistently
reverse diabetes and achieve insulin independence in large
animal models and humans (18). This may be explained by
the extensive surface area of the bio-scaffold provided by
the hepatic sinusoids to support intrahepatic engraftment,
and by the portal vein providing limited, but critical,
oxygenation until the islets become revascularized by
the hepatic arterial system. Normally, insulin and glucagon
secreted from islets enter the portal circulation where
insulin suppresses, and glucagon activates, hepatic glucose
production. In addition, the insulin exposed to the liver is
secreted in coordinate pulses, the amplitude of which is
dependent on the functional islet b-cell mass and contrib-
utes to insulin action on the liver. When transplanted in
patients with T1D, intrahepatic islets reestablish coordi-
nate pulsatile insulin secretion (19), normalize hepatic
insulin sensitivity (20), and restore appropriate glucagon
secretion in response to insulin-induced hypoglycemia that
normalizes glucose counterregulation (21). Whether the
subcutaneous device-less site can be scaled and provide
physiologic function sufficient for curative cellular therapy
in large-animal models of diabetes requires consideration
as part of preclinical development of stem cell–derived
islets for the treatment of diabetes.
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