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Purpose: To establish and evaluate non-invasive models for estimating the risk of non-
sentinel lymph node (NSLN) metastasis and axillary tumor burden among breast cancer
patients with 1–2 positive sentinel lymph nodes (SLNs).

Materials and Methods: Breast cancer patients with 1–2 positive SLNs who
underwent axillary lymph node dissection (ALND) and contrast-enhanced spectral
mammography (CESM) examination were enrolled between 2018 and 2021. CESM-
based radiomics and deep learning features of tumors were extracted. The correlation
analysis, least absolute shrinkage and selection operator (LASSO), and analysis of
variance (ANOVA) were used for further feature selection. Models based on the selected
features and clinical risk factors were constructed with multivariate logistic regression.
Finally, two radiomics nomograms were proposed for predicting NSLN metastasis and
the probability of high axillary tumor burden.

Results: A total of 182 patients [53.13 years ± 10.03 (standard deviation)] were included.
For predicting the NSLN metastasis status, the radiomics nomogram built by 5 selected
radiomics features and 3 clinical risk factors including the number of positive SLNs, ratio of
positive SLNs, and lymphovascular invasion (LVI), achieved the area under the receiver
operating characteristic curve (AUC) of 0.85 [95% confidence interval (CI): 0.71–0.99] in
the testing set and 0.82 (95% CI: 0.67–0.97) in the temporal validation cohort. For
predicting the high axillary tumor burden, the AUC values of the developed radiomics
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nomogram are 0.82 (95%CI: 0.66–0.97) in the testing set and 0.77 (95%CI: 0.62–0.93) in
the temporal validation cohort.

Discussion: CESM images contain useful information for predicting NSLN metastasis
and axillary tumor burden of breast cancer patients. Radiomics can inspire the potential of
CESM images to identify lymph node metastasis and improve predictive performance.
Keywords: breast cancer, radiomics, contrast-enhanced spectral mammography, non-sentinel lymph node
metastasis, axillary tumor burden
1 INTRODUCTION

The incidence of breast cancer is increasing, and breast cancer
has overtaken lung cancer as the world’s leading cancer (1).
Whether axillary lymph node metastasis occurs in breast cancer
patients is critical for treatment planning and prognostic
evaluation. Sentinel lymph node biopsy is a common method
to identify the axillary lymph node metastasis status (2). For
patients with positive sentinel lymph nodes (SLNs), axillary
lymph node dissection (ALND) is usually necessary (3).
However, previous studies have proven that, for some breast
cancer patients, axillary metastases are limited to the SLNs (4).
Thus, these patients may get no therapeutic benefit from ALND
and suffer from multiple complications after the surgery (5).

The ACOSOG Z0011 trial demonstrated, for some patients
with 1–2 positive SLNs who undergo breast-conserving surgery,
ALND is unnecessary (6). The guideline from China Anti-
Cancer Association recommends that breast cancer patients
with 1–2 positive SLNs who meet the criteria of ACOSOG
Z0011 trial can only perform SLN biopsy and avoid ALND (7).
However, some breast cancer patients with 1–2 positive SLNs
may fall outside Z0011 guideline. For example, approximately
80% of breast cancer patients do not perform the breast-
conserving surgery in China (8). For these patients, ALND is
necessary in the clinic to achieve accurate axillary lymph node
(ALN) staging, which helps future medical decisions and
prognosis evaluation (9). Developing a non-invasive and
effective prediction model suitable for patients with 1–2
positive SLNs is able to avoid ineffective ALND and achieve
personalized cancer management.

Furthermore, after the ACOSOG Z0011 trial, the
assessment of lymph node status is no longer limited to
axillary metastasis but more focused on the axillary tumor
burden that indicates the extent of lymph node involvement
(10). If the patient has four or more positive ALNs, that is
h node; SLN, sentinel lymph node;
CESM, contrast-enhanced spectral
shrinkage and selection operator;
ovascular invasion; AUC, area under
CI, confidence interval; ALN, axillary
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considered as high axillary tumor burden. The ACOSOG
Z0011 trial shows that only 13.7% of breast cancer patients
with 1–2 positive SLNs have more than three positive ALNs
(11), which means that most breast cancer patients with 1–2
positive SLNs have a low axillary tumor burden. The patients
with a low axillary tumor burden would be safe from
recurrence without ALND (12). The RxPONDER trial shows
that postmenopausal breast cancer patients with 1–3 positive
ALNs and recurrence score of 25 or less can avoid adjuvant
chemotherapy (13). Therefore, developing a non-invasive
predictive method for the axillary tumor burden is also
important for the personalized cancer management of breast
cancer patients with 1–2 positive SLNs.

Several previous studies have demonstrated the utility of
clinical risk factors, such as the number of positive SLNs, ratio
of positive SLNs, and lymphovascular invasion (LVI) in the
prediction of non-sentinel lymph node (NSLN) metastasis for
breast cancer patients with 1–2 positive SLNs (14, 15). In
predicting the SLN status in breast cancer patients, researchers
evaluated the CancerMath model to estimate the probability of
having positive lymph nodes and found that addition of
prognostic factors human epidermal growth factor receptor 2
(HER-2) and Ki67 could help in improving the classification
performances (16, 17). Nevertheless, the predictive ability of
clinical risk factors is limited.

Contrast-enhanced spectral mammography (CESM) uses
mammography in combination with contrast agent to increase
diagnostic capability through detection of areas of increased
vascularization in the breast, being useful to diagnose breast
disease, indicate preoperative staging of breast cancer, and
evaluate the response to neoadjuvant chemotherapy (18, 19).
CESM also increases the detection of breast tumors, especially in
dense breasts (20). Massafra et al. (21) proposed an automated
expert system for discriminating benign and malignant breast
cancer lesions based on radiomics analysis of CESM images.
Even in the case of metastatic neoplastic disease, CESM
represents a valid method to accurately diagnose (22).
However, the features of CESM images in identifying lymph
node metastasis are not obvious.

Radiomics captures intratumoral heterogeneity in a non-
invasive way by extracting large amounts of image features
from radiographic images (23). It is potentially applicable to
aid cancer detection, diagnosis, assessment of prognosis, and
prediction of response to treatment (24). Radiomics has achieved
some encouraging outcomes in predicting lymph node
metastasis (25). Mao et al. (26) established a CESM-based
May 2022 | Volume 12 | Article 823897
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radiomics nomogram for the prediction of axillary lymph node
metastasis in breast cancer with good performance.

Cong et al. (27) studied the relationship between imaging
features and NSLN metastasis in mammography and ultrasound
and found that tumor size and the number of positive SLNs,
mammographic mass margins, and ultrasonographic vascularity
were independent predictors of NSLNmetastasis in SLN-positive
patients of breast cancer. Based on this clinical research, a
radiomics nomogram, incorporating CESM-based radiomics
score and several clinical risk factors, is proposed in this study
to differentiate the status of NSLN metastasis. Besides, we further
studied the non-invasive method for axillary tumor burden
estimation and developed a radiomics nomogram for
predicting the probability of high axillary tumor burden (>3
positive ALNs) for 1–2 positive SLN patients.
2 MATERIALS AND METHODS

We retrospectively collected the clinical data and CESM images
of 1–2 positive SLN patients. A radiomics model, a deep learning
model, and the model combining deep learning features and
radiomics features were compared in predicting NSLN
metastasis. Finally, two radiomics nomograms predicting
respectively NSLN metastasis status and the probability of high
axillary tumor burden were built and evaluated.

2.1 Study Participants
This retrospective study was approved by the ethics committee of
Yantai Yuhuangding Hospital. We reviewed 229 breast cancer
patients with 1–2 positive SLNs who underwent ALND and
CESM examination in the Department of Breast Surgery between
Frontiers in Oncology | www.frontiersin.org 3
January 2018 and October 2021. Incomplete clinical data,
bilateral lesions, multifocal tumor, and incomplete tumor on
CESM images were excluded from our study. The final dataset
included 182 patients, of whom 56 patients were NSLN-positive
and 126 patients were NSLN-negative. There are 34 patients with
high axillary tumor burden and 148 patients with low axillary
tumor burden in the dataset. A total of 151 patients between 2018
and 2020 were split randomly into training and testing sets in a
ratio of 8:2. The temporal validation cohort contained 31 patients
in 2021. The participant selection is detailed in Figure 1.

2.2 Sentinel Lymph Node Biopsy
SLN mapping was performed using lymphoscintigraphy with
methylene blue dye. On the day of the operation, technetium-99
sulfur colloid (Beijing Shihong Pharmaceutical Development
Center, Beijing, China) was injected intradermally above the
tumor, peritumorally, or at the areola of the breast. Methylene
blue dye (Jumpcan, Taixing, China) was injected 15 min before
surgery. During surgery, the SLN was localized by using a g-
probe (Neoprobe Corporation, Dublin, OH, USA). The SLN was
defined as a blue lymph node and/or a lymph node with an ex
vivo radioactive count ≥10% of the ex vivo radioactive count of
the hottest lymph node; the other axillary lymph nodes were
defined as NSLNs.

2.3 Pathological Examinations
All axillary lymph nodes including SLNs and NSLNs were
subjected to standard evaluation with H&E-stained sections.
The nodal tissue was fixed in 10% formalin and embedded in
paraffin. After this fixation, serial sections of the lymph nodes
were obtained for definitive analysis. Tumor deposits were
categorized as isolated tumor cells (≤0.2 mm), micrometastases
A B

FIGURE 1 | Flow diagram of the study exclusion criteria in the training and testing sets (A) and temporal validation cohort (B). CESM, contrast-enhanced spectral
mammography; SLN, sentinel lymph node; NSLN, non-sentinel lymph node; ALND, axillary lymph node dissection.
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(0.2–2 mm), or macrometastases (>2 mm). Macrometastases and
micrometastases were considered as positive lymph nodes.

2.4 Contrast-Enhanced Spectral
Mammography Image Acquisition
All patients underwent CESM examination before ALND. CESM
images were obtained using the Senographe Essential all-digital
mammography system (GE Healthcare, Inc., Princeton, USA),
including low-energy and recombined images in Digital Imaging
and Communications in Medicine (DICOM) format. After
injecting the intravenous iodine contrast agent (1.5 ml/kg body
weight, flow rate of 3.0 ml/s), the mammograms including
craniocaudal (CC) and mediolateral oblique (MLO) views are
obtained around 2 min later, while the breast remains
compressed. After low-energy and high-energy exposure, eight
images are collected within 5 min. Then, four recombined images
are obtained after the subtraction of low-energy and high-energy
images for each position on the workstation. Each image was in
DICOM format with the image size of 3,062 × 2,394.

2.5 Radiomics and Deep Learning Models
The overall workflow of this study is illustrated in Figure 2.
Firstly, a deep learning-based breast tumor segmentation method
was used to automatically delineate breast tumor regions on
CESM images with CC and MLO views. CESM image features in
tumor regions, including radiomics and deep learning features,
are extracted, from which several key features are further
Frontiers in Oncology | www.frontiersin.org 4
selected. Finally, prediction models are developed by
combining the selected image features and clinical risk factors.
The area under the receiver operating characteristic (ROC) curve
(AUC) (28) and decision curve analysis (DCA) (29) are used for
evaluating these models. Nomograms are also given to show
understandable outcome measures.

2.5.1 Automatic Breast Tumor Segmentation
The automatic segmentation of breast cancer tumors was carried
out by U-Net, a commonly used deep learning-based medical
image segmentation method, which has achieved good
performance in lots of medical image segmentation tasks (30,
31). The architecture and parameters of U-Net is shown in
Figure 3. The low-energy and recombined images with the
same view were used as the input of the network. Before
training, the gray-level range of each image was adjusted via
the self-adaptive contrast enhancement. Then, the intensity scale
was normalized to (0,1) by max–min normalization as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(1)

where Xnorm was the normalized gray matrix, the X was the gray
matrix of the original image, Xmin denoted the minimum gray
value, and Xmax was the maximum gray value.

In order to augment and increase the training dataset, we
applied the horizontal flip, rotation in a range of ±10 degrees,
horizontal and vertical offset by 10%, and zoom in and out by
FIGURE 2 | Overview of the construction of the prediction models. LASSO, least absolute shrinkage and selection operator; ANOVA, analysis of variance; ROC,
receiver operating characteristic.
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10%. The size of the augmented dataset is 10 times larger than
the original training dataset. The U-Net loss function Ltotal was
determined as the sum of the dice loss LDice and the cross-
entropy loss LCE (32). The hyperparameter learning rate of the
optimizer was set to 0.01. The batch size was set to 4, and training
was conducted for 100 epochs.

As the U-Net is a supervised segmentation method, label data
are needed to train the network. In this study, the labels of tumor
regions of interest (ROIs) were manually delineated by two
experienced breast radiologists (one with 7 years of experience
in breast imaging, and another with 10 years of experience in
breast imaging) blinded to pathological outcomes in CC and
MLO images via the MIM software (version 6.8.2, MIM Software
Inc., Cleveland, OH, USA). All disagreements were resolved by a
senior breast radiologist with 15 years of experience in breast
imaging. All the CESM images in our dataset have manual tumor
delineations, which are used not only to train the segmentation
network but also to evaluate the segmentation performance.

2.5.2 Feature Extraction
Two groups of image features were extracted. The first group
contains radiomics features defined by the Imaging Biomarker
Standardization Initiative (33) including shape, first-order
statistics, and texture features. We used logarithm, square root,
square, and exponential transformation to enhance image
contrast, wavelet transform decomposing image signal into
different subbands to enhance the details of images, and
gradient transformation to highlight the images’ edge
information. Radiomics features were extracted not only from
Frontiers in Oncology | www.frontiersin.org 5
the ROIs in original CESM images but also from these processed
images. A total of 3,738 features were extracted, as shown in
Supplementary Figure S1. Open-source python package
pyradiomics v3.0.1 (34) was used for the above radiomics
feature extraction.

The second group was composed of deep learning features
extracted by pretrained ResNet-18 network (35). Deep learning
networks have been shown as powerful classifiers and can
automatically extract multilevel abstract and discriminative
features from big data sets. Even though deep learning
algorithms have been improving, few data are still a critical
factor limiting the learning of complex tasks. Transfer learning is
a popular approach for improving classification performance
when image data are limited, especially in the medical field (36,
37). The pretrained models in natural image databases such as
ImageNet are beneficial to train deep learning models for
medical image classification (38). The popular networks for
transfer learning include ResNet, VGG, and AlexNet. ResNet
with the residual blocks not only solves the degradation problem
of deep layer networks but also needs fewer parameters
compared to the traditional convolutional neural network
(CNN). It always shows higher precision in classification (39).

Here, ResNet-18 network-based transfer learning is used to
extract CESM deep learning features. The network structure of
ResNet-18 was shown in Supplementary Figure S2. Images
containing only the tumor ROIs of CESM images were resized
to 224 × 224 with bilinear interpolation and input into the
pretrained ResNet-18 network. The penultimate fully connected
layer output with the length of 512 was used as the deep learning
FIGURE 3 | U-Net architecture.
May 2022 | Volume 12 | Article 823897
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feature group. For each patient, the deep learning features were
extracted from low-energy and recombined images in CC and
MLO views.

2.5.3 Feature Selection and Radiomics
Score Development
After performing Z-score normalization on the extracted features
so that the mean value of each normalized feature vector was 0
and the standard deviation was 1, the correlation analysis was first
used to eliminate redundant features, which have a high
correlation with other features (the absolute values of
correlation coefficients greater than 0.85). Then, a least absolute
shrinkage and selection operator (LASSO) regression (40) model
was fit on the training set. The optimal LASSO alpha parameter
was set by 10-fold cross-validation, and the features with non-zero
coefficients were reserved. We also used analysis of variance
(ANOVA) (41) to further select the features that had significant
differences (P < 0.05) between different patient groups (for
example, NSLN-positive and NSLN-negative patient groups).
Finally, a radiomics score, a deep learning score, and a deep
learning radiomics score were built by linearly combining
respectively the radiomics features, the deep learning features,
and the deep learning radiomics features. The correlation analysis,
LASSO regression, and ANOVA methods were performed by
“python” scikit-learning and pandas package.

2.5.4 Construction and Validation of the
Radiomics Model
Previous studies have proven that the combination of clinical
factors and radiomics score performed better in terms of disease
diagnosis (42). In our study, one-way ANOVA was used to select
the clinical risk factors related to the final prediction results.
Models incorporating the above three radiomics score and the
selected clinical risk factors were consequently developed by
training a multivariable logistic regression in the training set.

The variance inflation factor (43) was used to access the
multicollinearity in our regression models. A variance inflation
factor lower than 10 means no multicollinearity. Besides, the
good fitness for logistic regression was evaluated by the Hosmer–
Lemeshow test (44). ROC curves were applied to measure the
prediction accuracy of different models. The optimal threshold
values (cutoff points) were determined by maximizing the
Youden index, and the AUC, accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) of different models were calculated. The clinical utility of
the proposed models was also evaluated by DCA.

2.6 Statistical Analysis
Categorical variables were compared using the chi-square test or
Fisher’s exact test, while continuous variables were compared
using t-test. DeLong test (45) was used to compare the AUC
difference between different models. P values <0.05 were
regarded as a statistically significant difference. The statistical
analysis was performed with SPSS (version 25.0, www.ibm.com/
products/spss-statistics) and R software (version 4.0.5, R Project
for Statistical Computing, www.r-project.org). The main R
Frontiers in Oncology | www.frontiersin.org 6
packages used in this study included rms, pROC, rmda,
PredictABEL, and ggplot2.
3 RESULTS

3.1 Clinical Characteristics
There are 120 patients in the training group, 31 patients in the
testing group, and 31 patients in the temporal validation cohort.
The clinical characteristics of these patients are shown in
Table 1. Significant differences were found in the number of
positive SLNs (P = 0.008), the ratio of positive SLNs (P < 0.001),
and LVI (P < 0.001) between NSLN-negative and NSLN-positive
patients in the training set. The rates of NSLN metastasis were
31.7% (38 of 120), 32.2% (10 of 31), and 25.8% (8 of 31) in the
tra in ing se t , te s t ing se t , and tempora l va l idat ion
cohort, respectively.

3.2 Automatic Breast Tumor
Segmentation Performance
For automatic breast tumor segmentation, the patients with
incomplete clinical data but high CESM image quality were
also included in the segmentation dataset, which contains a
total of 197 patients’ CESM images. This dataset was split
randomly into the training (n = 177) and testing sets (n = 20).
A 5-fold cross-validation was adopted for U-Net training. The
segmentation performance was evaluated with the Dice score,
and the mean Dice score of the proposed segmentation method is
0.84 ± 0.10 in the testing set. Automatic breast tumor
segmentation results of a patient are shown in Figure 4. The
automatic tumor segmentation results are close to the manual
delineation and show good segmentation accuracy.

3.3 Prediction Performance of
Radiomics Model for Non-Sentinel
Lymph Node Metastasis Status
3.3.1 Feature Selection and Radiomics
Score Development
Feature selections were performed respectively in the radiomics
feature group, the deep learning feature group, and the deep
learning radiomics feature group composed of radiomics
features and deep learning features. The correlation analysis
selected 368 radiomics features and 2,048 deep learning
features because deep learning features have low correlation
with each other. After LASSO logistic regression, 6 radiomics
features, 137 deep learning features, and 8 deep learning
radiomics features with non-zero coefficients were selected in
the three feature groups. Figures 5A, B show the radiomics
feature selection of parameter l. Finally, ANOVA reserved 5
radiomics features, 61 deep learning features, and 6 deep
learning radiomics features. Based on the three feature
selection results, radiomics score, deep learning score, and
deep learning radiomics score were constructed via linear
combinations of the selected features in different feature
groups. The NSLN metastasis status prediction performances
May 2022 | Volume 12 | Article 823897
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of the radiomics score, deep learning score, and deep learning
radiomics score are shown in Table 2. The deep learning
radiomics score and the radiomics score performed better in
the testing dataset when compared to the deep learning score,
which has the best training AUC value but a poor testing AUC
value, owing to the overfitting of the model.

3.3.2 Construction of the Radiomics Model
In one-way ANOVA, the number of positive SLNs (P = 0.008),
the ratio of positive SLNs (P < 0.001), and LVI (P < 0.001) were
proven as effective predictors for identifying the NSLN
metastasis. By combining these clinical risk factors respectively
with the radiomics score, deep learning score, and deep learning
radiomics score, the radiomics model, the deep learning model,
and the deep learning radiomics model were built using
multivariate logistic regression. The radiomics model showed
significantly better performance than that of the deep learning
model and the deep learning radiomics model and achieved an
AUC value of 0.85 [95% confidence interval (CI): 0.71–0.99] in
the testing set, as shown in Table 2. The radiomics model was
Frontiers in Oncology | www.frontiersin.org 7
finally proposed in this study to predict NSLN metastasis status
due to its good prediction performance (P = 0.046 compared to
the clinical model).

Based on the radiomics model, an understandable and visual
nomogram was also constructed for more convenient clinical
application, as shown in Figure 6. The calibration plot for the
nomogram is shown in Supplementary Figure S3. The regression
coefficients of the radiomics score and radiomics model are shown
in Table 3. The variance inflation factors of the four predictors
used in the radiomics nomogram (radiomics score, the number of
positive SLNs, the ratio of positive SLNs, and LVI) ranged from
1.03 to 1.15, which means no multicollinearity.

Figures 7A, B show the ROCs of the radiomics score,
clinical model, and the proposed radiomics model for predicting
NSLN metastasis. AUC values of these models were 0.74 (95% CI:
0.56–0.92), 0.71 (95% CI: 0.53–0.89), and 0.85 (95% CI: 0.71-0.99)
in the testing set, respectively. DeLong test shows that there are
significant differences between the radiomics score and radiomics
model (P = 0.004) and between the clinical model and the
radiomics model (P = 0.001) in the training set and between the
TABLE 1 | Patients’ clinical characteristics.

Characteristic Training set (N = 120) P Testing set (N = 31) P Temporal Validation cohort
(N = 31)

P

Negative
NSLNs

Positive
NSLNs

Negative
NSLNs

Positive
NSLNs

Negative
NSLNs

Positive
NSLNs

Age (years), (mean ± SD), years 55.30 ± 10.15 53.89 ± 10.19 0.483 56.10 ± 10.31 54.80 ± 4.87 0.638 54.70 ± 11.66 58.25 ± 7.61 0.430
Pathology type 0.590 – 0.520
Ductal breast cancer 75 35 21 10 20 7
Lobular breast cancer 5 3 0 0 1 1
Others 2 0 0 0 2 0

Histological grade 0.294 0.170 0.170
1 14 2 3 0 2 0
2 50 25 12 4 18 4
3 13 9 6 6 2 3
NA 5 2 0 0 1 1

Number of positive SLNs 0.008 0.213 0.002
1 61 19 17 6 21 3
2 21 19 4 4 2 5

Number of positive axillary lymph
nodes

– – –

≤3 82 16 21 1 23 5
>3 0 22 0 9 0 3

Ratio of positive SLNs, (mean ± SD) 0.58 ± 0.30 0.78 ± 0.27 <0.001 0.64 ± 0.30 0.82 ± 0.24 0.115 0.41 ± 0.22 0.61 ± 0.21 0.033
ER status 0.249 0.109
Negative 4 4 3 4 1 2 0.089
Positive 78 34 18 6 22 6

PR status 0.725 0.525 0.236
Negative 7 4 6 4 2 2
Positive 75 34 15 6 21 6

HER-2 status 0.458 0.034 0.282
Negative 73 32 18 5 20 8
Positive 9 6 3 5 3 0

Ki67 1.000 0.093 0.746
<14% 41 19 6 6 4 1
≥14% 41 19 15 4 19 7

LVI <0.001 0.353 0.031
Negative 73 22 16 6 20 4
Positive 9 16 5 4 3 4
May 2022 | Volume 12 | Article 8
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clinical model and the radiomics model (P = 0.046) in the testing
set. Furthermore, in the temporal validation cohort, the radiomics
model achieved an AUC of 0.82 (95% CI: 0.67–0.97) and an
accuracy of 74% (95% CI: 0.55–0.0.88) but showed no difference
compared to the clinical model. The prediction performances of
the radiomics model incorporating the radiomics score and the
clinical risk factors are shown in Table 4A.
Frontiers in Oncology | www.frontiersin.org 8
DCA shows that the radiomics model could add more net
benefits than “all treatment” or “none treatment” with the
threshold probability range from 0 to 0.65 in the testing set
and from 0 to 0.1 and 0.5 to 1.0 in the temporal validation set,
as shown in Figures 7C, D. The net benefit was calculated as
the theoretical relationship between the threshold probability
and the relative values of false-positive and false-negative results.
A B C D

FIGURE 4 | An example of breast tumor segmentation. The green lines are automatic segmentation results. The red lines are manual delineations of tumors. For
images with CC views (A, B), the Dice score is 0.91. For images with MLO views (C, D), the Dice score is 0.85. CC, craniocaudal; MLO, mediolateral oblique.
A B

FIGURE 5 | Radiomics feature selection using the LASSO logistic regression. (A) Mean square error (MSE) path using 10-fold cross-validation. The dotted vertical
line means that the optimal value of l was 0.072. (B) LASSO coefficient profiles of the 368 features. Six features with non-zero coefficients were selected at a l
value of 0.072. LASSO, least absolute shrinkage and selection operator.
May 2022 | Volume 12 | Article 823897
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The Hosmer–Lemeshow test shows that the radiomics model
was no deviation from the perfect fit (P = 0.484).

In our research, 5 useful radiomics features were selected from
the CESM image features to develop the radiomics score for NSLN
metastasis status prediction, 3 features from the low-energy image,
and 2 features from the recombined image. The proposed radiomics
model is available on Github1. The heatmap in Supplementary
Figure S4 shows the quantitative difference of the 5 selected
radiomics features between NSLN-negative and NSLN-positive
patients. Table 5A presents that the “NGTDM-Contrast” feature
and “GLSZM-GrayLevelNonUniformityNormalized” feature have
a strong correlation with patients’ NSLN metastasis status, which is
consistent with the study from Dong et al. (46).

3.4 Performance of the Radiomics Model
for Axillary Tumor Burden Prediction
Because of the good performance of the radiomics model on the
prediction of NSLN metastasis status, we used the same methods
to develop a model for axillary tumor burden prediction.
Frontiers in Oncology | www.frontiersin.org 9
For predicting high axillary tumor burden, LASSO regression
selected 27 features from 368 features, and ANOVA further
reserved 12 features, based on which the radiomics score for
predicting the axillary tumor burden was calculated.
Furthermore, the number of positive SLNs (P = 0.019) and the
ratio of positive SLNs (P = 0.001) were the clinical risk factors
related to the occurrence of more than 3 positive SLNs according
to one-way ANOVA. The radiomics nomogram using patients’
radiomics scores and clinical risk factors to predict the
probability of high axillary tumor burden is shown in
Figure 8A. The variance inflation factors of the three
predictors (radiomics score, number of positive SLNs,
and ratio of positive SLNs) ranged from 1.04 to 1.25.
Figures 8B, C show the ROCs of different prediction models.
For the testing set, AUC values of the radiomics score, clinical
model, and radiomics model were 0.76 (95% CI: 0.57–0.95), 0.67
(95% CI: 0.47–0.87), and 0.82 (95% CI: 0.67–0.97), respectively.
In the temporal validation cohort, the AUC of radiomics model
was 0.77 (95% CI: 0.62–0.93). DeLong test shows that there are
TABLE 2 | Summary of the performance of different radiomics scores.

AUC of Training Set (95% CI) P AUC of Testing Set (95% CI) P

Radiomics Score 0.84 (0.76–0.91) 0.402 0.74 (0.56–0.92) 0.805
Radiomics Model 0.91 (0.86–0.97) 0.001 0.85 (0.71–0.99) 0.046
Deep Learning Score 1.0 (1.0–1.0) <0.001 0.44 (0.22–0.65) 0.109
Deep Learning Model 1.0 (1.0–1.0) <0.001 0.53 (0.31–0.75) 0.121
Deep Learning Radiomics Score 0.84 (0.77–0.93) 0.385 0.76 (0.59–0.93) 0.596
Deep Learning Radiomics Model 0.83 (0.76–0.91) 0.070 0.73 (0.52–0.94) 0.821
May 2022 | Volume 12 | Article 8
CI, confidence interval; P value, compared to the clinical model.
FIGURE 6 | Radiomics nomogram to predict NSLN metastasis. (50% probability is used as the classification cutoff point, corresponding to 91 points). SLN, sentinel
lymph node; LVI, lymphovascular invasion.
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TABLE 3 | The corresponding coefficients for establishing the radiomics score (A) and radiomics model (B).

Coefficient Odds ratio (95% CI) P

(A)
Interception -2.23 0.788
Low-Energy_CC_wavelet-LH_GLCM_IMC1* 1.88 6.57 (0.93–46.43) 0.059
Low-Energy_MLO_wavelet-HH_firstorder_Median* -0.09 0.91 (0.86–0.97) 0.003
Low-Energy_MLO_logarithm_NGTDM_Contrast* -3.41 0.03 (0.00–0.26) 0.001
Recombined_CC_waveletLH_GLSZM_GrayLevelNonUniformityNormalized* 0.43 1.54 (1.13–2.10) 0.007
Recombined_CC_exponential_GLDM_DependenceVariance 0.59 1.81 (0.98–3.33) 0.059

(B)
Interception -2.78 <0.001
Radiomics score 1.09 2.96 (1.87–4.69) <0.001
Number of positive SLNs 0.31 1.37 (0.43–4.38) 0.600
Ratio of positive SLNs 3.12 22.70 (2.92–176.46) 0.003
LVI 2.48 11.91(2.99–47.47) 0.004
Frontiers in Oncology | www.frontiersin.org 10
 May 2022 | Volume 12 | Article
Features with * need to be multiplied by 100.
CI, confidence interval; SLN, sentinel lymph node; LVI, lymphovascular invasion.
A B

C D

FIGURE 7 | Receiver operating characteristic (ROC) curves of the radiomics score, clinical model, and radiomics model in the (A) training and (B) testing sets. DCA
of the three models in (C) the testing set and (D) the temporal validation set. The y-axis measures the net benefit. The blue line means the radiomics score. The
green line means the clinical model. The red line means the radiomics model. The horizontal black thin line means the assumption that all breast cancer patients were
NSLN-positive. The gray line means the assumption that all patients were NSLN-negative. DCA, decision curve analysis.
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significant differences between the clinical model and radiomics
model (P < 0.001) and between the radiomics score and
radiomics model (P = 0.049) in the training set, but there is no
significant difference between the different models in the testing
and temporal validation set.
Frontiers in Oncology | www.frontiersin.org 11
Table 4B summarized the prediction performance of different
models, and the radiomics model outperformed the other models
with a prediction accuracy of 79% (95% CI: 0.71–0.86) in the
training set, 75% (95% CI: 0.55–0.88) in the testing set, and 74%
(95% CI: 0.55–0.88) in the temporal validation cohort.
TABLE 4 | Predictive performances of different models.

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

(A)

Radiomics Score Training set 0.78 (0.69–0.85) 0.87 (0.71–0.95) 0.73 (0.62–0.82) 0.60 (0.46–0.73) 0.92 (0.82–0.97)
Testing set 0.68 (0.49–0.83) 1.00 (0.66–1.00) 0.52 (0.30–0.74) 0.50 (0.28–0.72) 1.00 (0.68–1.00)
Temporal validation cohort 0.71 (0.52–0.86) 0.88 (0.47–0.99) 0.65 (0.43–0.83) 0.47 (0.22–0.73) 0.94 (0.67–1.00)

Clinical Model Training set 0.67 (0.57–0.75) 0.90 (0.74–0.97) 0.56 (0.45–0.67) 0.49 (0.37–0.61) 0.92 (0.80–0.97)
Testing set 0.65 (0.45–0.81) 1.00 (0.66–1.00) 0.48 (0.26–0.70) 0.48 (0.26–0.70) 1.00 (0.66–1.00)
Temporal validation cohort 0.77 (0.59–0.90) 0.88 (0.47–0.99) 0.74 (0.51–0.89) 0.54 (0.26–0.80) 0.94 (0.71–1.00)

Radiomics Model Training set 0.85 (0.77–0.91) 0.89 (0.74–0.97) 0.83 (0.73–0.90) 0.71 (0.56–0.83) 0.94 (0.86–0.98)
Testing set 0.81 (0.63–0.93) 1.00 (0.66–1.00) 0.71 (0.48–0.88) 0.63 (0.36–0.84) 1.00 (0.75–1.00)
Temporal validation cohort 0.74 (0.55–0.88) 1.00 (0.60–1.00) 0.65 (0.43–0.83) 0.50 (0.26–0.74) 1.00 (0.75–1.00)

(B)
Radiomics Score Training set 0.79 (0.71–0.86) 0.96 (0.76–1.00) 0.76 (0.66–0.83) 0.48 (0.33–0.63) 0.99 (0.92–1.00)

Testing set 0.68 (0.49–0.83) 0.89 (0.51–0.99) 0.60 (0.37–0.79) 0.47 (0.24–0.71) 0.93 (0.64–1.00)
Temporal validation cohort 0.61 (0.42–0.78) 1.00 (0.31–1.00) 0.57 (0.37–0.75) 0.20 (0.05–0.49) 1.00 (0.76–1.00)

Clinical Model Training set 0.64 (0.55–0.73) 0.86 (0.64–0.96) 0.59 (0.49–0.69) 0.32 (0.21–0.46) 0.95 (0.85–0.99)
Testing set 0.65 (0.45–0.81) 0.78 (0.40–0.96) 0.59 (0.37–0.79) 0.44 (0.21–0.70) 0.87 (0.58–0.98)
Temporal validation cohort 0.87 (0.70–0.96) 1.00 (0.31–1.00) 0.86 (0.66–0.95) 0.43 (0.12–0.80) 1.00 (0.83–1.00)

Radiomics Model Training set 0.79 (0.71–0.86) 1.00 (0.82–1.00) 0.74 (0.65–0.83) 0.47 (0.32–0.62) 1.00 (0.94–1.00)
Testing set 0.75 (0.55–0.88) 0.88 (0.51–0.99) 0.68 (0.45–0.85) 0.53 (0.27–0.77) 0.94 (0.68–1.00)
Temporal validation cohort 0.74 (0.55–0.88) 1.00 (0.31–1.00) 0.71 (0.51–0.86) 0.27 (0.07–0.61) 1.00 (0.80–1.00)
Ma
y 2022 | Volume 12
CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
(A) Models for identifying NSLN metastasis. (B) Models for predicting high axillary tumor burden.
TABLE 5 | Spearman rank correlation between selected features and prediction results.

Image Type Position Feature rs P

(A)
Low-energy image CC wavelet-LH_GLCM_IMC1 0.20 0.015

MLO wavelet-HH_Firstorder_Median -0.33 <0.001
MLO logarithm_NGTDM_Contrast -0.24 0.003

Recombined image CC wavelet-LH_GLSZM_GrayLevelNonUniformityNormalized 0.24 0.003
CC exponential_GLDM_DependenceVariance 0.10 0.203

(B)
Low-energy image MLO Wavelet-HH-firstorder-Median -0.23 0.004

MLO Wavelet-HH-firstorder-Skewness 0.18 0.025
MLO wavelet-HH_GLCM_MCC 0.20 0.783
MLO logarithm-NGTDM-Contrast -0.23 0.005

Recombined image CC Original-GLRLM-LongRunLowGrayLevelEmphasis -0.16 0.048
CC Wavelet-LH-GLSZM-GrayLevelNonUniformityNormalized 0.22 0.007
CC wavelet-HH_firstorder_Kurtosis -0.12 0.145
MLO original_firstorder_10Percentile 0.20 0.013
MLO Original-firstorder-Skewness -0.30 <0.001
MLO logarithm_glrlm_ShortRunLowGrayLevelEmphasis -0.22 0.007
MLO logarithm-GLSZM-GrayLevelNonUniformityNormalized 0.15 0.070
MLO logarithm-GLSZM-LargeAreaEmphasis 0.10 0.223
| Article
Informational Measure of Correlation 1 (IMC1): the complexity of the texture by using mutual information.
Median: the median gray-level intensity within the ROI.
Contrast: the measure of spatial intensity change.
GrayLevelNonUniformityNormalized: the variability of gray-level intensity values in the recombined image, with a lower value indicating a greater similarity in intensity values.
DependenceVariance: the variance in dependence size in the image.
The underlined features are not only related with the NSLN metastasis but also associated with axillary tumor burden.
(A) For NSLN metastasis status prediction. (B) For high axillary tumor burden prediction.
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We also explored the Spearman’s rank correlation between 12
radiomics features and axillary tumor burden as shown in
Table 5B. Most of the selected radiomics features have a
strong correlation with patients’ axillary tumor burden. CESM-
based radiomics features can be used as a significant supplement
to non-invasively identify axillary tumor burden in breast cancer,
assisting clinicians in determining the best treatment plan for 1–
2 positive SLN breast cancer patients.
4 DISCUSSION

In this study, we compared the performance of three models,
including the radiomics model, deep learning model, and deep
learning radiomics model, in predicting NSLN metastasis. In
identifying NSLN-negative and NSLN-positive patients before
Frontiers in Oncology | www.frontiersin.org 12
ALND, the CESM-based radiomics model performed well
with AUC values of 0.85 in the testing set and 0.82 in the
temporal validation cohort, which was better than the other
two models.

Accurately identifying whether a breast cancer patient
with 1–2 positive SLNs has NSLN metastasis without ALND
is important for further treatment and reducing the pain of
patients (47). Zheng et al. (14) reviewed 119 breast cancer
patients, analyzed the clinical predictive factors, including
the invasive tumor size, histological grade, LVI, and
overexpression of HER-2, for predicting NSLN metastasis
in breast cancer patients with 1–2 positive SLNs, and
developed a logistic regression model, yielding the best
AUC of 0.71. In this study, the prediction accuracy can be
improved by adding the radiomics features into the
prediction model.
A

B
C
C

FIGURE 8 | (A) Radiomics nomogram to predict the probability of high axillary tumor burden. ROC curves of the clinical model and radiomics model in the
(B) training and (C) testing sets. ROC, receiver operating characteristic.
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We also proposed a radiomics model to predict the probability
of high axillary tumor burden, which outperformed the radiomics
score and clinical model (AUC of 0.82 and 0.76 and 0.67 in the
testing set, respectively). In the temporal validation cohort, the
radiomics model also demonstrated the AUC value of 0.77 for
predicting the probability of high axillary tumor burden. Previous
studies took advantage of axillary ultrasound to identify axillary
metastasis preoperatively for breast cancer patients (10, 48).
However, axillary ultrasound does not accurately differentiate
between low and high axillary tumor burden (49). As shown in
our results, the CESM-based radiomics model may achieve good
axillary tumor burden prediction, guiding individual treatment and
the evaluation of clinical curative effect.

CESM is a new and reliable imaging technique. The
recombined images in CESM obtained through subtracting
high-energy from low-energy images emphasize breast areas
with greater angiogenesis (22). The enhanced lesion in the
recombined image can provide more detailed information, if
the low-energy images did not show any suspicious lesions,
playing a key role in supplementary screening (50). This new
technique also shows the potential in identifying axillary lymph
node metastases of occult breast cancer (51).

Deep learning has shown superior classification accuracy.
However, it requires a huge amount of data for network
training. Due to the lack of training data, many medical
image-related tasks have applied transfer learning to
improve classification performance (39). Guo et al. (52)
used ultrasound images and a fine-tuned deep learning
radiomics model to identify the risk of NSLN involvement
in primary breast cancer, implying the promising potential of
the deep learning radiomics model in assessing the risk of
ALN metastasis. We also used the pretrained ResNet-18
to extract CESM image features. However, the overall
performance of the deep learning model declined in the
testing set due to overfitting. The combination of deep
learning features with radiomics features and clinical risk
factors did not improve the prediction accuracy. On the
other hand, radiomics aims to extract as many quantitative
features as possible from medical images. The radiomics
model combining predefined radiomics features with other
clinical data has the potential to increase prediction accuracy
(24, 41).

To decrease the man-made factor, the U-Net architecture was
used for accomplishing automatic breast tumor segmentation.
The mean Dice score of automatic segmentation results in the
testing set is 0.84, and the segmentation results are close to the
manual segmentation of the radiologists. However, the
segmentation accuracy is not good enough. The increasing
number of CESM images in the training set or developing
more robust segmentation algorithms will further improve the
accuracy of breast tumor segmentation.

Our retrospective and single-institutional study still had
several limitations. First, as the patients in this study were
enrolled from a single institution and the patient inclusion
criteria were rigorous, the few data limited the performance
of the deep learning model in predicting NSLN metastasis.
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More images and fine-tuning pretrained deep learning
networks might improve the predictive performance.
Furthermore, other machine learning methods, such as
support vector machine and CNN, were not compared with
our model because of the training overfitting of these models
caused by few data. Future studies should include a highly
standardized, large, balanced, and multicenter dataset across
patients and institutions. Moreover, the combination with
multimodality medical images such as multiparametric
breast MRI might further improve the predictive accuracy.
The biological meaning of selected radiomics features is yet
to be clarified, which might limit the clinical value of the
proposed prediction models.

1. https://github.com/54rabbits/CESM_Radiomics_Model.git
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