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In 2002, Al-Tassan and co-workers described for the first time a recessive form of inherited
polyposis associated with germline mutations of MUTYH, a gene encoding a base excision
repair (BER) protein that counteracts the DNA damage induced by the oxidative stress.
MUTYH-associated polyposis (MAP) is now a well-defined cancer susceptibility syndrome,
showing peculiar molecular features that characterize disease progression. However,
some aspects of MAP, including diagnostic criteria, genotype-phenotype correlations,
pathogenicity of variants, as well as relationships between BER and other DNA repair
pathways, are still poorly understood. A deeper knowledge of the MUTYH expression
pattern is likely to refine our understanding of the protein role and, finally, to improve
guidances for identifying and handling MAP patients.
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INTRODUCTION
About one-third of colorectal cancers (CRC) are ascribable to
a genetic predisposition. In approximately 5% of cases, CRC
occurs in the context of Mendelian syndromes and is associ-
ated with highly penetrant gene mutations; in 20–25% of cases
it can be considered as “familial” and likely due to low/medium-
penetrant genetic variants (reviewed by de la Chapelle, 2004).
More generally, all non-Mendelian CRCs can be regarded as com-
plex diseases, where multiple genetic variants and environmental
factors can modulate the disease risk. Genome-wide association
studies (GWAS) have recently identified over a dozen risk loci,
statistically associated with CRC (Tomlinson, 2012). The present
challenge is to assess their functional significance and to clarify
their interaction with probable or well-established environmental
risk factors (Dunlop et al., 2012).

Among CRC predisposing syndromes, Hereditary Non-
Polyposis Colorectal Cancer (HNPCC) or Lynch syndrome
(OMIM#114500; NCBI database of human genes and genetic
phenotype: www.ncbi.nlm.nih.gov/omim) is the most com-
mon disease; this autosomal dominant disorder is charac-
terized by early onset CRC and extracolonic manifestations.
HNPCC is associated with inherited defects in DNA Mismatch
Repair (MMR) genes, primarily MSH2 and MLH1 (reviewed
by Lynch et al., 2009). A less common syndrome is Familial
Adenomatous Polyposis (FAP; OMIM#175100); this autoso-
mal dominant condition is characterized by the development

Abbreviations: MAP, MUTYH-associated polyposis; CRC, colorectal cancer;
HNPCC, hereditary non-polyposis colorectal cancer; FAP, familial adenomatous
polyposis; BER, base excision repair; MMR, mismatch repair; OMIM, Online
Mendeleian Inheritance in Man.

of hundred to thousands of colorectal adenomas predispos-
ing to CCR. Congenital retinal pigment epithelial hypertrophy
(CHRPE), gastric and duodenal adenomas, desmoid tumors, and
thyroid cancers, are the possible extracolonic manifestations. FAP
is associated with germline mutations in APC that encodes a
tumor suppressor protein acting as a regulator of WNT signal
transduction pathway. A milder form of FAP, termed attenuated
FAP (AFAP), is characterized by the development of less than 100
colorectal adenomas, a more limited expression of extracolonic
features, and a delay in onset of CRC; germline mutations associ-
ated with AFAP have mainly been detected in the 5′ and 3′ end of
APC, and in the alternatively spliced exon 9 of the gene (reviewed
by Jasperson et al., 2010).

In 2002, Al-Tassan and coworkers described for the first time
a recessive form of polyposis associated with biallelic mutations
of MUTYH (Al-Tassan et al., 2002; Jones et al., 2002; Sieber et al.,
2003); this gene encodes a base excision repair (BER) protein that
counteracts DNA damage induced by oxidative stress. This disease
is currently known as MAP for MUTYH-associated polyposis.

THE MAP PATIENTS: PHENOTYPE, CRC RISK, AND
SURVEILLANCE
Presently, due to the variability of clinical features in MUTYH
mutation carriers (Morak et al., 2010), the diagnostic crite-
ria for MAP are not fully established and patients presenting
FAP-like phenotypes are frequently difficult to classify. Usually,
patients directed to MUTYH genetic testing have disease family
history compatible with an autosomal recessive mode of inher-
itance, colorectal polyposis, and no identifiable mutations in
APC (Sampson et al., 2003; Russell et al., 2006; reviewed by
Aretz, 2010). In biallelic MUTYH mutation carriers the colonic
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phenotype resembles that of AFAP, with onset in the fourth-fifth
decade and a limited number of adenomas (30-100) that increase
susceptibility to CRC (Venesio et al., 2004; Filipe et al., 2009);
however, unlike AFAP, hyperplastic and sessile serrated polyps
can be found in MAP (Boparai et al., 2008; Zorcolo et al., 2011).
Importantly, approximately 60% of MAP patients with polyposis
have CRC at first presentation (mean age at diagnosis 48 years)
(Nielsen et al., 2009). Moreover, a number of MAP patients with
CRC and no polyps have been reported (reviewed by Nielsen
et al., 2011). In a population-based screening, the penetrance of
CRC has been estimated 20% and 43% at 50 and at 60 years
of age, respectively (Lubbe et al., 2009). Since oxidative stress
occurs in various cell types, MUTYH inactivation can be expected
to predispose not only to intestinal, but also to extraintestinal
lesions. Key extracolonic manifestations include predisposition to
duodenal adenomas and cancer (Nielsen et al., 2006); in addi-
tion, constitutive gene mutations have been detected in patients
with endometrial carcinoma (Barnetson et al., 2007; Tricarico
et al., 2009). A recent multicenter study showed that the inci-
dence of extraintestinal malignancies among MAP cases is almost
twice that of the general population, with a significant increase
in the incidence of ovarian, bladder, and skin cancers, and a
trend of increased risk of breast tumors; interestingly, this can-
cer spectrum overlaps with HNPCC syndrome (Vogt et al., 2009).
Thyroid carcinomas have been documented; however, in con-
trast to FAP, MAP does not appear to be associated with this
cancer type (Ponti et al., 2005; Vogt et al., 2009; Pervaiz et al.,
2010).

While the strong impact of biallelic MUTYH mutations
on CRC risk has been demonstrated, the cancer risk associ-
ated with germline monoallelic mutations is still controversial.
Initially, heterozygous germline mutations had been reported to
increase the risk of CRC later in life without apparent excess
risk of polyposis (Farrington et al., 2005), and both biallelic
and monoallelic mutation carriers had been reported more likely
to have first/second-degree relatives with CRC compared with
non-carriers (Croitoru et al., 2004). However, subsequent meta-
analyses have produced conflicting results, indicating both a non-
significant and a significant increased risk of CRC for monoallelic
mutation carriers (Peterlongo et al., 2006; Tenesa et al., 2006;
Webb et al., 2006). More recently, the analysis of MAP family
members confirmed previous data that monoallelic carriers have
a two-fold increase of risk of CRC (Jones et al., 2009; Win et al.,
2011); analogous results have been obtained through a systematic
evaluation of clinicopathologic/epidemiologic and genetic data in
a series of CRC cases and controls from a multisite CRC registry
(Cleary et al., 2009).

A large population-based series of patients and controls
has been screened for the presence of the two most common
MUTYH mutations in MAP (i.e., Y179C and G396D): follow-
ing genotype-phenotype correlation, the evaluation of genotype-
specific CRC risk indicated that monoallelic mutation status
is not clinically relevant (Lubbe et al., 2009). Accordingly, a
marginal monoallelic effect has been reported in a recent study
aimed at refining the estimates of CRC risk associated with
mono- and bi-allelic MUTYH mutations (Theodoratou et al.,
2010).

During a workshop held in Mallorca in 2006 and 2007,
European experts on hereditary gastrointestinal cancer estab-
lished recommendations for the clinical management of poly-
posis. According to these guidelines, patients with more than
10 adenomas should be referred for genetic counselling, and
MUTYH mutation analysis should be performed. The screening
should start between 18 and 20 years, the same age as recom-
mended in AFAP. Since patients frequently develop only a few
adenomas and CRC is often localized in the proximal colon,
colonoscopy at 2-yearly intervals instead of sigmoidoscopy should
be performed. Due to the relatively high risk for duodenal cancer,
upper gastrointestinal endoscopy should start between 25 and 30
years of age. If surgery is required, IRA is sufficient in most cases
to eliminate cancer risk (Vasen et al., 2008).

Recently, Nieuwenhuis and collaborators (2012) underlined
the high risk in MAP patients to develop CRC even under surveil-
lance, suggesting colonoscopy at short intervals (1–2-year inter-
vals) starting from the age of 18–20 years, and recommending
(sub)total colectomy when surgery for CRC is justified.

In the absence of clear-cut data on monoallelic MUTYH muta-
tion carriers, CRC surveillance should follow guidelines proposed
for subjects with a family history of CRC, without intensive
screening, i.e., colonoscopy starting at age 40 and repeated every
five years (Levin et al., 2008).

The lifetime risk for extracolonic cancers seems considerable;
however, it is uncertain if more aggressive cancer surveillance for
these lesions than is recommended for the general population
would be valuable (Nielsen et al., 2009; Terdiman, 2009).

MOLECULAR MECHANISMS UNDERLYING MAP
Al-Tassan and colleagues (2002) reported for the first time that
predisposition to multiple colorectal adenomas and carcinomas
can be inherited in an autosomal recessive manner. By analyz-
ing tumor DNAs from three affected individuals of the same
family, they found that APC tumor suppressor gene was somat-
ically inactivated due to the frequent occurrence of G:C to T:A
transversions. Such a pattern was suggestive of a defect in the
repair system that prevents mutations caused by spontaneous oxi-
dation of guanine to 8-oxoguanine, the most prevalent product of
the oxidative stress (reviewed by David et al., 2007). Accordingly,
the human genes encoding for the enzymes of the BER path-
way were entirely sequenced and germline biallelic mutations in
MUTYH were detected in the affected members of the family.
Subsequent studies have unequivocally established the association
between MUTYH germline mutations and predisposition to ade-
nomas and CRCs, confirming the preponderance of G:C to T:A
transversions as a molecular feature of MAP-associated tumors
(reviewed by Lipton and Tomlinson, 2004, and by Sampson et al.,
2005).

In addition to transversions along APC resulting in stop codon
formation and gene inactivation, somatic GGT to TGT transver-
sions, giving rise to the G12C KRAS activating-mutation, were
frequently detected in MAP CRCs (Lipton et al., 2003; Jones
et al., 2004; Nielsen et al., 2009). Boparai and collaborators (2008)
reported that not only hyperplastic polyps (HPs) and sessile
serrated adenomas (SSAs) can be a typical expression of MAP,
but that they also have a characteristic molecular background.
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In particular, KRAS gene mutations were shown to be present
in 70% of HP/SSA in MAP patients, compared with 17% of
HP/SSA in sporadic cases. Of relevance, G:C to T:A transver-
sions accounted for 94% of the mutations in MAP-HP/SSA, with
respect to 29% in sporadic HPs/SSAs. Moreover, comparing ade-
nomas and HPs/SSAs in MAP patients, APC mutations were
only detectable in adenomas, indicating two possible tumor path-
ways, one leading to adenomas via APC mutations, and the other
leading to HPs/SSAs via KRAS activation.

On the whole, MAP cancers appear to follow a distinct pro-
gression pathway compared to pathways occurring in CRCs,
i.e., with either chromosomal instability (CIN) or with high-
frequency microsatellite instability (MSI-H). However, some fea-
tures overlap with CIN phenotype, including frequent APC/KRAS
mutations, while others with MSI-H phenotype, including
unfrequent LOH at APC locus and near-diploid karyotype
(Lipton et al., 2003; Johnson et al., 2005). Tumors from both
monoallelic and biallelic MUTYH mutations carriers often show
low-frequency microsatellite instability (MSI-L), suggesting func-
tional interactions between BER and MMR systems (Cleary et al.,
2009). Interestingly, HLA class I expression loss has been reported
in both MAP and MMR-deficient tumors (De Miranda et al.,
2009), suggesting that the mutagenic background of these tumor
types triggers the generation of aberrant peptides likely act-
ing as tumor neo-antigens. The elicited immune reaction might
then selectively favor the outgrowth of cancer cell clones that
have lost HLA class I expression, avoiding cancer cell recogni-
tion and elimination by the immune system (De Miranda et al.,
2009).

In sporadic carcinogenesis, the issue of a possible role of
MUTYH has been addressed by Halford and collaborators
(2003) by screening a large sample of sporadic CRCs for somatic
alterations of MUTYH, as well as of MTH1 and OGG1 BER genes:
somatic inactivation of these genes does not appear a frequent
mechanism directly involved in colorectal tumorigenesis. On the
contrary, a reduced expression of MUTYH has been reported in
human gastric cancer, where reduction in protein amount proved
to be associated with a poor prognosis (Shinmura et al., 2011).

THE MUTYH GENE
The MUTYH gene (previously termed MYH or hMYH), the
human ortholog of the Escherichia coli mutY, was first cloned
by Slupska and coworkers in 1996; it is about 11,200 bp in
length, is localized on the short arm of chromosome 1 (1p32.1-
p34.3), and contains 16 exons (NCBI Genomic refseq ID seq ID:
NG_008189.1).

Many MUTYH genetic variants have been reported, having or
likely not having a phenotypic effect; in this regard, the Leiden
Open Variation Database represents an extremely valuable tool
to evaluate gene mutations that have been identified both in
healthy and affected subjects (http://chromium.liacs.nl/LOVD2/
colon_cancer/home.php?action=switch_db).

MUTYH encodes a DNA glycosylase that is expressed both in
the nucleus and in the mitochondria. The coding sequence gener-
ates three classes of mRNAs (namely α, β, and γ) that correspond
to a total of 10 possible mature transcripts; these transcripts
are produced by three independent transcription initiation sites

and by the occurrence of different exon 3 alternative splicing
events, and correspond to seven protein isoforms (Ohtsubo et al.,
2000; reviewed by Parker and Eshleman, 2003). In accordance
with the Human Genome Variation Society nomenclature, the
longest transcript (transcript <5: 1945 bp) is used as coding ref-
erence sequence (NCBI transcript refseq ID: NM_001128425.1).
Transcripts starting from the first AUG retain the sequence that
corresponds to the N-terminal aminoacids likely acting as mito-
chondrial targeting signal (MTS) (Ohtsubo et al., 2000). The
relative amounts of each of the ten possible mRNAs in different
tissues as well as their subcellular localization are only par-
tially characterized. Among different human tissues, the largest
total amount of mRNA has been observed in thymus, adult
brain, testis, and kidney, whereas heart, salivary gland, liver,
and pancreas show lower MUTYH expression levels compared
to other tissues (Ohtsubo et al., 2000). Very recently, it has
been reported that not only MUTYH expression is different
in various organs and positively correlated with proliferative
activity, but also the first exons of the gene are used in a
tissue-specific manner. In addition, transcripts encoding mito-
chondrial proteins have been shown to predominate in mus-
cle tissues, while the highest amount of transcripts encoding
nuclear proteins have been detected in testes and colon (Plotz
et al., 2012). As example of protein expression, Figure 1 shows
the diffuse localization of MUTYH in normal cells of colon
epithelium.

THE BER SYSTEM AND THE MUTYH PROTEIN
A number of deleterious processes and pathological conditions
may result from DNA oxidation, including initiation and pro-
gression of cancer. DNA oxidation arises from its interaction with
exogenous molecules or from the action of reactive oxygen species
(ROS); these can be generated by the metabolism of exogenous
compounds as well as by cellular processes including respiration
and inflammation.

The BER system is a cellular defense against the damaging
effects of ROS. Generally, BER is initiated by damage-specific
DNA glycosylases that recognize oxidized bases and excise the
damaged nucleotides, allowing the restoration of the parental
DNA sequence by further processing of endonucleases, poly-
merases, and ligases (reviewed by Fortini and Dogliotti, 2007;
van Loon et al., 2010). A very well known oxidation product is

FIGURE 1 | Diffuse localization of wild-type MUTYH protein in colonic

epithelial cells, as evidenced with specific antibodies (Courtesy of Dr.

M. Risio).
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the highly mutagenic 7,8-dihydro-8-oxoguanine (8-oxoguanine
or 8-oxoG) which is able to form both 8-oxoG:C and 8-oxoG:A
stable base pairs. Failure to remove the incorporated 8-oxoG
before the next round of DNA replication results in G:C to T:A
transversion mutations (reviewed by David et al., 2007).

The occurrence of 8-oxoG in the DNA arises from two path-
ways: incorporation into DNA of the oxidized precursor 8-oxo-
dGTP during DNA synthesis and direct oxidation of guanine
in DNA. The 8-oxo-dGTP can be removed from the nucleotide
pool by the oxidized purine nucleoside triphosphatase MTH1,
which prevents the selection of the oxidized guanine by poly-
merases during DNA replication. In addition to this sanitizing
mechanism, two other BER enzymes act as second line of defense,
namely OGG1 and MUTYH. OGG1 has a high specificity for the
8-oxoG:C and removes the oxidized guanine, allowing restoration
of a G:C base pair, while MUTYH is a DNA glycosylase able to rec-
ognize and remove either adenine from a mismatch with 8-oxoG,
or 2-OH-adenine from a mismatch with guanine (reviewed by
Nakabeppu et al., 2004; Ushijima et al., 2005).

MUTYH is the functional counterpart of E. coli MutY and
is a highly evolutionarily conserved protein; it belongs to a
large superfamily of structurally related DNA glycosylases with
a signature helix-hairpin-helix motif followed by a Gly/Pro-rich
(denoted as HhH-GPD domain) region. This domain contains
the active site pocket responsible for the 8-oxoG:A mispair
recognition and for the glycolytic excision of the substrate ade-
nine (Lee and Verdine, 2009). MUTYH shows an N-terminal
domain containing, apart from the mitochondrial localization
signal (MLS) and a putative nuclear localization signal (NLS),
the replication protein A (RPA) interacting motif; the C-terminal
domain contains a NLS and the proliferating cell nuclear antigen
(PCNA) binding region. The interaction with PCNA is crucial
in replication-coupled repair in order to increase and direct the
glycosylase activity of MUTYH to the newly synthesized nascent
DNA strand, thus preventing replication errors caused by a
8-oxoG template (Hayashi et al., 2002; reviewed by Parker and
Eshleman, 2003; van Loon et al., 2010). In vitro experiments have
shown that MUTYH physically interacts with the MSH2/MSH6
heterodimeric complex via the MSH6 subunit, demonstrating
that this MMR protein complex stimulates the glycosylase activ-
ity of MUTYH by enhancing the protein affinity for the 8-oxoG:A
mismatches (Gu et al., 2002; Bai et al., 2005). Besides multi-
ple interactions with replication and repair proteins, MUTYH
activity can also be modulated by post-translational modifica-
tions that regulate protein localization and level (Hirano et al.,
2003).

The 8-oxoG accumulation in nuclear and in mitochondrial
DNA triggers two distinct cell death pathways that, although inde-
pendent of each other, are both associated with BER and initiated
by MUTYH activity (Ichikawa et al., 2008; Oka et al., 2008).
Oka and coworkers (2008) demonstrated that the knockdown of
MUTYH results in escaping from both types of pathways and pro-
posed a tumor suppressor role of MUTYH due to its capability to
induce death of pre-cancerous cells that have accumulated high
levels of 8-oxoG in nuclear or in mitochondrial DNA.

ROS can be produced by the cellular components of the
inflammation; oxidative stress and consequent DNA damage play

a key role in the pathogenesis of ulcerative colitis (UC), a form
of inflammatory bowel disease characterized by an increased
risk of CRC. In particular, the UC-associated tumors display
both an accumulation of 8-oxoG and an altered expression
of MUTYH protein in cancer cells (Gushima et al., 2009).
Accordingly, in a mouse model of UC, Mutyh has recently
been shown to play a major role in maintaining intestinal
integrity by influencing the inflammatory response (Casorelli
et al., 2010).

GERMLINE MUTATIONS OF MUTYH IN MAP PATIENTS
Approximately 30% of APC mutation-negative polyposis cases
can be attributed to MUTYH biallelic mutations; on the whole,
these account for less than 1% of all CRC cases (reviewed
by Cheadle and Sampson, 2007; Cleary et al., 2009). To date,
nearly 300 variants have been identified at the MUTYH locus,
including about 80 pathogenic mutations distributed through-
out the gene and located at positions corresponding to dif-
ferent functional domains of the protein (see: Leiden Open
Variation Database). Although various types of alterations have
been reported in MAP patients, including nonsense, small inser-
tion/deletion, and splicing variants, missense mutations repre-
sent the great majority of the detected changes. A number of
variants appear recurrent in different populations, with Y179C
(previously annotated as Y165C) and G396D (previously anno-
tated as G382D) missense mutations accounting together for
about 70% of germline alterations found in European patients
(reviewed by Cheadle and Sampson, 2007); however, in Asian
populations, Y179C and G396D must be rare, since neither
mutation has been found in MAP patients. On the other
hand, other mutations have proven to be recurrent in patients
from particular populations (reviewed by Poulsen and Bisgaard,
2008). Taken together, these findings indicate that sequenc-
ing of the entire MUTYH open reading frame has to be per-
formed for the genetic testing, especially in populations of mixed
ethnicity.

Recently, a large gene deletion spanning exons 4–16 has been
found in two unrelated patients showing an attenuated pheno-
type; due to this observation, appropriate methods to detect
gene rearrangements should be considered, at least for patients
carrying either a single heterozygous mutation or a (appar-
ently) homozygous disease-causing mutation (Rouleau et al.,
2011; Torrezan et al., 2011). Besides rare mutations, a polymor-
phic allele (SNP rs3219468: G>C) associated with a significant
reduction of a MUTYH transcription product has recently been
implicated in CRC risk (Plotz et al., 2012).

The identification of germline mutations in patients with
inherited CRC syndromes, including MAP, is extremely impor-
tant to allow mutation carriers to be included in cancer surveil-
lance programs which have been proven to save lives. Many of
the identified disease-gene mutations result in loss-of-function of
the encoded protein, indicating a clear pathogenic significance.
However, significance remains uncertain for a large proportion of
the identified variants, some of which may contribute to increase
the risk of cancer. For MAP, the major problem is represented by
missense mutations, the pathogenetic role of which cannot eas-
ily be assessed; this leaves open questions about their diagnostic
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interpretation and about counseling management of the patients
in whom they are detected.

Since MUTYH mitigates the mutagenic potential of 8-oxoG
by preventing accumulation of transversion mutations, mutY-
deficient E. coli cells have been used to study if the human
heterologous mutated proteins have the ability to complement
the mutator phenotype in these cells (Chmiel et al., 2003; Bai
et al., 2005, 2007). Analogously, to characterize the functional
effect of some missense mutations, human proteins have been
expressed in Mutyh-defective mouse fibroblasts and their biolog-
ical activity has been related to the 8-oxoG level in the genome
and to the response of cells following oxidative stress induc-
tion (Molatore et al., 2010). Further, lymphoblastoid cell lines
derived from MAP patients have been established and immuno-
precipitated proteins from whole cell extracts have been tested
in vitro (Alhopuro et al., 2005; Parker et al., 2005). Owing
to the capacity of MUTYH to recognize and excise adenine
from DNA duplexes containing either 8-oxoG:A or G:2-OH-A

mismatches, in vitro tests with purified proteins have been per-
formed. By using different oligonucleotides containing specific
mismatches as substrate, the enzymatic activities of bacterial
(Al-Tassan et al., 2002; Chmiel et al., 2003; Livingston et al.,
2005), mouse (Hirano et al., 2003; Pope et al., 2005; Ushijima
et al., 2005; Yanaru-Fujisawa et al., 2008), and human (Bai et al.,
2005, 2007; Ali et al., 2008; Kundu et al., 2009; D’Agostino et al.,
2010) purified proteins have been investigated. The glycosylase
activity has been evaluated by measuring the amount of cleavage
fragments derived from DNA duplexes, while the DNA-binding
capacity has mainly been investigated through the formation of
DNA-protein complexes in electrophoresis mobility shift assay
(EMSA). Since surface plasmon resonance (SPR) technology is
extremely sensitive to detect subtle and time-dependent changes
in DNA-protein interaction and to investigate the enzymatic
activity on different DNA substrates, this method has successfully
been used to evaluate the binding of some mutated human
MUTYH proteins to an 8-oxoG:A-containing DNA substrate

FIGURE 2 | Structure-based analysis of mutant MUTYH protein by

homology modelling (Site Directed Mutator): the figure shows the

possible switch of the MUTYH protein folding when a single

aminoacid residue is mutated in the NUDIX domain. (A) Three

dimensional structure of the NUDIX domain of MUTYH protein (PDB
database); (B) Protein folding of the wild-type NUDIX domain.
(C) Protein switch of the NUDIX domain containing the substitution
G457W.
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(D’Agostino et al., 2010). Recently, computational methods based
on amino acids substitutions within homologous proteins with
known 3D structures have been applied to predict changes of
different proteins, thus correlating amino acids substitutions
with functional effects possibly resulting in phenotype changes
(Worth et al., 2007). As for other proteins, the understanding
of the mechanisms by which mutations affect MUTYH protein
structure can provide new insights into its activity and, ulti-
mately, on the pathogenicity of gene mutations. Figure 2 shows
an example of the structure-based analysis of MUTYH mutated
proteins.

On the whole, the majority of MUTYH tested variants
have been found to be totally or partially devoid of DNA-
glycosylase, with variable adenine-removal residual capability. As
an example, functional assays demonstrated that G396D capa-
bility is far more similar to the wild-type protein compared
to Y179C missense mutation. Accordingly, clinical data indi-
cate a milder phenotypic effect of G396D compared to Y179C.
Indeed, Nielsen and collaborators (2009) reported that MAP
patients with homozygous G396D mutations or with com-
pound heterozygous G396D/Y179C mutations show a milder
phenotype when compared to homozygous carriers of Y179C
mutations.

The expression pattern of MUTYH mutated proteins has been
evaluated on CRC tissue sections to test whether immunohis-
tochemistry can be used in clinical practice to identify carri-
ers of germline mutations with functional effects. However, the
specificity of the expression pattern has proven to be uncertain
and immunostaining does not seem an appropriate tool to
discriminate CRC tissues from patients with or without biallelic

germline mutations (Di Gregorio et al., 2006; van der Post et al.,
2009).

CONCLUDING REMARKS
During the last 10 years MAP has clearly become a distinct cancer-
susceptibility syndrome with respect to both FAP and AFAP.
However, in order to refine clinical guidances, some aspects still
poorly understood that concern the function of MUTYH protein
deserve to be elucidated. Unsolved problems deal with genotype–
phenotype correlations, pathogenicity of unclassified variants,
cross-talk between BER and other DNA repair pathways includ-
ing MMR, overlapping between MAP and HNPCC syndromes,
and last, but not least, tumor suppressor role of MUTYH in
pre-cancerous cells subjected to oxidative stress. A better under-
standing of the regulation of MUTYH isoforms, of their relative
expression in different tissues, and of their subcellular fate, will
likely allow us to clarify some of the above issues. By taking into
account the complexity of the expression pattern, the effect on
splicing efficiency and accuracy should be evaluated for a number
of MUTYH variants that have been identified in patients with-
out clear disease-causing mutations. Indeed, a fraction of gene
mutations, including synonymous nucleotide changes, have been
shown to have roles in various diseases or to modify disease
severity through splicing perturbation rather than other molec-
ular mechanisms (reviewed by Cartegni et al., 2002; Wang and
Cooper, 2007).
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