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Abstract

Artificial intelligence (AI) development across the health sector has recently been the most

crucial. Early medical information, identification, diagnosis, classification, then analysis,

along with viable remedies, are always beneficial developments. Precise and consistent

image classification has critical in diagnosing and tactical decisions for healthcare. The core

issue with image classification has become the semantic gap. Conventional machine learn-

ing algorithms for classification rely mainly on low-level but rather high-level characteristics,

employ some handmade features to close the gap, but force intense feature extraction as

well as classification approaches. Deep learning is a powerful tool with considerable

advances in recent years, with deep convolution neural networks (CNNs) succeeding in

image classification. The main goal is to bridge the semantic gap and enhance the classifi-

cation performance of multi-modal medical images based on the deep learning-based

model ResNet50. The data set included 28378 multi-modal medical images to train and vali-

date the model. Overall accuracy, precision, recall, and F1-score evaluation parameters

have been calculated. The proposed model classifies medical images more accurately than

other state-of-the-art methods. The intended research experiment attained an accuracy

level of 98.61%. The suggested study directly benefits the health service.

1. Introduction

In recent years, multiple medical CBIR techniques have been presented. The majority of devel-

oped CBIR retrieval mechanisms employ a single imaging modality. The retrieval algorithms

can give the chance to choose the image class before similarity comparison which is one tech-

nique to retrieve the required medical images across large image libraries. A CBIR system

might benefit greatly from good image categorization since it would eliminate the desire to

search through irrelevant images, reducing the number of images that the system would have

to look [1].

Convolutional neural networks (CNN) established approaches not only improve classifica-

tion accuracy, although they are also considered good general descriptors of features. CNN

extracts features in a hierarchical manner, with lower layers encoding lower characteristics

such as edges, forms, texture, and so on, and higher levels encoding semantic level aspects
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associated with an image. Because the kernels within these networks have been learned rather

than constructed, no preliminary parameterize nor human involvement is required [1].

Non-learning approaches perform better under some situations; nonetheless, the disparity

across higher levels semantics with low-level depictions of features in diverse pictures leads in

reduced image retrieval efficiency. Existing techniques have also used multiple learning-based

strategies to close the gaps in semantics that increase picture retrieval effectiveness. Despite

techniques using learning effectively bridge the gap within higher levels semantics alongside

low-level visualizations of features across various images, they are dependent upon several

kinds of various attributes and lack the ability to perform adequately on all types of images

over each feature descriptor. Furthermore, learning-based CBIR approaches are computation-

ally challenging than non-learning CBIR techniques [2].

Convolutional neural networks (CNNs) have already made significant advancements in the

computer vision field [3]. There have already been introduced multiple neural network archi-

tectures, such as VGGNet, GoogLeNet, ResNet, DenseNet, as well as more recently NASNet

[4]. ResNet itself and its variants have drawn the most attention within these deep networks.

ResNet has shown exceptional results across both medium and high computer vision applica-

tions. This shortcut connection technique, which enables the training about a deeper structure

where gradients may directly flow across construction blocks but the gradient vanishing

dilemma can be somewhat avoided, is largely responsible for ResNets’ exceptional success. Its

shortcut connection process, on the other hand, forces every block to concentrate on learning

its residual output while somehow ignoring the internal block connectivity and making it

therefore that some reusable knowledge generated in earlier blocks is often neglected in subse-

quent blocks [5].

The current CBIR studies are focused on developing new techniques to better describe

visual material that are more relevant to the users. In recent trends for medical image retrieval

investigations, the images are described using a set of semantic terms. This set of semantically

specified image attributes could be applied to recognize a broad variety of images which

increases the user’s attention to visual aspects [6, 7]. The advantages of semantic terms for

diagnostics decision-making would be that they could enable radiologists to search image

databases across instances with similar high-level and enhanced quality [8].

The radiologist’s keywords for image observations are the key factor that is appropriate for

the implementation of CBIR [9, 10]. To bridge the semantic gap across images and their asso-

ciated meaning, adding semantics to image description can therefore be a novel technique

[11]. This combination with text attribute searching, which depends on the contents of the

image, with limited visual features, which are generated directly first from the representation

of images, has been discovered to enhance medical semantic search findings [12].

In this study, we stated the issue of semantic gap elimination in image retrieval. To resolve

this challenge, semantic language for radiological image contents has been proposed. Feature

searches and visual qualities complement each other. Complementary notions and implemen-

tation to image databases results in a more will useful result for all users. These visual charac-

teristics of an image transmit a relatively low level of characterization, making it impossible to

accurately express using keywords alone.

The major contributions of this proposed work are:

➢ To bridge the semantic gap across user requests with system responses

➢ To implement a genetic algorithm for optimal multi-classification

➢ To apply optimal model training for improving the multi-classification of multimodal med-

ical images
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2. Related works

In the last few years, digital image processing and the combination of machine learning has

shown good results in various applied domains of computer vision [13–15]. The recent focus

of research for image classification-based models is the use of deep learning architectures and

frameworks [16–18].

In the work of [19], the primary goal of the modality classification included separate various

forms of medical images, such as X-ray, CT, electrocardiography, and PET, as well as generic

graphs, from other medical sources for illness diagnosis. Radiologists require an effective cate-

gorization system for retrieving associated clinical cases to make accurate illness diagnoses

[20]. Similarly [21] used the Faster-RCNN technology in together with SVM-based classifier to

provide a unique strategy for the autonomous classification about melanoma lesions. If the

challenge is one of classification, it may be preferable to utilize a deep neural network [17].

The development of medical image modality by [22] categorization system was beneficial in

narrowing the retrieval query space within a specific modality. For the creation of modality

categorization systems, two techniques were frequently utilized i) hand-crafted (traditional)

but also ii) Deep neural networks. Medical images, especially as opposed to general images,

contain a variety of characteristics such as postural difficulties, texture, and aesthetic elements.

The classification of medical image modalities had been mostly based on form, color, and tex-

tured features [23]. Similarly [13] discussed positive guiding importance towards multi-modal

medical imaging evaluation.

Deep Learning techniques were [24] suggested the best alternative for classifying medical

images. Algorithms are used to automatically extract the primary elements from medical

images in order to execute the classification procedure. The primary concept is to create fea-

ture maps using Conv layers. During the convolution operations, various filter masks having

varied orientations are employed to build feature maps. Such maps are then processed using

pooling procedures as a feature minimization method. The goal is to employ the most realistic

characteristics for image classification and avoid any manually extracted features throughout

the process of classification. In work of [16] increased the adaptability about deep inpainting

structures to training sets alongside diverse variety, while improving inpainting effectiveness

as judged through qualitative as well as quantitative measures for an extensive variety about

deep models.

Researchers have presented [25] modality classification algorithms to improve performance

on baseline methods published by Image CLEF. It was noted that the effectiveness of previ-

ously proposed techniques employing hand-crafted attributes varies but achieves adequate

accuracy overall [26]. It was because classification performance is heavily reliant on expert

judgment when obtaining acceptable data for modality categorization. This was challenging to

determine the amount and kind of retrieved attributes from modality images for efficient cate-

gorization [27, 28]. Those techniques were limited by their large computing needs as well as

the constraint of conditionality. Mostly as a result, it is essential to design an efficient modali-

ties categorization strategy that enhances performance while requiring less human interaction.

Regarding image retrieval under a multi-class instance, a CBIR technique utilizing a hybrid

characteristics descriptor using the genetic algorithm alongside SVM classifier was presented

by [2]. The suggested method’s performance was evaluated using four benchmark datasets,

alongside its comparison to 25 alternative CBIR approaches. Experimental findings show that

their technique surpasses prevailing state-of-the-art retrieval algorithms.

Several CNN models with binary along with multi-class categorization of COVID-19

instances were studied by [29]. These models were tested on various CT alongside X-ray data-

sets using Transfer learning ideas for deep-tuning while fine-tuning settings. Transfer learning
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frameworks involving LeNet-5, VGG16, AlexNet, along with Inception nave v1 being deep-

tuning frameworks and DenseNet121, DenseNet201, DenseNet169, ResNet50, VGG16,

ResNet152, and VGG19 being fine-tuning frameworks have been thoroughly compared. Simu-

lation tests were carried out on a total of 12,032 images from chest CT with X-ray collections

(COVID-19 = 2,466, pneumonias = 4,273, and normal = 5,293). Every model was evaluated

using a variety of categorization assessment measures. Considering the investigated X-ray with

CT images, ResNet152 and DenseNet201 performed better compared to various Transfer

learning frameworks. Similarly investigated [14] improved deep learning based LeNetsþþ on

softmax, centred integrating i-center loss function, using a variety of standard image recogni-

tion stages.

In the work of [30] presented a method for predicting patient survival based on reliability

and effectiveness. Furthermore, researchers wanted to show how important it was to use classi-

fication then FS algorithms for achieving the greatest outcomes in the quickest period of time,

since this is a critical aspect in an individual’s survival. Following doing trials and analyzing

the findings with regard to of mistake rate and precision, it was revealed the classification algo-

rithms delivers superior results when not combined alongside the FSFA. Therefore, rather

than employing FSFAs, an approach based on classification proved more accurate and

efficient.

The techniques’ scope was centred [31] on illness categorization, early screening, and organ

localization, including benign and cancerous detection. Classification, and segmentation,

including detection, are common CAD operations. Image classification treats each image only

as a separate entity that must be distinguished from other images. Image separation was based

upon pixel points, which divide the image over numerous distinct parts with distinct attri-

butes, including image classification with the specific border of the existent objective [32].

Image detection seems to be the retrieval of a particular sub-image from a recognized image,

whereas classification involves the retrieval of many items in an image [33].

The fundamental requirement for success mostly in classification explained by the [34]

challenge was to identify highly discriminative characteristics about specific classes. This was

very simple for categories having excellent internal consistency similarity, however, it may be

challenging for domains having low inter-class correlation [35]. For example, mammography

classification accuracy was generally poor, while discriminating characteristics for breast can-

cers are hard to capture in the context of overlapping, diverse fibro glandular structures. Con-

sidering the significant inter-class resemblance, the concept that fine-grained visual

classification (FGVC), which tries to discover tiny distinctions among visually similar items,

may be suitable for learning distinguishing characteristics [36].

As an outcome, techniques developed and assessed by [37] on such datasets could not be

easily transferable for medical datasets when only a subset of images demonstrate significant

inter-class similarities instead of all of them. Other methods for improving characteristic dis-

crimination power incorporate the use of concentration modules, local and global features,

specialized knowledge, and everything else [38]. If just a subset of the such training phase is

labelled, the algorithm achieves the feedback connection from the labelled data but is enhanced

through learning semantics plus fine-grained characteristics from the unsupervised learning

[39]. As a result, the model optimizer was split into two stages: self-supervised pre-training but

also supervised fine-tuning. The model was first improved using unidentified images to suc-

cessfully learn excellent features which are indicative of such image semantics.

Although there were several approaches to constructing feature temples, a generally

accepted rule seems to be that robust [40], moderate semantics must be combined alongside

high-dimensional maps. Furthermore, when there were a high number of medical images that

have structural, textural, but also semantic similarities with the targeted dataset, pre-training
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producers and/or classification techniques may help with computational efficiency and

enhanced efficiency [41]. Similarly an effective transfer learning approach using the AlexNet

framework provided [42] to properly classify and identify melanoma.

Following Table 1 is discussing and clarifying current studies, their limitation and helps us

to bridge our research gap.

3. Methodology of proposed work

To assist our research, we used openly accessible medical datasets. This dataset contained five

types of medical images (i.e. endoscopy, CT, chest, hand x-ray, and lungs CT). A maximum of

28378 good-quality jpg image formats was utilized within datasets. Images are then resized

into 512 X 512 pixels. The model’s pre-processing procedure was used for the pre-processing

purpose. Only as a consequence of our model’s testing using medical images, did researchers

focus on establishing their database. Through this heterogeneous dataset, we picked images at

irregular intervals from each class. During our research, we have used a dataset of 28378

images across 5 distinct classes. Crucial issues during this data included significant intra-class

variance and great inter-class similarities caused by using multiple classes with various imaging

technologies. We used 80% of the images during training and 20% throughout the testing.

Because of the obtained dataset’s complex dimensions and structure, each image from each

class was modified to 512 × 512 again and translated into a consistent jpg file. We used super-

vised learning to apply a class label.

A possible perspective of multi-medical image classification and assessment is displayed in

Fig 1. Images were initially gathered and sorted into classes. Image processing procedures

include image shearing, transformations, image flipping, and scaling. These images were again

input into the suggested method for model training at the next stage. That recently trained

model has been used. Finally, multi-modal medical image identification but also classification

had been achieved.

3.1 Images category

In this research, we used several medical images of multi-modal image classes which are

shown in Fig 2. Generally, there are several steps of Machine Learning techniques toward med-

ical image identification and classification employing Convolutional Neural Networks. These

steps include dataset collection, dataset pre-processing, image segmentation, extraction of fea-

tures, and classification. Each image was pre-processed and classified using the Kaggle plat-

form. The significant percentage of datasets enhances the effectiveness of learning models and

reduces over-fitting. Acquiring a dataset that can be used as input to such a training phase is a

time-consuming but difficult task. As just a result, image enhancement expands the overall

training data set offered for deep learning algorithms. Image flipping, resizing, rotation, color

transformations, color enhancement, and noise reduction, are all deep learning-based intensi-

fication methodologies [52]. Automated extraction of features offers a high identification

speed and precision. Feature extraction during segmentation converts the images towards a

vector containing fixed features. These system-adopted characteristics include color, texture,

but also shape. While extracting texture characteristics from some kind of color image, using a

grey-scale cross matrix is preferable.

3.2 Genetic algorithm

We applied a Genetic algorithm for optimization. Genetic algorithms, which depend on bio-

inspired operators including mutation, crossover, but also selection, are often employed to

develop strong solutions for optimization and searching issues. The reason to use a genetic
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algorithm is that some greyscale medical images such as chest X-rays and CT need to be

enhanced for better identification. Better identification will lead us toward optimized classifi-

cation. By changing pixel values, the developed optimization algorithm will be reproduced

dataset images. The implementation steps of the genetic algorithm included 1) reading of

images 2) preparation of fitness function 3) implementation of mutation 4) implementation of

statistics and results.

Table 1. Systematic literature review.

Publication Name & Ref Contribution Dataset and Techniques Limitations and Future Work

Multimodal medical image

segmentation using multi-scale

context-aware network [43]

86.8% state-of the-art performance on

three benchmark datasets of different

modalities captures the rich context

information with dense skip connection

and assigns distinct weights to different

channels

Multi-scale context-aware network

(CA-Net) for multimodal medical image

segmentation

Improve the feature expression ability

of the network

Multimodal Medical Image Fusion

Based on Pixel Significance Using

Anisotropic Diffusion and Cross

Bilateral Filter [44]

72% outperforms other algorithms in

terms of objective evaluation metrics Edge

preserving processing of the original

images where it combines linear low pass

filter with nonlinear techniques

Multimodal medical image fusion

technique based on anisotropic diffusion

and cross bilateral filter

Multimodal image fusion by

proposing various algorithms

Efficient color image retrieval

method using deep stacked sparse

auto encoder [45]

Content-based image retrieval system for

natural color images using a deep stacked

sparse auto encoder

Corel-1K, Corel-10K DSSA model latent

features

Efficacy of the latent representation

learned

A deep neural network model for

content- based medical image

retrieval with multi-view

classification [46]

Accuracy 92.35% Body part orientation

view classification labels, intending to

reduce the variance that occurs in different

types of scans

A deep neural network-based approach for

view classification and content-based image

retrieval is proposed and its application for

efficient medical image retrieval is

demonstrated

Techniques to handle the class

imbalance in the dataset with

optimization techniques

Cross-Modality Sub-Image

Retrieval using Contrastive

Multimodal Image Representations

[47]

Content-based image retrieval system

(CBIR) for reverse (sub-)image search to

retrieve microscopy images in one

modality given a corresponding image

captured by a different modality

Combine deep learning to generate

representations that embed both modalities

in a common space, with classic, fast, and

robust feature extractors (SIFT, SURF) to

create a bag-of-words model for efficient

and reliable retrieval

Observe the importance of

equivariance and invariance

properties of the learned

representations and feature extractors

in the CBIR pipeline.

Content-based medical image

retrieval using topic and location

model [48]

Outperforms existing medical image

retrieval systems in terms of Precision and

Mean Average Precision. The proposed

method achieved better Mean Average

Precision (86.74%) compared

Automated medical image retrieval system

using Topic and Location Mode

Retrieval of medical images based on

the location and size of the anomaly

Content-based Image Retrieval and

the Semantic Gap in the Deep

Learning Era [49]

Semantic image retrieval Perform inferior

to much less sophisticated and more

generic methods

Aggregated convolutional features and

opposed to traditional local features

Semantic image retrieval methods are

often hardly comparable regarding the

task definition and the evaluation data

Convolutional neural network-

based dictionary learning to create

hash codes for content-based image

retrieval [50]

Visual complexity disappears ResNet-50 architecture is trained with

modified COREL dataset images

High retrieval time

MDCBIR-MF: Multimedia data for

content-based image retrieval by

using multiple features [9]

Qualitative methodology again for CBIR.

Color values inside the HSV color space

were utilized to extract color features,

while texture characteristics were extracted

using DWT and Gabor wavelets.

To improve the feature representation, the

color, and edge omnidirectional descriptors

were generated and incorporated, with

widths of 1 250. As bigger the input vectors

dimension, the much more precise the

retrieval findings, but once longer it lasts to

search and compare. The suggested system

was evaluated on several datasets Corel and

obtained good median accuracy.

High computational time owing to

large feature vector dimensions.

An encrypted image retrieval

method based on harris corner

optimization and LSH in cloud

computing [51]

Suggested a CBIR approach for retrieving

encrypted images from the cloud that is

predicated on an upgraded and the SURF

detector with the descriptor.

These authors utilized the Local Sensitive

Hash algorithm to generate accessible

directories for extracted features to

minimize retrieval time and improve

The performance is not great with

large image datasets.

https://doi.org/10.1371/journal.pone.0287786.t001
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3.3 Transfer learning

The optimization with the training of the model seems to be a difficult yet time-consuming

process. The training requires a strong graphics processing unit (GPU) along with thousands

of training samples. Transfer learning, which is used in deep learning, meanwhile, eliminates

all of these concerns. This transfer-learned per-trained Deep Learning Approach (CNN) is

optimized for one activity and transfers information to different patterns [53]. This multi-

modal images dataset model has 512 X 512 in size. We required modification in the residual

network (ResNet). Its final layer even before softmax across all ResNet50 configurations is

indeed a 7 X 7 average-pooling structure. Whenever a pooling size is reduced, a relatively

small image may fit through into the network.

3.4 Convolutional neural network

The structure of any Convolutional Neural Network (CNN) is made up of convolutional lay-

ers, pooling layers, and fully-connected layers, including dense layers as shown in Fig 3. The

descriptions of the layers are presented below.

Fig 1. Proposed research flow diagram.

https://doi.org/10.1371/journal.pone.0287786.g001

Fig 2. Sample medical images.

https://doi.org/10.1371/journal.pone.0287786.g002
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3.5 Convolutional layer

The primary function of convolutional layers included extracting distinctive features using

images. The need for convolutional layers regularly aids throughout the extraction of input

information [54]. The following Formula 1 is used to estimate the features extraction (FEi)

across various layers through CNN.

FEi ¼ ωðFEi� 1Wgi þ OFSiÞ ð1Þ

Where, FEi—Feature map, Wgi–Weight, OFSi is offset and ω–Rectified Linear Unit

(RELU).

3.6 Pooling layers

These pooling layers have become an important part of a Convolutional Neural Network

(CNN). They reduce the dimensionality of convolved elements while also reducing the com-

puter resources required for computer vision. Pooling may be divided into two categories

maximum pooling plus average pooling. Usually, the highest values of images are returned

by max pooling, but the mean values of such image sections are returned by average

pooling.

3.7 Drop-out layers

Such dropout layers enhance the performance of a training phase. It offers regularization and

inhibits over-fitting by lowering the correlation among neurons. Most activation functions

employ the dropout procedure, however, it is enhanced by factor [55].

Fig 3. Proposed CNN architecture.

https://doi.org/10.1371/journal.pone.0287786.g003
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3.8 Flatten layers

It reduces its spatial dimensions about the mapping pooled characteristics while keeping its

channel dimensions intact. This flattened layer includes dimensions before being converted

into such a vector. This vectored input to completely linked layers is sometimes referred to

here as a dense layer but rather fully connected layers.

3.9 Fully-connected layers

Along with their unique function, retrieved image categorization features require fully linked

layers. This softmax function forecasts image properties collected from previous stages. Soft-

max is an activation function mostly in output layers that performs classification. During

knowledge involvement, the neural network layer implements another multiplayer perceptron

structure as either a classifier. Variability is induced in the entire vectors through the rectified

linear unit (RELU) activated in the system. The depth of the ConvNet architectural design is

its most important component. By establishing extra design parameters and continually

increasing network depth by adding more convolutional layers, which is possible by employing

extremely tiny convolution filters throughout all levels. Mostly as the outcome, have created

significantly more precise ConvNet structures which not only achieve state-of-the-art preci-

sion on resolved input data classification as well as localization activities, while also being

applicable towards other image processing datasets, within which they perform excellently

even when used throughout relatively simple flow-lines.

Throughout the training, our ConvNets were provided this fixed-size 512 × 512 image. In

only one pre-processing we have subtracted each pixel from the average value calculated

mostly from the training dataset. To transport the image throughout a stacking of convolution

operation, we use filters with an extremely tiny receptive field. In several of the setups, we also

applied convolution filtering, which represents a linear modification of the inputs. This convo-

lution stride was set to one pixel, and indeed the spatial padding of its convolutional layer

inputs is set between one pixel for three convolution operations that maintain spatial resolu-

tion during convolutional. Spatial pooled is performed by 5 max-pooling levels that follow the

portion of such convolutional layers.

3.10 ResNet50

ResNet50 pre-trained architectures using Convolutional Neural Networks are applied to increase

performance but also classify images. This model adequately transfers information across pre-

trained ResNet50 networks toward image quality identification and analysis. This CNN model

has maintained fresh images learned to produce a model with identification and classification

[56]. Using big kernel-sized filtering and convolutional layers besides a kernel filter size, our

ResNet50 model improved. This size of the supplied image is set at 512 × 512. Images were pre-

processed and then sent through another convolutional layer. This filter size was estimated with

the linear treatment of the network interface (1 x 1). The stride value is taken at one, and the

maximum pooling size was two by two. This filter size was specified for the sequential transfor-

mation of the channels. The fully—connected layer will use the same structure in the following

phases, having 2048 channels within every layer. These Softmax activation structures are the out-

ermost layer, succeeded by such RELU activation mechanisms in Table 2.

4. Experiment, results, and discussion

The model has been fine-tuned to maximize accuracy with minimizing expected loss. On Kag-

gle, an extensive experimental analysis took place. Python programming packages have been
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uploaded since installed for scientific purposes. All experiments in our study were conducted

under a computer including the following specifications: A CoreTM i7 CPU, 12 GB RAM, and

a graphics card. This type of graphics card offers parallel computation throughout these train-

ing and testing periods. Upon that Windows 10 platform, Python (Keras plus Tensor Flow)

was utilized to implement this whole training but also validation CNN methods. The data set

has been structured as a directory containing two sub-directories, classes as well as tests. This

classes directory is applied to training while the tests folder has been applied to testing. This

class’s directory comprises five sub-directories containing various medical images (i.e. Endos-

copy, CT, Chest, Hand X-ray, and Lung CT). Images categories were not allocated to the fold-

ers’ names. The purpose to achieve this is to effectively train set to bridge the semantic gap.

The Directory structure can be explained by following Eqs 2 & 3.

f ðIÞ ¼ IMD ð2Þ

IMD ¼ IMD þ σ ð3Þ

Where MD is a medical image collection and image denotes an image including a name but

a path. Earlier than the training technique began, every single image within the dataset has

been scaled into 512 × 512 x 3 during the pre-processing step. Eq 4 represents the scaling for-

mula.

AIþ1 ¼ AI þ SX

BIþ1 ¼ BI þ SY ð4Þ

The model has been loaded with adjusted weights after being fine-tuned based on dataset

parameters. Every feature vector took into account the ultimate pooling layer’s conclusion.

This pooling function involves applying a two-dimensional filtration to each channel from the

feature map but then summarizing the features which lie within the filter’s covering zone.

These are the dimensions that the output obtained because a pooling layer was used instead of

Table 2. Proposed Resnet50’s architecture.

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) [(None, 512, 512, 3) 0 Conv1

conv1_pad (ZeroPadding2D) (None, 518, 518, 3) 0 input_1[0][0]

conv1_conv (Conv2D) (None, 256, 256, 64) 9472 conv1_pad[0][0]

conv1_bn (BatchNormalization) (None, 256, 256, 64) 256 conv1_conv[0][0]

conv1_relu (Activation) (None, 256, 256, 64) 0 conv1_bn[0][0]

pool1_pad (ZeroPadding2D) (None, 258, 258, 64) 0 conv1_relu[0][0]

pool1_pool (MaxPooling2D) (None, 128, 128, 64) 0 pool1_pad[0][0]

conv2_block1_1_conv (Conv2D) (None, 128, 128, 64) 4160 pool1_pool[0][0]

conv2_block1_1_bn (BatchNormali (None, 128, 128, 64) 256 conv2_block1_1_conv[0][0]

conv2_block1_1_relu (Activation (None, 128, 128, 64) 0 conv2_block1_1_bn[0][0]

conv2_block1_2_conv (Conv2D) (None, 128, 128, 64) 36928 conv2_block1_1_relu[0][0]

. . .. . .. . .

Total params: 26,733,446

Trainable params: 3,145,734

Non-trainable params: 23,587,712

Number of FLOPs: 47175424/s

https://doi.org/10.1371/journal.pone.0287786.t002
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a feature map well with dimensions provided in Eq 5.

ðf mhi � f il þ 1Þ
str∗ðfmwi � f il þ 1Þ=stride∗fmch

ð5Þ

Where fmhi is feature map height, fmwi is feature map width and fmch is the number of fea-

ture map channels. Similarly, fi is the size of the filter and stride is the length of the stride.

Given this decreasing gradient barrier, sigmoid and hyperbolic tangent activation has been

utilized in multi-layer networks. Its rectified linear activation overcomes that vanishing gradi-

ents problem, allowing models to train faster while performing better. Utilizing rectified linear

activation is the typical activation for developing multi-layer perceptron and convolutional

neural networks. ReLU has been used here for activation functions in neural networks. ReLU

is represented in Eq 6.

ReLUðImgÞ ¼ maxð0; ImgÞ ð6Þ

Whereas if the source becomes negative, then the result of ReLU equals 0; if the source

becomes positive, then the result is Img.

Adam is one stochastic gradient optimizer. This common solution ’adam’ works well on

moderately large datasets in respect of both management time plus validation scores. To pick

activation or solver, a selected group has been made, i.e. returns a collection at random out of

such an array. This random approach takes into account access to a variety of critical func-

tions, including the capacity to generate random options.

In the next step genetic algorithm has been implemented for image reconstruction. The rea-

son to use a genetic algorithm is that some greyscale medical images such as chest X-rays and

CT need to be enhanced for better identification. Better identification leads us toward opti-

mized classification. By changing pixel values, the developed optimization algorithm repro-

duced dataset images. The pixel levels varied within 0–255, 0–1 scale based upon that

chromosomal description. This pixel-computed value influences other factors such as the

range through which probabilities are chosen during mutation or the set of values utilized in

the current population.

The code constructs one fitness function which will be used to calculate the overall fitness

value with each solution within a population. Each function needs to be a maximizing function

that receives two parameters, one indicating a solution while the second expressing its index.

This gives back a value that represents the optimal solution. This fitness value can be calculated

by adding the absolute differences in gene levels between the initial and replicated chromo-

somes. Since this genetic algorithm could work using 1D chromosomes, this function has been

run before the actual fitness function should represent the image as such a vector. The fitness

functions are represented in Eq 7.

Fitness Function ¼ 1=jxþ y þ z � tj ð7Þ

Consider the following three factors: x, y, as well as z. The goal is to discover the optimum

collection of parameters for x, y, but also z such that whose total value equals t. We must keep

the total of x+y+z from departing from t, namely |x + y + z—t| must be zero. Only as result,

the fitness value may be thought of as the inversion of |x + y + z—t|.

It is critical to employ random mutation but also set its mutation by replacement parameter

to True. These bases for selecting towards the range low, range high, random mutation mini

val, but also random mutation maxi val factors should be obtained based mostly on the range

available pixel values. Whereas if image pixels are between 0 and 255, leave the range low and

random mutation mini val at 0, but increase the range high with random mutation maxi val to
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255. Mutation can be explained by Eq 8.

μ ¼ m=N ð8Þ

Where N denotes the mean quantity of cells each cultured.

Following the completion of the run procedure, actual fitness values among all generations

may be observed in Fig 4.

The findings can even be improved by modifying the arguments given to such class’s func-

tion Object. Fig 5 below is showing a sample of source images which shows how it transformed

after a few iterations.

Following that, Fine-tuned ResNet50 subsequently trained upon that basis all the preceding

phases. The checkpoint has been set for the said model so that the best fitness results could be

saved and the most recent best accuracy could be used. Finally, classification was performed by

supplying the query image and then converting it with an array. An argmax function was used,

that returns this index of the largest number within the given row and column, also with rows

or columns selected based on both the argmax method’s axis property. This predict function

describes the type of function provided that assists in generating output predictions using the

specified sample of parameters onto a model.

As a result of matching prediction with input arrays about image classification, the semantic

gap significantly decreased. Overall training loss vs accuracy including both degrees for cross-

validation for each epoch showed in Fig 6. After a certain epoch, the total loss has been 0.3304

across all configurations, but the prediction accuracy has hit 98.61%, suggesting that our

ResNet50 CNN has also been properly trained to utilize training data. Moreover, after com-

pleting a set of CNN model training testing, we noticed that fine-tuning our model produces

more accuracy versus standard training from the start.

5. Performance measure

To assess classification performance, metrics F1 score and precision matrix have been utilized.

Evaluation metrics have been used to assess the classifier’s efficiency.

Fig 4. Fitness function.

https://doi.org/10.1371/journal.pone.0287786.g004
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5.1 Accuracy metrics

The performance of the model including all classes is precisely measured. Overall accuracy is

measured by adding the overall number of relevant guesses to the overall number of forecasts.

Precision, recall, but also F1-Score have been calculated as performance parameters. The

Fig 6. Accuracy vs loss function (Red = Accuracy, Blue = Loss function).

https://doi.org/10.1371/journal.pone.0287786.g006

Fig 5. Image reconstruction.

https://doi.org/10.1371/journal.pone.0287786.g005
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precision is stated as follows.

Accuracy ¼
Tp þ Tn

Tp þ Tn þ Fp þ Fn
ð9Þ

Where TP stands for True Positive, TN stands for True Negative, FN stands for False Nega-

tive, whereas FP is for False Positive. Our classifier performance is measured using evaluation

measures.

Another essential statistic for assessing the algorithms is the F1 score. This is the fundamen-

tal accuracy and recall which is given as follows:

F1:score ¼ 2∗
Precision∗Recall
Precisionþ Recall

ð10Þ

The influence about transfer learning has been examined through fine-tuning top 3 CNN

models based on Table 3 outcomes using our improved deep residual modelling. The earlier

ImageNet dataset had previously pre-trained those models [57]. This chosen collection fine-

tuned the final few convolutions along with all of the FC layers over transfer learning, whereas

the dataset provided by ImageNet optimized filter weights within the early convolutional layer

training. In terms of precision, F1 score, accuracy, and Recall, our improved deep residual

strategy outperformed the other models by using transfer learning. Table 3 and Fig 7 below

show a comparison of various previous research and our model.

A t-test approach was used to investigate the relevance of our suggested model compared to

the second-highest method, Enhanced residual network [63]. The Table 4 displays the t-test

results for our suggested model with the second-highest method. The t-test study was predi-

cated upon a test of null hypothesis, of which assumed that we have no significant difference

regarding performance comparing our suggested model with the second-highest method. The

results presented in Table 4 demonstrate that the significance levels of accuracy as well as F1.

score during this test remained 0.0269 (below 0.05) as well as 0.02189 (below 0.05), respec-

tively, while running a t-test. These findings indicating the null hypothesis regarding accuracy

was not accepted at a 95% confidence level, indicating that there was indeed a significant dis-

parity for accuracy comparing our model with the second-highest model. Furthermore, the

null hypothesis regarding F1. score was not accepted given 95% confidence, demonstrating the

significant improvement of our proposed model over the second-highest model.

Data pre-processing approaches including random rotation flips, and scale transformation,

along with associated pre-processing operations, are utilized to expand the training set to

ensure the variety of sample images and prevent over-fitting. These procedures are detailed

further down.

Table 3. Performance analysis of proposed and other models.

Model Accuracy F1.Score Precision Recall

AlexNet [58] 69.71 69.63 70.31 68.97

VGG16 [59] 77.36 78.22 79.06 72.27

VGG19 [59] 77.46 78.25 79.08 77.41

GoogleNet [60] 78.66 79.51 80.23 78.81

ResNet50 [61] 80.42 81.41 82.01 80.83

InceptionV3 [62] 80.43 81.63 82.13 81.14

Enhanced residual network [63] 80.62 81.50 82.24 80.79

Proposed 98.61 99.30 100 98.6

https://doi.org/10.1371/journal.pone.0287786.t003
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1. Image resizing: For said model fitting, whole images were resized to 512 by 512-pixel

resolution.

2. Image per-processing: used to reduce the various sequences of image data to bring these

into ratios despite keeping the original image’s knowledge construction and striving to

minimize image distortion.

3. Dataset separation and training. That section contains a collection of randomly sampled

images for suggested tests and computed results.

4. Testing and validation. The images are used to assess the model being tested, and additional

images from certain modelling are utilized to validate the model’s efficacy.

6. Comparison with chest X-ray dataset

We tested our proposed model with existed model and dataset [64] in terms of creating a more

direct comparison across our technique and cutting-edge approaches in real medical applica-

tions. Through this experiment, we executed multiclass classification on just a dataset contain-

ing Chest X-rays to replicate the treatment of our technique for identifying juvenile

pneumonia. There were 5232 images in the dataset including normal and pneumonia. The

Fig 7. Performance metrics.

https://doi.org/10.1371/journal.pone.0287786.g007

Table 4. T-test for proposed and 2nd-best model (Enhanced residual network [63]).

Models P value for Accuracy P value for F1.Score

Enhanced residual network 0.0269 < 0.05 0.02189 < 0.05

Proposed

https://doi.org/10.1371/journal.pone.0287786.t004
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Table below displays the results of the multiclass exercise performed on the dataset. Table 5

and Fig 8 showed that our technique outperforms existing approaches in general.

7. Comparison with the Invasive Ductal Carcinoma (IDC) dataset

IDC [70] represents the most prevalent form of breast cancer, accounting for over 80% of all

cases. Unfortunately, because of the absence of distinguishing characteristics, it is challenging

to identify IDC as just a distinct histological type such as lobular with tubular carcinoma.

Throughout this study, we measure the effectiveness of our methods against the performances

of CNNs mostly on the BHI dataset [71]. This collection contains 274 histopathology presenta-

tion images showing IDC tissue areas from 274 individuals, which were scanned using thought

the entire scanner. Each experiment is run on subgroups of the complete BHI dataset using

ready-to-use image patches. The very first collection includes 269 patient presentations with

272494 patched, comprising 76303 successful but also 196191 negatives. According to Table 6

and Fig 9, our strategy outperforms the other techniques in terms of efficiency and F1 mea-

sure. From several viewpoints, it has been demonstrated that CNNs achieve higher statistical

Table 5. Chest X-ray dataset performance comparison with various existing models.

Model Accuracy F1 Score

Proposed 90.0 93.67

AlexNet [65] 74.20 ±1.48 82.57 ±1.4

Net in Net [66] 77.40 ± 0.91 86.57±0.95

VGG [59] 78.53±0.96 86.68±1.01

GoogLeNet [67] 79.65± 0.91 86.34±1.47

ResNet [68] 81.25± 0.98 86.40±1.05

DenseNet [69] 84.53±0.83 89.02±0.94

NIN-based [64] 84.46±0.69 89.86±0.70

GoogLeNet-based [64] 86.70±0.82 91.26±0.87

https://doi.org/10.1371/journal.pone.0287786.t005

Fig 8. Performance comparison of multi-classification with chest X-ray dataset.

https://doi.org/10.1371/journal.pone.0287786.g008
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parameters, indicating that their performances are un-stabilized because they are less sensitive

to modeling initialization versus our techniques. Based on these findings, we may conclude

that our model provided a viable technique for classification tasks using medical image

datasets.

8. Comparison with COVID19-CT dataset

This COVID-19-CT dataset [72] includes various medical images gathered by [73]. It con-

tained 349 COVID-19 realistic CT scan images with 397 normal but rather negative CT scan

images from different disorders. The images in this collection varied in size between 143 × 76

through 1637 × 1225. Our assessment findings from the proposed method and many of the

most sophisticated classification methods upon that COVID-19-CT dataset are shown in

Table 7. Our experimental results confirmed whether deeper or broader networks typically

exhibited better classification performance, which was aided by the complicated network

topology. The suggested model’s efficiency and F1 value achieved the greatest performance

throughout this dataset, according to Fig 10 below.

Table 6. IDC dataset performance comparison with various existing models.

Model Accuracy F1 Score

Proposed 90.0 94.49

AlexNet [65] 84.55 ±0.71 78.78 ±0.79

Net in Net [66] 85.16 ± 0.54 79.08±0.58

VGG [59] 83.77±0.69 78.42±0.65

GoogLeNet [67] 85.23± 0.49 78.74±0.52

ResNet [68] 87.54± 0.51 85.37±0.50

DenseNet [69] 87.62±0.45 85.22±0.56

NIN-based [64] 87.03±0.30 85.60±0.30

GoogLeNet-based [64] 88.88±0.25 86.33±0.22

https://doi.org/10.1371/journal.pone.0287786.t006

Fig 9. Performance comparison of multi-classification with IDC dataset.

https://doi.org/10.1371/journal.pone.0287786.g009
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9. Comparison with ISIC2018

The ISIC2018 [84] skin lesion diagnostic dataset has been used. This dataset has a total number

of 10,015 images divided into seven subcategories. Melanocytic nevus (6705), melanoma

(1113), dermatofibroma (115), benign keratosis (1099), actinic keratosis (327), vascular lesion,

and basal cell carcinoma (514) become the names of these conditions (142). To make compari-

sons between ResNet and its derivatives [76, 77, 82, 85]. In each task, we explored 50- as well

as 101-layer models. Furthermore, we compared several lightweight techniques. The difficulty

level with Shuffle Net [86] is 1.0. These findings demonstrated in Table 8 and Fig 11 that the

Table 7. COVID19-CT dataset performance comparison with various existing models.

Model Accuracy F1 Score

Proposed 88.89 95.35

VGG-16 [59] 66 58

ResNet-18 [74] 67 66

ResNet-50 [74] 72 73

DenseNet-121 [69] 76 77

DenseNet-169 [69] 80 79

EfficientNet-b0 [75] 72 71

EfficientNet-b1 [75] 70 62

ShuffleNet1.0 X (G = 4) [76] 72 72

ShuffleNet1.0 X (G = 8) [76] 71 72

CRNet [73] 72 76

ShuffleNetV2 (1.0X) [76] 74 74

ShuffleNetV2 (1.5X) [76] 73 76

SENet-50 [77] 76 77

CBAM-50 [78] 78 80

ResNeXt-50 [79] 72 75

Res2Net-50 [80] 73 74

ECA Net-50 [81] 75 74

SKNet-50 [82] 77 76

ResGANet-50(G = 2) [83] 80 81

ResGANet-101(G = 2) [83] 78 81

https://doi.org/10.1371/journal.pone.0287786.t007

Fig 10. Performance comparison of multi-classification with COVID19-CT dataset.

https://doi.org/10.1371/journal.pone.0287786.g010
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suggested model outperforms the most sophisticated ResNet variants network upon this

ISIC2018 dataset for medical image categorization.

10. Conclusion and future work

In this research, the multi-modal medical image collection was generated using available pub-

lic images. The convolutional neural network-based ResNet50 framework is subjected to data

enhancement, database pre-processing, training, then testing approaches. The suggested

model was developed and tested to enhance the performance that is assessed and compared.

When compared to most accessible datasets and approaches, the evaluation measurement

parameters are relatively high and enhanced. As a result, our recommended research study sig-

nificantly improved by 98.61%. Regularly enhancing the quality of multi-modal medical image

evaluation and classification has become an essential part, but this model attained the maxi-

mum performance, assisting in the success of certain health sectors. The primary goal of the

study is to enhance the health service. The future goal is to acquire and prepare actual datasets

to be utilized in deep learning models including adversarial attacks. It is expected that various

CNN models will be applied in the future with deeper image evaluation. Our work fosters and

stimulates the health industry, which leads to an increase in medical education.

Table 8. ISIC2018 dataset performance comparison with various existing models.

Model Precision

Proposed 98.82

ResGANet-50(G = 2) [83] 81.66

ResGANet-101(G = 2) [83] 81.13

SENet-50 [77] 77.97

CBAM-50 [85] 78.47

SKNet-101 [82] 76.61

ShuffleNetV2 [76] 77.7

https://doi.org/10.1371/journal.pone.0287786.t008

Fig 11. Performance comparison of multi-classification with ISIC2018 dataset.

https://doi.org/10.1371/journal.pone.0287786.g011
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11. Limitations

The current research work is related to classification of multi modal medical images. Our data-

set contained five types of medical images (i.e. endoscopy, CT, chest, hand x-ray, and lungs

CT). Our model is only optimally trained for said five types of images and its accuracy can be

affected if different image class included in dataset. Furthermore, our model is only optimally

trained, and it is not a robust model that counters adversarial image attacks.
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