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Abstract: Predicting the treatment response to antidepressants by pretreatment features would
be useful, as up to 70–90% of patients with major depressive disorder (MDD) do not respond to
treatment as expected. Therefore, we aim to establish a deep neural network (DNN) model of deep
learning to predict the treatment outcomes of antidepressants in drug-naïve and first-diagnosis
MDD patients during severe depressive stage using different domains of signature profiles of clinical
features, peripheral biochemistry, psychosocial factors, and genetic polymorphisms. The multilayer
feedforward neural network containing two hidden layers was applied to build models with tenfold
cross-validation. The areas under the curve (AUC) of the receiver operating characteristic curves
were used to evaluate the performance of the models. The results demonstrated that the AUCs of the
model ranged between 0.7 and 0.8 using a combination of different domains of categorical variables.
Moreover, models using the extracted variables demonstrated better performance, and the best
performing model was characterized by an AUC of 0.825, using the levels of cortisol and oxytocin,
scales of social support and quality of life, and polymorphisms of the OXTR gene. A complex
interactions model developed through DNN could be useful at the clinical level for predicting the
individualized outcomes of antidepressants.

Keywords: major depressive disorder; antidepressant; deep neural network; deep learning;
polymorphisms

1. Introduction

Depression is one of the most common mental illnesses in the world. According
to statistical data from the WHO, in 2021, approximately 280 million people worldwide
were suffering from depression, which is one of the main causes of disability and a health
insurance burden [1]. At its worst, major depressive disorder (MDD) can lead to suicide,
impair psychosocial function, and increase the risk of comorbidities, such as cardiovascular
disease and obesity [2]. At present, the treatment of MDD is mainly based on antidepressant
medication. The main antidepressants currently in use are selective serotonin reuptake
inhibitors (SSRIs) and norepinephrine and serotonin reuptake inhibitors (SNRIs). However,
only 11–30% of patients treated with antidepressants can achieve a complete remission of
their disease, and approximately 50% of patients will not respond at all to the drugs. In
addition, the efficacy of antidepressants usually only manifests after receiving medication
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for 4–8 weeks [3]. Moreover, the treatment response to antidepressants in MDD patients
shows individual differences [4]. Therefore, it is vital to develop a helpful approach to
predict the efficacy of antidepressants and to decrease the overall burden on health care
rather than applying a trial-and-error approach.

Previous studies have demonstrated that certain factors and biomarkers, such as clini-
cal features, psychosocial factors and genetic markers, are associated with the effectiveness
of antidepressants [5,6]. Choi et al. reported that inflammation markers such as high-
sensitivity C-reactive protein (hsCRP) and life stressors might be useful predictors for short-
and long-term treatment responses [7]. In addition, metabolic indices such as blood sugar
and insulin levels are suggested to be biomarkers and to play important roles in the psy-
chopathology of MDD and its treatment outcome [2,8,9], as MDD patients have a high risk
of comorbid type 2 diabetes, obesity, and metabolic syndrome [10]. Furthermore, genetic
polymorphisms contributing to the treatment response to antidepressants have been iden-
tified [11–13]. Three large genome-wide association studies (GENDEP [11], STAR*D [12],
and MARS [13]) have demonstrated an association between genetic variants across the
whole genome and the effectiveness of antidepressants, but the small effect size involved
in the antidepressant effect limits the clinical application of genetic biomarkers [14]. Taken
together, although there are some known predictors associated with MDD and with the
treatment response to antidepressants, establishing a predictive model is necessary to tailor
the treatment outcomes of individual MDD patients [15].

Recently, personalized medication based on pharmacogenetic data has been proposed
to improve the effectiveness of antidepressant treatments in patients with MDD [16]. How-
ever, the complexity of the regulation of gene transcription and its interactions with environ-
mental factors means that straightforward translation of individual genetic information into
tailored treatment is unlikely. When data from genetic factors, environmental factors, and
biomarkers are used in combination, they may lead to the development of useful personal-
ized antidepressant treatment approaches [17–19]. Previous studies have demonstrated
the predictability of the antidepressant response by applying machine learning strategies,
and they suggested that a multivariate approach combining genetic variants and clinical
variables could improve the prediction of the antidepressant treatment response [17–19].
Among the various machine learning techniques, deep learning demonstrated superior
performance in situations with complex data profiles and it has been widely applied in
the field of mental illness [20]. Utilizing deep learning can predict the optimal treatment
response by identifying potential influencing factors, including demographic and genetic
profiles [21]. However, due to the limitations of study designs, medication use, lack of
psychosocial factors, and different genetic backgrounds, a predictive model of the antide-
pressant response still needs to be established for Taiwanese MDD patients. Therefore,
we aimed to establish a model to predict the treatment outcomes of antidepressants in
drug-naïve and first-diagnosis MDD patients at the severe depressive stage. Furthermore,
we aimed to maximize the prediction rate of treatment outcomes of antidepressants using
combination profiles of clinical features, peripheral biochemistry, scores on questionnaires
evaluating psychosocial factors (quality of life, social support, and recent life events), and
genetic variants in these MDD patients.

2. Materials and Methods
2.1. Subjects

The Institutional Review Board for the Protection of Human Subjects at National
Cheng Kung University Hospital approved the research protocol of this study (IRB No. B-
ER-108-058). All participants were recruited from outpatient settings at the National Cheng
Kung University Hospital (NCKUH) and provided written informed consent regarding
their willingness to participate in the research. All MDD patients were diagnosed by an
attending psychiatrist and met the criteria for major depressive disorder according to
the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision
(DSM-IV-TR). The Chinese version of the Mini International Neuropsychiatry Interview
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(MINI) was used to determine the diagnosis and confirm the past medical history. The
MDD patients also met the following inclusion criteria: (i) 18 to 65 years of age and (ii) a
17-item Hamilton Depression Rating Scale (HDRS) score greater than 15 at the time of study
entry. The exclusion criteria were as follows: (i) suffering from a serious suicide tendency;
(ii) severe comorbid psychiatric disease such as schizophrenia, bipolar disorder, etc.; (iii) a
DSM-IV diagnosis of substance or alcohol abuse within the past year; (iv) severe comorbid
physical illness such as cardiovascular, liver, kidney, respiratory system, endocrine, nervous
system disease etc.; (v) patients who were pregnant or planned to become pregnant; (vi)
having previously taken any category of antidepressant.

The enrolled 70 drug-naïve MDD patients (Supplementary Figure S1) all met the
diagnostic criteria of MDD via the DSM-IV-TR criteria at the time of study entry and the
HDRS scores >15, as described previously [22]. In the current study, these MDD patients
were also diagnosed for the first time. All of the MDD patients included in this study had
never received antidepressant treatment prior to enrollment. In addition, the characteristics
of MDD patients between enrolled and not enrolled were shown in the Supplementary
Tables S1–S3, and they were not significantly different between the groups. After entering
the study, they were randomly assigned to either the fluoxetine or the venlafaxine treatment
group and treated for 6 weeks. The initial dose of fluoxetine was 20 mg once daily, which
could be increased by 20 mg in divided doses to a maximal daily dose of 80 mg. The initial
dose of venlafaxine was 37.5 mg once daily for 4 days, titrated to 75 mg once daily, which
could be increased by 75 mg in divided doses to a maximal daily dose of 225 mg. The
dose of the antidepressant was titrated according to the patient’s disease severity by an
attending psychiatrist. Lorazepam was the only allowed concomitant drug, to a maximal
daily dose of 6 mg.

All MDD patients were evaluated at the start of the study and then after 2, 4, and
6 weeks using the HDRS, which was administered by a senior attending psychiatrist. The
same rater administered the scale at admission and during the subsequent weeks for each
patient. Remission of disease was defined as an HDRS score <8 after 6 weeks of treatment.

Additionally, all of the patients had their body mass index (BMI) measured at the start
of the study. BMI was calculated as weight (kg) divided by height squared (m2), and waist
circumference was measured at the level midway between the lateral lower rib margin and
the superior anterior iliac crest.

2.2. Measurements of Peripheral Biochemistry and Genotyping

Fasting blood samples were collected between 8:00 am and 10:00 am. Ten milliliters of
whole blood was withdrawn from the antecubital vein of each patient. Plasma or serum
samples, which were isolated from whole blood after centrifugation at 3000× g for 15 min
at 4 ◦C, were immediately stored at –80 ◦C.

2.2.1. Blood Lipid and Sugar Profile

All blood profiles were measured at the laboratory of the Pathology Research Center
at NCKU Hospital. Blood lipid profiles, including fasting total cholesterol, high-density
lipoprotein (HDL), and triglyceride (TG) concentrations, were detected by enzymatic meth-
ods. Low-density lipoprotein (LDL) was calculated by using the Friedewald formula.
Fasting plasma glucose values were determined using the glucose oxidase method (Syn-
chron CX3, Beckman, Brea, CA, USA). The HbA1c value was measured using the automated
boronate affinity high-performance liquid chromatography method (CLC385; Primus Corp.,
Kansas City, MO, USA). The fasting serum insulin concentration was measured using a
solid-phase radioimmunoassay method (Diagnostic Products Corporation, Los Angeles,
CA, USA). The insulin resistance index, which indicated the homeostasis model assessment-
estimated insulin resistance (HOMA-IR), was calculated as fasting serum insulin value
(µIU/mL) × fasting plasma glucose value (mg/dL)/405 [23]. The homeostasis model
assessment for pancreatic β-cell function (HOMA-β) was calculated as 360 × fasting serum
insulin value (µIU/mL)/(fasting plasma glucose value (mg/dL) − 63) [23].
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2.2.2. Leptin

The fasting plasma leptin level was measured using an ELISA method (Linco Research,
St. Louis, MO, USA). The limit of detection was 0.5 ng/mL, and the intra- and interassay
coefficients of variation were 7% and 9%, respectively.

2.2.3. C-Reactive Protein

The plasma hsCRP level was determined by an enzyme-linked immunosorbent assay
(ELISA) with a human CRP Instant ELISA kit (Bender MedSystem GmbH, Vienna, Austria)
following the manufacturer’s instructions. The limit of detection was 3 pg/mL, and the
intra- and interassay coefficients of variation (CVs) were 6.9% and 13.1%, respectively.

2.2.4. Oxytocin

The oxytocin immunoreactivity level was quantified in duplicate using a commercial
oxytocin ELISA kit (ELISA Kit for oxytocin, USCN Life Science, Houston, TX, USA).
The detectable range for this assay was 12.35–1000 pg/mL. The intra-assay coefficient of
variation (CV) was 10%, and the interassay CV was 12%. The minimum detectable dose of
oxytocin was typically less than 4.87 pg/mL. There was no significant cross-reactivity or
interference between oxytocin and the analogs observed. We validated the assay by taking
a pool of 10 plasma samples from our subjects and spiking it with a series of oxytocin levels
in the physiological range (dilutions from 2–50 pg/mL). The assay accurately reported the
increments in the spiked plasma samples (R2 = 0.998).

2.2.5. SNP Determination and Genotyping

Genomic DNA was extracted from each blood sample using a QIAamp DNA blood
kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The quality
of the extracted genomic DNA was checked by agarose gel electrophoresis analysis. The
DNA was stored at −80 ◦C until use. The single nucleotide polymorphisms (SNPs) of the
genes selected according to our previous studies (including BDNF rs6265, GNB3 rs5443,
HTR2A rs6313, HTR1A rs6295, IL1B rs16944, TPH1 rs1800532, SLC6A4 rs25533, and OXTR
rs53576) [24–27]. They were analyzed using commercially available TaqMan SNP Genotyp-
ing Assays (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
instructions, and amplification and dissociation were carried out using an ABI 7900HT Fast
Real-Time PCR System (Applied Biosystems). The PCR system automatically calculated
the negative derivative of the change in fluorescence. The SNP genotype of each tested
sample was determined using STEPONE software (Applied Biosystems, Foster City, CA,
USA) and confirmed manually. In cases of disagreement, the analysis was repeated.

2.3. Questionnaires
2.3.1. World Health Organization Quality of Life (WHOQoL)

The Taiwanese version of the World Health Organization Quality of Life-BREF (WHOQoL-
BREF) was used to measure the overall and specific quality of life of all subjects [28].
This questionnaire consists of 28 items in four domains: physical, psychological, social
relations, and environment. The reliability and validity of the Taiwanese version of the
WHOQoL-BREF were tested. The test–retest reliability coefficient at intervals of 2 to
4 weeks ranged from 0.76 to 0.80 at the domain level. The internal consistency (Cronbach’s
alpha) coefficients were in the range of 0.70 to 0.77 for the four domains, and the content
validity coefficients were in the range of 0.53 to 0.78 for the item-domain correlations.

2.3.2. Social Support Scale

The social support scale is a 40-item self-report questionnaire that measures perceived
and received social support in routine or crisis conditions. It includes four subscales: (i)
perceived crisis support (PCS); (ii) perceived routine support (PRS); (iii) received crisis
support (RCS); and (iv) received routine support (RRS). The correlations among the four
subscales are greater than 0.43 [29].
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2.3.3. Life Event Scale

The Recent Life Changes Questionnaire (RLCQ) was developed and modified from
the Schedule of Recent Experience (SRE), which was used to collect information concerning
the subjects’ recent life changes [30]. In this study, we used the Taiwanese version of the life
event scale (LES), which contains 39 items regarding representative life change events in
the past 12 months, and the level of perceived stress brought about by recent life-changing
events was recorded [31].

2.4. Cognitive Function
2.4.1. Finger-Tapping Test (FTT)

A broad range of cognitive deficits have been found in MDD patients, among which
motor function, attention, and executive deficits associated with frontal lobe dysfunction
could be the most prominent [22]. Previous studies have reported that poor performance
of attention, psychomotor, and executive function were associated with antidepressant
treatment [32,33], while they were still controversial [34,35]. Therefore, cognitive function
tests, including Finger-Tapping Test (FTT, represented as motor function), Continuous
Performance Test (CPT, represented as attention), and Wisconsin Card Sorting Test (WCST,
represented as executive function), were used in the models to predict the outcomes of
antidepressants in the current study.

The FTT consists of tapping with the index finger on a computer mouse as many
times as possible within 10 s. The test was repeated three consecutive times and performed
randomly across subjects, and the order was kept constant for each subject at each session.
The average number of taps was then calculated [36].

2.4.2. Continuous Performance Test (CPT)

The CPT is a psychological test for humans that primarily measures attention [37,38].
The critical stimulus may be defined either as a particular single stimulus out of the
available set (X task: subjects were asked to respond to the number “9”) or a particular
sequence of two stimuli out of the available set (AX task: subjects were asked to respond
whenever the number “9” was preceded by the number “1”). Only the AX task was used in
the present study. Each test session began with 2 min of practice (repeated if necessary) to
ensure that the subjects knew how to press the button correctly. During the test, numbers
from 0 to 9 were randomly presented for 50 milliseconds each at a rate of one per second.
Each subject underwent two sessions, including the nonmasked task and the 25% masked
task. During the masked session, a pattern of snow was used to toggle the background and
foreground so that the image was visually distorted. The masked CPT is more sensitive in
detecting cognitive deficits. Subject responses were recorded automatically on a diskette
using a CPT machine (Sunrise Systems, version 2.20, Pembroke, MA, USA) [39].

2.4.3. Wisconsin Card Sorting Test (WCST)

We used a computerized version of the WCST conducted by an experienced clinical
neuropsychologist. There were 64 cards in the test. All definitions of indices were as
described in the WCST manual [40]. Subjects were required to match response cards to four
stimuli along one of three dimensions (color, form, and number) based on verbal feedback
(correct or wrong) that did not give any information about the dimensions. The index of
the completed categories and preservative errors were used to assess the performance on
the WCST [41,42].

2.5. Statistical Analysis

Categorical variables are expressed as numbers and percentages, and continuous
variables are expressed as the means ± standard deviation (SD) unless otherwise specified.
Categorical variables were assessed by using chi-square tests. Continuous variables were
assessed by Student’s t-test. If a continuous variable was not normally distributed, the
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statistical analysis was assessed by the Mann–Whitney U test. The two-tailed level of
significance was set at 0.05.

2.6. Machine Learning
2.6.1. Data Preprocessing and Feature Selection

To eliminate any effect of different scales between variables, we standardized all
continuous variables. Limited to our small sample size, we performed feature selection
to address the problem of the “curse of dimensionality”. Univariate feature selection was
applied with a generalized linear model, and sex and age were considered covariates to
correct the main effect of each variable. Finally, we compared the performance of the
machine learning model regardless of whether predictors were extracted.

2.6.2. Feedforward Neural Network Model

All participants were randomly separated into a training dataset (75% of participants)
and an evaluation dataset (25% of participants). Then, a feedforward neural network with
stratified tenfold cross-validation was applied to construct models predicting remission for
fluoxetine or venlafaxine within the training dataset. The first layer of the neural network
was the input layer, in which each unit received a one-dimensional data vector containing
the features of the patient. Our models had two hidden layers, and the number of units
was also set as one hyperparameter. The last layer was the output layer that performed the
classification (Figure 1). To evaluate the performance of the models, the accuracy and areas
under the receiver operating characteristic curves were assessed (Figure 2).
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3. Results
3.1. Demographic Characteristics and Peripheral Biochemistry

We recruited 70 MDD patients who completed the 6-week antidepressant treatment.
Among them, 25 patients achieved a remission (35.7%), and 45 patients did not (64.3%). No
significant differences were observed between the groups in terms of demographics such
as age, sex, and BMI (Table 1). MDD patients with remission had higher levels of oxytocin
(35.9 ± 25.4 vs. 26.5 ± 11.7, p = 0.039) and cortisol (17.2 ± 6.4 vs. 13.0 ± 6.8, p = 0.011).

Table 1. Demographic characteristics and peripheral biochemistry of the remission and
nonremission patients.

Characteristics

Remission Nonremission
Comparison

(N = 25) (N = 45)

Mean ± SD Mean ± SD t/U/χ2 p

Clinical features
Age, years 40.8 ± 15.6 39.1 ± 12.0 536.5 0.754

Gender, male (%) 36.0% 22.2% 0.925 0.336
HDRS scores of baseline 22.9 ± 5.4 24.5 ± 5.6 1.184 0.242
Peripheral biochemistry

BH, cm 161.1 ± 7.2 160.2 ± 8.0 420.5 0.360
BW, kg 58.98 ± 11.56 55.33 ± 11.99 402.0 0.242

BMI, kg/m2 22.69 ± 3.95 21.48 ± 3.75 −1.226 0.226
SBP, mmHg 117.6 ± 19.2 113.2 ± 16.8 −0.952 0.346
DBP, mmHg 76.4 ± 9.6 74.2 ± 9.7 −0.921 0.361

Sugar profiles
AC sugar, mg/dL 96.1 ± 12.7 92.2 ± 11.7 428.5 0.204
Insulin, µIn/mL 6.77 ± 6.97 7.87 ± 9.44 611.5 0.446

HbA1c (%) 5.67 ± 0.44 5.56 ± 0.30 442.0 0.398
HOMA-IR 1.72 ± 1.90 1.95 ± 2.72 549.0 0.794

HOMA-β (%) 76.83 ± 69.15 88.79 ± 68.51 615.0 0.269
Lipid profiles

Cholesterol, mg/dL 202.88 ± 45.84 189.02 ± 40.78 416.5 0.154
TG, mg/dL 113.83 ± 65.07 103.77 ± 70.81 458.5 0.376

HDL, mg/dL 56.57 ± 13.54 55.55 ± 14.05 505.5 1.000
LDL, mg/dL 126.35 ± 41.94 112.27 ± 38.83 413.5 0.224
LDL/HDL 2.32 ± 0.86 2.19 ± 1.07 423.0 0.276

Other biochemical indices
C-peptide, ng/mL 1.98 ± 1.30 1.92 ± 1.83 484.5 0.416
Cortisol, µg/dL 17.2 ± 6.4 13.0 ± 6.8 348.0 0.011 *
Leptin, ng/mL 8.78 ± 6.89 10.88 ± 14.36 480.0 0.388

Oxytocin, pg/mL 35.9 ± 25.4 26.5 ± 11.7 448.0 0.039 *
hsCRP, pg/mL 287,440.0 ± 311,763.7 261,172.3 ± 357,027.6 511.0 0.721

Abbreviations: SD: standard deviation, HDRS: Hamilton Depression Rating Scale, BH: body height, BW: body
weight, BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, HOMA-IR: homeostasis
model assessment-estimated insulin resistance, HOMA-β: homeostasis model assessment for pancreatic β cell
function, TG: triglyceride, HDL: high-density lipoprotein, LDL: low-density lipoprotein, and hsCRP: high sensitive
C-reactive protein. * p < 0.05.
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3.2. Questionnaire Score

We found that remission patients had higher scores on the overall (5.6 ± 1.3 vs.
4.5 ± 1.7, p = 0.015) and physical health (18.7 ± 3.8 vs. 15.6 ± 5.3, p = 0.005) domains of the
WHOQoL (Table 2). In addition, remission patients also had higher scores in all domains
(perceived crisis social support: 24.6 ± 4.6 vs. 20.6 ± 6.0, p = 0.026; received crisis social
support: 30.3 ± 4.6 vs. 24.5 ± 7.7, p = 0.001; perceived routine social support: 23.4 ± 5.4 vs.
19.8 ± 6.6, p = 0.047; received routine social support: 26.5 ± 4.7 vs. 21.5 ± 6.5, p = 0.007) on
the social support scale (Table 2). These results suggested that MDD patients with remission
had a better quality of life and social support before receiving antidepressant treatment.

Table 2. Questionnaire scores of the remission and nonremission patients.

Questionnaire
Remission Nonremission

Comparison
(N = 25) (N = 45)

Mean ± SD Mean ± SD t/U p

WHOQoL
Overall 5.6 ± 1.3 4.5 ± 1.7 238.5 0.015 *

Physical health 18.7 ± 3.8 15.6 ± 5.3 213.5 0.005 *
Psychological 15.0 ± 3.2 14.0 ± 4.1 −0.909 0.368

Social relationship 13.6 ± 3.5 12.4 ± 3.6 308.0 0.207
Environment 34.1 ± 6.3 31.1 ± 5.8 −1.857 0.070

Social support scale
Perceived crisis social support 24.6 ± 4.6 20.6 ± 6.0 196.0 0.026 *
Received crisis social support 30.3 ± 4.6 24.5 ± 7.7 −3.476 0.001 *

Perceived routine social
support 23.4 ± 5.4 19.8 ± 6.6 229.0 0.047 *

Received routine social support 26.5 ± 4.7 21.5 ± 6.5 190.5 0.007 *
Life event score

Total score 9.5 ± 8.0 10.6 ± 10.6 329.5 1.000
Abbreviations: SD: standard deviation and WHOQoL: the World Health Organization quality of life. * p < 0.05.

3.3. Cognitive Function

There was no significant difference in cognitive function performance between remis-
sion and nonremission patients (Table 3).

Table 3. Cognitive function of the remission and nonremission patients.

Cognitive
Function

Remission Nonremission
Comparison

(N = 25) (N = 45)

Mean ± SD Mean ± SD U p

Finger-Tapping
Test

Dominant finger 38.4 ± 11.1 36.8 ± 11.4 412.5 0.584
Nondominant

finger 38.0 ± 11.2 35.5 ± 8.2 398.0 0.364

Wisconsin
Card-Sorting

Test
Perseverative

errors 18.8 ± 14.5 16.0 ± 12.6 436.0 0.718

Completed
categories 1.3 ± 1.6 1.9 ± 1.6 568.0 0.125

Continuous
Performance test

Unmasked 3.83 ± 1.38 3.73 ± 1.08 367.0 0.226
Masked 3.07 ± 1.46 2.74 ± 1.26 328.0 0.264

Abbreviations: SD: standard deviation.
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3.4. Genotype Frequencies of SNPs

Among the SNPs, the genotype frequencies of OXTR rs53576 polymorphisms were
significantly different between remission and nonremission patients. There were more
patients with the GG genotype (24.0% vs. 2.2%, p = 0.014) in the remission group (Table 4).

Table 4. Genotype of the remission and nonremission patients.

SNP Related
Gene Chromosome Reference

Allele

Remission Non-Remission
Comparison

(N = 25) (N = 45)

% % p

rs6265 BDNF 11 C
CC CT TT CC CT TT

0.77240.0 32.0 28.0 37.8 40.0 22.2

rs5443 GNB3 12 C
CC CT TT CC CT TT

0.45928.0 40.0 32.00 15.6 46.7 37.7

rs6313 HTR2A 13 G
AA AG GG AA AG GG

0.94932.0 48.0 20.0 35.6 44.4 20.0

rs6295 HTR1A 5 G
CC CG GG CC CG GG

0.8288.0 36.0 56.0 8.9 28.9 62.2

rs16944 IL1B 2 A
AA AG GG AA AG GG

0.44612.0 36.0 52.0 24.4 33.3 42.3

rs1800532 TPH1 11 G
TT GT GG TT GT GG

0.14336.0 36.0 28.0 15.6 51.1 33.3

rs25533 SLC6A4 17 A
AA AG GG AA AG GG

0.30276.0 24.0 0.0 71.1 20.0 8.9

rs53576 OXTR 3 G
AA AG GG AA AG GG

0.014 *40.0 36.0 24.0 53.3 44.4 2.3

Abbreviation: SNP: single nucleotide polymorphism. * p < 0.05.

3.5. The Performance of the Feedforward Neural Network Model in Predicting the Remission
of Patients
3.5.1. Training Model without Feature Selection

Furthermore, we established prediction models using a single domain of categorical
variables (Models 1, 2, 3, and 4), and the results demonstrated that using questionnaire
scores as predictors had the highest AUC (0.770 ± 0.154) (Table 5). After permutation and
combination of different domains of categorical variables, the AUC of Models 5, 8, 9, 11, 12,
and 15 ranged between 0.7 and 0.8 (Table 5), which is acceptable discrimination [43].

Table 5. The results of each model with a combination of full data from different domains for
predicting the treatment outcome (remission or nonremission) using multilayer feedforward neural
networks with two hidden layers.

Model (No.) Number of Markers Accuracy
(Mean ± SD)

AUC
(Mean ± SD)

Age, sex, HDRS, clinical and peripheral biochemistry (1) 23 64.286 ± 7.143% 0.690 ± 0.281
Age, sex, HDRS, questionnaire (2) 15 64.286 ± 7.143% 0.770 ± 0.154

Age, sex, HDRS, cognitive function (3) 9 64.286 ± 7.143% 0.700 ± 0.152
Age, sex, HDRS, SNP (4) 11 65.714 ± 6.999% 0.612 ± 0.177

Age, sex, HDRS, clinical and peripheral biochemistry, questionnaire (5) 35 70.000 ± 10.000% 0.722 ± 0.160
Age, sex, HDRS, clinical and peripheral biochemistry, cognitive function (6) 29 65.714 ± 9.476% 0.698 ± 0.238

Age, sex, HDRS, clinical and peripheral biochemistry, SNP (7) 31 62.857 ± 6.999% 0.650 ± 0.203
Age, sex, HDRS, questionnaire, cognitive function (8) 21 64.286 ± 7.143% 0.762 ± 0.184

Age, sex, HDRS, questionnaire, SNP (9) 23 67.143 ± 11.158% 0.717 ± 0.123
Age, sex, HDRS, cognitive function, SNP (10) 17 64.286 ± 9.583% 0.662 ± 0.188

Age, sex, HDRS, clinical and peripheral biochemistry, questionnaire, cognitive
function (11) 41 67.143 ± 9.147% 0.737 ± 0.232

Age, sex, HDRS, questionnaire, cognitive function, SNP (12) 29 65.714 ± 13.093% 0.720 ± 0.195
Age, sex, HDRS, clinical and peripheral biochemistry, cognitive function, SNP (13) 37 70.000 ± 10.000% 0.633 ± 0.243

Age, sex, HDRS, clinical and peripheral biochemistry, questionnaire, SNP (14) 43 67.143 ± 12.857% 0.692 ± 0.163
Age, sex, HDRS, clinical and peripheral biochemistry, questionnaire, cognitive

function, SNP (15) 49 68.571 ± 10.690% 0.753 ± 0.154

Clinical and peripheral biochemistry: including all variables in Table 1. Questionnaire: including all variables in
Table 2. Cognitive function: including all variables in Table 3. SNP: single nucleotide polymorphism, including all
variables in Table 4. Abbreviation: HDRS: 17-item Hamilton depression rating scale at baseline. AUC: the area
under the receiver operating characteristic curve. SD: standard deviation.
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3.5.2. Training Model after Feature Selection

Moreover, to extract more precise variables that influenced treatment remission, we
put those variables achieving significant differences (p < 0.05, from Tables 1–4) into a
feedforward neural network model for training. The training outcome is shown in Table 6.
Models 1S, 2S, and 3S were established using a single domain of categorical variables, and
the results demonstrated that using questionnaire scores as predictors had the highest AUC
(0.763 ± 0.124) (Table 6). After permutation and combining the two different domains of
the categorical variables, Models 4S, 5S, and 6S demonstrated similar or even better AUC
performance than Models 1S to 3S. Furthermore, when we established a model using a
combination of all different domains of the signature categorical variables, the highest
AUC (0.825 ± 0.109) of prediction was obtained. In addition, we found that using filtered
variables (those achieving significance differences) to establish the models demonstrated
better performance than those without filtering (Tables 5 and 6).

Table 6. The result of each model with a combination of selected data from different domains for
predicting the treatment outcome (remission or nonremission) using multilayer feedforward neural
networks with two hidden layers.

Model (No.) Number of Markers Accuracy
(Mean ± SD)

AUC
(Mean ± SD)

Age, sex, HDRS, clinical and peripheral
biochemistry (1S) 4 64.286 ± 7.143% 0.707 ± 0.201

Age, sex, HDRS, questionnaire (2S) 11 62.857 ± 6.998% 0.763 ± 0.124
Age, sex, HDRS, SNP (3S) 4 64.286 ± 7.143% 0.757 ± 0.199

Age, sex, HDRS, clinical and peripheral
biochemistry, questionnaire (4S) 13 64.286 ± 7.143% 0.815 ± 0.184

Age, sex, HDRS, clinical and peripheral
biochemistry, SNP (5S) 5 67.143 ± 9.147% 0.763 ± 0.196

Age, sex, HDRS, questionnaire, SNP (6S) 12 65.714 ± 11.429% 0.815 ± 0.137
Age, sex, HDRS, clinical and peripheral
biochemistry, questionnaire, SNP (7S) 13 68.571 ± 12.454% 0.825 ± 0.109

Clinical and peripheral biochemistry: including levels of cortisol and oxytocin. Questionnaire: including overall
domain and physical health domain of WHOQoL and all domains of the social support scale. SNP: single
nucleotide polymorphism, including rs53576 (OXTR). Abbreviation: HDRS: 17-item Hamilton depression rating
scale at baseline. AUC: the area under the receiver operating characteristic curve. SD: standard deviation.

4. Discussion

Recent studies have reported drug efficacy prediction models for depression [17–19].
However, due to the complexity and heterogeneity of MDD and the difficulty of sample
collection, they have not been able to come up with consistent conclusions. Here, we
demonstrated that models developed with a deep neural network of deep learning to
predict the treatment outcomes of antidepressants demonstrated clinical utility in drug-
naïve and first-diagnosis MDD patients during the severe depressive stage. Additionally,
we maximized the prediction accuracy of the treatment outcomes of antidepressants among
MDD patients using combinations of different domains of signature profiles, including
clinical features, peripheral biochemistry, psychosocial factors, and genetic variants, and
the prediction was obtained with a good AUC range of 0.75 to 0.83. Therefore, deep neural
network models of deep learning demonstrated promise for predicting the complexity of
treatment outcomes, such as antidepressants. Additional validation of the model with an
external database is necessary to confirm its generalization ability. Additional experiments
are required to optimize the prediction rate and develop new model calculation methods,
such as generative adversarial networks. From our pilot study, it is expected that prediction
models of drug efficacy can be applied in clinical practice to achieve the goal of precise,
individualized medicine.
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4.1. Oxytocin and Cortisol

MDD is a complex and highly heterogeneous disorder whose pathophysiology and
mechanisms of pharmacotherapy are not fully understood. The relationship between
depression and hypothalamic–pituitary–adrenal axis (HPA axis) dysregulation has been
the most widely discussed. Approximately 60% of patients with major depressive disorder
have an increase in the activity of the HPA axis [44]. A sustained increase in HPA axis
activity is also thought to be associated with a resistance to antidepressant medication [45].
Oxytocin is secreted by neurons in the supraoptic nuclei and paraventricular nuclei of the
hypothalamus and plays an important role in production, parenting, and social bonding.
In addition, it has also been pointed out that oxytocin has an effect of reducing anxiety and
stress, and one possible mechanism is by reducing the activity of the HPA axis, but the
precise mechanism has not been established [46]. In a mouse model, intra raphe infusion
of oxytocin resulted in increased release of serotonin from the median raphe nucleus,
suggesting an interaction between the oxytocin and serotonin systems that is possibly
related to the therapeutic effect of SSRIs. This may also underlie their anxiolytic effects [47].
According to the results of our study, the plasma oxytocin level of the remission patients
before treatment was significantly higher than that of the nonremission patients, which is
consistent with the possible mechanism mentioned above. However, although the plasma
oxytocin level could be correlated with the brain oxytocin level in previous reports, more
research is necessary to investigate the role of oxytocin in the mechanism of antidepressant
treatment response in MDD patients.

In MDD patients, it has been observed that a continuous increase in the activity of the
HPA axis may be due to the abnormal signal transduction of glucocorticoid receptors or the
dysregulation of corticotrophin releasing hormone nerves [48]. Therefore, the relationship
between cortisol and MDD has been studied. Jain, FA et al. suggested that the efficacy
of antidepressants was related to the interaction between the blood cortisol level and age.
Taking early or middle adulthood as the cutoff point, for patients younger than the cutoff
point, the lower the blood cortisol level is, the better the therapeutic effect. In patients
older than the cutoff point, the lower the blood cortisol level is, the worse the treatment
effect [49]. However, there was a controversial report stating that it is not appropriate to
directly predict the efficacy of antidepressant drugs based on the level of cortisol. The
degree of change in the response of the HPA axis to external stress stimuli should be used
as a judgment factor for antidepressant efficacy prediction [48]. Whether cortisol levels can
be used as a predictor of antidepressant efficacy needs to be confirmed.

4.2. Social Support Scale and Quality of Life

Recent studies have pointed out that environmental stress, the inflammatory response,
and the occurrence of MDD are closely related to the prognosis of the disease, which
prompted the proposal of the social signal transduction theory of depression [50]. This
theory states that environmental stress, such as social threats, social rejection, and interper-
sonal loss, affects the anterior insula and dorsal anterior cingulate cortex, and through the
sympathetic nervous system or HPA axis, it modulates the expression of peripheral immune
cell genes and induces cells to release proinflammatory cytokines such as interleukin-6,
interleukin-1β, tumor necrosis factor-α, and C-reactive protein [51]. Thus, these abnor-
mally increased inflammatory factors return to the brain through the circumventricular
organ or the vagus nerve, affecting cognitive function, behavior, and mood and leading to
depression. Depending on the severity of the inflammation, it can further affect the efficacy
of antidepressants [52].

In addition, lower perceived social support scores are associated with a worse progno-
sis in depression [53]. The mechanism of perceived social support acting on the human body
may be related to the oxytocin system. Reducing the activity of the HPA axis may allow
depression to have a better prognosis and treatment outcome [54]. According to our study,
the social support scale scores of remission patients at baseline were significantly higher
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than those of nonremission patients and demonstrated excellent performance in building
machine learning models for predicting the treatment outcomes of antidepressants.

Promoting and intervening in the quality of life (QoL) of patients with mental disorders
has increasingly become an important goal of clinicians [55]. According to the literature,
patients with MDD have worse QoL than those without depression tendencies and those
with other chronic diseases. In addition, patients with MDD with poor QoL may be at risk
of relapse after treatment [56,57]. Based on our data, nonremission patients had a lower
QoL in the domain of physical health before receiving antidepressant treatment. Although
the biological mechanism by which QoL can predict the outcomes of antidepressants is not
yet clear, our results provide further support to QoL influencing the status of MDD and its
related treatment outcomes.

4.3. OXTR and Treatment Response

The oxytocin receptor gene (OXTR) has been found to be associated with neuropsychi-
atric diseases [58], among which the rs53576 locus selected to be investigated in this study
has many related reports [59]. The OXTR variant rs53576 is located on human chromosome
3, its ancestral allele is guanine, and the minor allele is adenine. Individuals carrying the
A allele tend to exhibit socioemotional development deficits [60]. One study found that
women who are rs53576 AA homozygotes have increased harm avoidance relative to G
carriers. In addition, there are also differences in the brain structure, such as a smaller
amygdala volume and a reduced resting-state functional coupling between the prefrontal
cortex and amygdala, which also means greater susceptibility to stress. The rs53576 geno-
type is also related to social support. Individuals with the G allele can obtain protective
effects from social support, and this result may be due to the lower cortisol response to
stress [61]. The cortisol response may also affect the response to drug treatment.

The results of our study demonstrated that the proportion of nonremission patients
with the GG genotype was lower than that of remission patients, and the proportion of
nonremission patients with the AA genotype was higher than that of remission patients,
which is consistent with the above discussion. Our outcome may further provide insight
into the relationship between the rs53576 polymorphism and drug efficacy. In addition,
when profiles of the genetic variants and the other types of variables were considered
together, the predictive ability of our models had an upward trend (AUC increased). The
reason could be that there were interactions or synergic effects between different domains
of the categorical variables, including clinical features, peripheral biochemistry, scores on
the questionnaire, and genetic variants.

4.4. Antidepressant Treatment Response Prediction Model

Due to the complexity and heterogeneity of mood disorders, the treatment response
is difficult to predict before the patients try a medication [62]. Studies on the prediction
of antidepressant treatment outcomes have built powerful models from different points
of view and information, such as using pharmacogenomics (single nucleotide polymor-
phisms), social environmental factors, clinical indices, and brain imaging [15,63]. However,
due to inconsistencies in the way the experiments are conducted or the methods used for
evaluating the results, it is difficult to obtain a consistent view of the research results of
different types of information, and further integration is also difficult. Therefore, machine
learning has been introduced because of its ability to integrate different types of data for
deep data mining, and the current widely used method is a branch of machine learning—
deep learning, which also has the advantage of being able to apply many methods to avoid
overfitting [64–68].

The extraction/selection of appropriate data as the input for the neural network is a
very important issue; otherwise, it will affect the prediction results and stability [69]. Too
many parameters may cause the model to overfit, and it may also cause variables with a
high correlation to have an effect of repeated calculation and make the weights of the neural
network have a bias to improve the explanatory and predictive power of certain variables,
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also called multicollinearity [70]. The current data extraction/selection methods are mainly
divided into two categories: (1) the first is through a literature review; (2) the second is
through a preliminary analysis of the data, setting thresholds for significant differences,
and then selecting variables. In addition, many studies reduced the dimensionality of the
dataset before performing variable extraction, such as principal component analysis, to
avoid overfitting caused by too many parameters [71]. Our current study, using the second
type of method and normalized variables as inputs, demonstrated the good performance
of the prediction model.

4.5. Limitation of the Study

Nevertheless, our findings need to be interpreted in terms of some limitations. First,
there was a small sample size and a short duration of the antidepressant treatment. Al-
though the larger sample size is needed to construct a predictive model, there are some
precedents in which the scale of sample is below one hundred [20]. To overcome the
limitation of a small sample size, analytical methods can be applied such as feature selec-
tion [72] and dimensionality reduction [73]. In our study, we extracted significant features
to establish predictive models which demonstrated the good performance. We would
like to expand the scale in further study. Second, nonmedication factors that may have
confounded the results of the study, such as diet, alcohol, exercise, and comorbidities, were
not accounted for, although we have carefully collected the psychosocial factors, indices of
peripheral biochemistry, and genetic variants. Third, MDD patients using different drugs
were not subgrouped to perform these analyses due to the small sample size. It would be
worthwhile to investigate medication effects, as there may be distinct factors affecting the
efficacy of different classes of antidepressants. The inclusion of different types of drugs
to construct a prediction model is required in the future to fulfill the demand in the real
world. In addition, all of the MDD patients in the current study were drug naïve, first
diagnosed and at a severe depressive stage, and the prediction model could not be applied
to recurrent or treatment-resistant MDD patients. Fourth, our prediction model needs to
be validated and confirmed as to its generalization ability through an external dataset,
although the current model has demonstrated good accuracy for predicting the treatment
outcomes of antidepressants. Fifth, increasing SNPs’ coverage on each gene is better for
further understanding the role of genetic factors in the therapeutic action of antidepressants.
Finally, further prospective studies might provide solid evidence for the concerns raised
in the current study. The deep neural network used in the current study additionally
provided us with the interactivity of predictor variables to obtain better prediction but
limits our understanding of how each variable interacts with others, which requires further
mechanistic studies.

5. Conclusions

In conclusion, our study integrated different domains of categorical variables, in-
cluding clinical features, peripheral biochemistry, scores on questionnaires, and genetic
variants, to establish multiple models and explore their predictive ability for antidepressant
treatment outcomes of MDD patients. The results suggested that a combination of the
extraction of clinical features, peripheral biochemistry, psychosocial factors, and genetic
variants demonstrated good performance for outcome prediction. Therefore, this complex
interactions model, developed through a deep neural network, could be useful at the
clinical level for predicting individualized outcomes of antidepressants. Additional clinical
studies are necessary to validate the accuracy of the predictions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jpm12050693/s1, Figure S1: Flowchart for MDD patients in
the study; Table S1: Demographic characteristics and peripheral biochemistry of the enrolled and not
enrolled patients; Table S2: Questionnaire scores of the enrolled and not enrolled patients; Table S3:
Cognitive function of the enrolled and not enrolled patients.
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