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While it is a daunting challenge in current biology to understand how the underlying network of genes regulates complex dynamic
traits, functional mapping, a tool for mapping quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs), has been
applied in a variety of cases to tackle this challenge.Though useful and powerful, functional mapping performs well only when one
ormoremodel parameters are clearly responsible for the developmental trajectory, typically being a logistic curve.Moreover, it does
not work when the curves aremore complex than that, especially when they are not monotonic. To overcome this inadaptability, we
therefore propose a mathematical-biological concept and measurement, 𝐸-index (earliness-index), which cumulatively measures
the earliness degree to which a variable (or a dynamic trait) increases or decreases its value. Theoretical proofs and simulation
studies show that 𝐸-index is more general than functional mapping and can be applied to any complex dynamic traits, including
those with logistic curves and those with nonmonotonic curves. Meanwhile, 𝐸-index vector is proposed as well to capture more
subtle differences of developmental patterns.

1. Introduction

Whether there are different genes responsible for the forma-
tion of a trait and how these genes regulate the trait are of
fundamental importance biologically, agriculturally, and/or
medically. Quantitative traits, or characteristics varying in
degree, can be attributed to the effects of genes and their
environment [1]. Lander and Botstein [2] pioneered the
systematic integration of molecular genetics and statistical
methodologies to dissect quantitative traits to an individual
genetic locus, well known as quantitative trait loci (QTLs).
Since then, quantitative differences in mass, length, and so
forth of the whole individual or an organ in their mature state
are used to identify genes [3–8]. According to QTLmapping,
individuals with different marker locus genotypes will have
different mean values of a quantitative trait, if a QTL is linked
to the marker locus.

It should be noted, however, that the single-valued traits
are only a portion of the numerous traits, of which many
others change with time or other independent variables and
are the so-called complex traits. In fact, measurement values
in the mature state provide much less information than

the growth process leading to it [9]. For example, growthmay
be defined as quantitative changes in size, mass, or number,
and the process is more biologically meaningful than the
final state solely: the measurement value of an individual or
an organ. The complex traits, which can be expressed as a
functional or visually a curve, were thought to be infinite-
dimensional characters in [10] or function-valued traits in [11].
Researchers made effort to study this problem extensively by
biological, mathematical, or statistical means [12–15]. And
other researchers tried to solve this problem by considering
the complex trait (with a set of sampled values) as a bunch
of simple traits [16–19]. However, if the values (a set of traits)
of a complex trait are considered separately, the relationships
between the values are lost or are too time-consuming to
capture due to the large size of the residue covariance matrix.
But with the eigenvalues of the matrix, the dimensions can be
reduced greatly and it becomes feasible for genetic mapping
of a large number of traits [20, 21]. These methods, however,
do not take into account the developmental mechanisms that
regulate trait formation and variation.

Ma et al. [22] proposed functional mapping, a statistical
framework, formappingQTL regulating dynamic trajectories
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Figure 1: Growth curves with different parameter values. (a) is a bunch of curves described by (1). (b) is a bunch of curves described by (2).

of traits. Functional mapping is constructed on the basis of
a biological law, as presented by West et al. [23], that the
growth of many an organism follows a logistic curve due to
the fundamental metabolic principles for allocating energy
between maintaining current tissue and gaining biomass.
By incorporating the logistic curve, functional mapping
differentiates a complex dynamic trait by the parameters
of the logistic function, instead of directly by the trait
values, and thus makes computation less time-consuming
and makes the results more biologically meaningful. Since
functional mapping was proposed in [22], there has been a
wealth of literature about its variations, improvements, and
applications [24–29]. Up to date, functional mapping has
successfully applied to associate high dimensions of SNPs
with high dimensions of dynamic traits [30].

We now briefly review how functional mapping differ-
entiates developmental trajectories. First of all, the growth
process of an individual or an organ can be described by a
growth curve, a function of a measurable variable against
time. Theoretically, a growth curve may provide infinite
amount of information, unlike a single measurement value
in a mature state. For example, we consider two bunches
of growth curves which are described by the following two
equations and illustrated in Figure 1:

𝑦 =
2

1 + 𝑒−𝑟𝑡
− 1, (1)

𝑦 =
1

1 + 𝑒−𝑟(𝑡−3)
. (2)

In practice, discrete values of the developmental process
are measured and collected, based on which functional
mapping recovers the process by describing it with a curve
which is determined by one or more parameters (𝑟 here
indicating the growth rate).We can observe in Figure 1(a) that
as the parameter 𝑟 increases, the corresponding growth curve
becomes steeper at the beginning part. And in Figure 1(b), a
growth curve with greater 𝑟 increases slower at the beginning
of the left part and faster at the end of left part.The inclination
of the right part is opposite to that of the left part. Therefore
the parameter 𝑟may act as a characteristic value of the bunch
to differentiate the curves and thus differentiate growth types
or styles.

If all growth curves can be described by a function
with one or more varying parameters, then we can employ
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Figure 2: Four major types of growth curves of the organs and the
body as a whole, from birth to 20 years [31]. (Later we will obtain
their 𝐸-indices from upper to lower as 1.328, 0.802, 0.459, and 0.191,
resp.)

these parameters to be the characteristic values, which is the
essence of functional mapping. Unfortunately, no function is
qualified for describing all growth types. Specifically, Figure 2
shows Scammon’s classic illustration [31] of different growth
types of human beings that are almost impossible to describe
with a uniform function. Therefore, functional mapping fails
to work with curves like the nonmonotonic lymphoid type in
Figure 2.

The diversity of growth curves gives rise to a problem:
how canwe differentiate themwith one ormore characteristic
values? An important characteristic value, 𝐸-index, will be
proposed below and the rest of the paper is organized as
follows. 𝐸-index is defined and its properties are discussed
in Section 2. And in Section 3, a statistical framework for
𝐸-index is given and its effectiveness is validated through
simulation studies. 𝐸-index vector is defined and validated in
Section 4. And Section 5 concludes the paper.
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2. 𝐸-Index’s Definition and Properties

2.1. Concept and Definition. As is shown in Figure 1, growth
and development may perform faster or slower, earlier or
later, due to different types. And the earliness degree of
growth that we are to define an index to measure may
play an important role to evaluate a growth curve, both
mathematically and biologically.

It is common sense that a growth curve is continuous
and smooth, but in order to elucidate the concept of 𝐸-
index intuitively and for simplicity, we design an imaginary
scenario in which an individual gains part of its height
instantaneously (though this is impossible), as shown in
Figure 3. It takes each of the 6 individuals indicated in
Figure 3 exactly 9 units of time (from 0 to 9) to gain 5 units
of height (from 2 at the beginning to 7 at the end).

Take in Figure 3(c), for instance, first. The individual
indicated by it keeps its original height 2 for the first 2 units
of time, and then its height instantaneously increases by 4
units at the time point 2. After that, it keeps the height for
4 units of time, until it increases its height again by 1 unit
at time point 6. Finally it keeps the height 7 to the end
point.

Compared with (c), the individual indicated by (d) grows
“later” since, at the “earlier” time point 2, it increases less,
while, at the “later” time point 6, it increasesmore. Intuitively,
the earliness degree of the individual indicated by (c) is
more than that of the individual by (c). But we need to
quantitatively measure the earliness degree to systematically
reflect the difference and comparison. Obviously, two factors
are to be considered: increased height and the time span from
the time point when increasement occurs to the end time
point, and therefore we use their product to represent the
earliness degree.

On the basis of the analysis and discussion above, we
are now able to calculate the earliness degree of individual
(c) as the sum of the areas of two rectangles, one being 4
(increased height) by 7 (time span to the end) and the other
being 1 (increased height) by 3 (time span). The area sum
is 4 × 7 + 3 × 1 = 31, which can be standardized to be
31/45 = 0.689, by being divided by the area of the entire
rectangle of 5 (total increased height) by 9 (whole time span
from beginning to end).

Similarly, the earliness degree of (d) is calculated as (1 ×
7 + 4 × 3)/45 = 0.422, which is much less than 0.689, the
earliness degree of (c).

Using the same method we can calculate the earliness
degree of the other 4 individuals, with those of (a) and (b)
being trivially 1 and 0, respectively. But the cases of (e) and
(f) are more complicated, since the height of (e), before
reaching the end time point, has increased to a value 8, a
greater value than that of the mature state, 7; and the height
of (f) has decreased to a value 1, a smaller value than the
beginning value 2. Nevertheless, the earliness degree of (e)
can be calculated as (6 × 9− 1×2)/45 = 1.156, a value greater
than 1, and that of (f) as (−1×9+1×6)/45 = −0.067, a negative
value.

We denote the quantitative earliness degree as 𝐸-index
for short. Though imaginary and impossible in real life,

the scenario presented in Figure 3 gives us a helpful intuition
and clue to define the 𝐸-index rigidly.

To give the definition, we do not require a growth curve
to be globally differentiable, but it is currently required to
be piecewise differentiable, which as we will see later is not
necessarily met. And we hence give the definition of 𝐸-index.

Definition 1. Suppose that the growth curve is a continuous
function 𝑓(𝑡) defined on a closed interval [𝑎, 𝑏], 𝑎 < 𝑏.
{𝑝
𝑖

}
𝑛

𝑖=0

is a sequence of points, 𝑝
0

= 𝑎, 𝑝
𝑛

= 𝑏, 0 ≤ 𝑖 <
𝑗 ≤ 𝑛. Also suppose that 𝑓(𝑡) is differentiable on the open
interval (𝑝

𝑖−1

, 𝑝
𝑖

), 𝑖 = 1, 2, . . . , 𝑛, and that𝑓(𝑡) is its derivative
function. Then we define the 𝐸-index of the growth curve as
follows:

𝐸
𝑏

𝑎

(𝑓) =
1

(𝑏 − 𝑎) (𝑓 (𝑏) − 𝑓 (𝑎))

𝑛−1

∑

𝑖=1

∫

𝑏

𝑎

𝑓


(𝑡) (𝑏 − 𝑡) 𝑑𝑡. (3)

It should be noted that𝑓(𝑡), the growth rate at time point
𝑡, is undefined on each inner split point. But this would not
change the integration result, even if we set the growth rate at
such point to be any value. For simplicity, we denote 𝐸𝑏

𝑎

(𝑓) as
𝐸(𝑓).

How early or how late the growth rate 𝑓(𝑡) occurs is our
key concern for growth, and the expression 𝑓(𝑡)(𝑏 − 𝑡) in
(3) quantifies the degree of earliness. The greater the product
value 𝑓(𝑡)(𝑏 − 𝑡) is, the earlier the growth or development
occurs. In this sense, the 𝐸-index measures how early growth
occurs in the whole process by accumulating the product
along the time.

2.2. Properties of 𝐸-Index. From the definition above, we
can derive several of 𝐸-index’s properties which are to be
discussed in the form of propositions. However, their proofs
are all omitted since they can be found in calculus textbooks
or related literature.

Proposition 2. If the growth curve function 𝑓(𝑡) defined on
the closed interval [𝑎, 𝑏] is strictlymonotonically increasing and
is globally differentiable, then its𝐸-index can be calculatedwith
the following equation:

𝐸 (𝑓) =
1

(𝑏 − 𝑎) (𝑓 (𝑏) − 𝑓 (𝑎))
(∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡

− 𝑓 (𝑎) (𝑏 − 𝑎)) =

∫
𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡

(𝑏 − 𝑎) (𝑓 (𝑏) − 𝑓 (𝑎))

−
𝑓 (𝑎)

(𝑓 (𝑏) − 𝑓 (𝑎))
.

(4)

Proposition 2 provides us an alternative approach to
calculate the 𝐸-index and reveals to us the relations between
the integrations along horizontal direction and along vertical
direction.

Proposition 3. The conclusion of Proposition 2 still holds if
the growth curve function is still globally differentiable, but not
necessarily monotonic.
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Figure 3: An imaginary scenario about growth. The time interval of the growth is from 0 to 9, and the measurement values are all 2 at the
beginning point and are all 7 at the end point.

We can illustrate the proof with Figure 4. Suppose there is
only one inner extreme point (we can prove it similarly with
more inner extreme points). The integration for the left part
of the curve forms the red area, while that for the right part
forms the green area which is negative. And their sum is the

area between the curve and the horizontal line 𝑦 = 𝑓(𝑎),
which is the conclusion we wanted.

Proposition 4. The conclusion of Proposition 3 still holds if the
growth curve function is piecewise differentiable.
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Figure 4: Illustrations for the proposition proofs. (a) is a growth curve strictly monotonically increasing. (b) is a nonmonotonic growth
curve. (c) is a piecewise smooth growth curve. (d) is a resulting growth curve by smoothening that in (c) near the unsmooth internal point.

Propositions 2–4 indicate that we can calculate 𝐸-index
with (4), no matter whether the growth curve is monotonic
or not and no matter whether it is piecewise smooth or
globally smooth. In fact, if the growth curve function is
not differentiable, even not continuous, we are still able to
calculate its 𝐸-index with (4), without changing the meaning
of 𝐸-index.

Typically, themeasurement value in the growth process is
between the value at the beginning and that at the end. And
we have still another proposition for this situation.

Proposition 5. If the growth curve function 𝑓(𝑡) is defined on
[𝑎, 𝑏] and 𝑓(𝑎) ≤ 𝑓(𝑡) ≤ 𝑓(𝑏), then 0 ≤ 𝐸(𝑓) ≤ 1.

But 𝐸(𝑓)may get a value greater than 1 if, for some 𝑡,𝑓(𝑡)
is greater than 𝑓(𝑏) or even be a negative value if, for some 𝑡,
𝑓(𝑡) is less than 𝑓(𝑎).

Proposition 5 dictates the range of 𝐸-index, and we
can design a growth curve function whose 𝐸-index is any
designated value in the range.

3. Validating 𝐸-Index’s Effectiveness

𝐸-index can be easily calculated with integration operation
stated in (4). However, is it as effective as the function param-
eters, say, 𝑟 in (1) and (2), to differentiate growth curves?Or in
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addition, is it able to differentiate the growth curves without
a uniform function in Figure 2? Growth curves are usually
formed by collecting successive measurements and finding
a function (sometimes difficult to find) approximately fitting
the data. But is 𝐸-index applicable in this situation? We will
answer all these questions in the following subsections.

3.1. Contrasting 𝐸-Index and Function Parameters. The func-
tion parameter 𝑟 in the 2 bunches of growth curves can
differentiate the curves, as is illustrated in Figure 1. We are
trying to find out whether 𝐸-index is capable of doing so, and
the results are shown in Figure 5.

For each of the 25 values of 𝑟 in Figure 1(a), the 𝐸-index
of the corresponding growth curve function is calculatedwith
(4) as follows:

𝐸 (𝑟) = 𝐸 (𝑓
𝑟

(⋅)) =
1

8
∫

8

0

(
2

1 − 𝑒−𝑟𝑡
) − 1. (5)

The relation between the values of the parameter 𝑟 and
the corresponding 𝐸-index values is plotted in Figure 5(a).
It can be observed that as 𝑟 increases, the 𝐸-index value
increases accordingly, which implies that 𝐸-index is capable
of differentiating growth curves as the parameter 𝑟 that
is related to growth rate. For the bunch of growth curves
in Figure 1(b), we can obtain similar result illustrated in
Figure 5(b).

3.2.𝐸-IndexApplied inNonuniformFunctions. In some cases,
we may use 𝐸-index as an equivalent of function parameters,
to differentiate growth curves of a uniform type. In addition,
we may continue to apply 𝐸-index to differentiate them
without uniform function describing them. For instance, the
4 types of growth curves in Figure 2 are lymphoid, neural,
general, and genital, respectively. Specifically, we can use the
following 4 functions to precisely describe them:

𝑓Lymphoid (𝑡) = 810𝑒
−(𝑡−17.43)

2
/153.1175

− 110.5,

0 ≤ 𝑡 ≤ 20,

𝑓Neural (𝑡) =
200

1 + 𝑒−0.35𝑡
− 100, 0 ≤ 𝑡 ≤ 20,

𝑓General (𝑡) =
108

1 + 𝑒−0.32(𝑡−11)
− 2.1, 0 ≤ 𝑡 ≤ 20,

𝑓Genital (𝑡) =

{{{

{{{

{

16

1 + 𝑒−0.35(𝑡−1)
− 6, 0 ≤ 𝑡 ≤ 12,

100

1 + 𝑒−(𝑡−17.7)
+ 9.2, 12 < 𝑡 ≤ 20.

(6)

Applying (4) once again to the above functions, we will
obtain the corresponding𝐸-indices as 1.328, 0.802, 0.459, and
0.191 for the lymphoid, neural, general, and genital type of
growth curves, respectively. This result is consistent with our
observation and intuition: growth and development occur
earliest for the lymphoid type, comparing to the other three
types of growth curves; and the genitals grow and develop
latest among the four types.

This example illustrated that 𝐸-index may, at least in
some cases, differentiate growth curves evenwithout uniform
function describing them.

3.3. 𝐸-Index of Spline Interpolation. In order to differentiate
growth curves by function parameters, we have to assume
the function type first and then calculate parameters making
the function fit the successively collectedmeasurement values
best.The resulting parameters donotworkwell if the function
does not fit the data well.

In fact, spline interpolation performs well to find a
smooth function piecewise defined by polynomials. Unfor-
tunately, splines are not uniform functions and therefore,
function parameters do notwork either for the case of splines.
𝐸-index, however, does work in this situation. Based on the
successively collectedmeasurements, we can define a smooth
function to fit the data by spline interpolation and then
calculate the 𝐸-index of the function.The resulting 𝐸-indices
will provide help to differentiate the corresponding growth
indicated by the collected measurements.

We will consider 2 growth curves. The first one is
described by (1) with the parameter 𝑟 = 1. Suppose that we
do not have any knowledge of the curve type and all that we
have is the function values of 5 interpolation points evenly
dispersed in the time domain. A typical kind of spline, cubic
spline, is calculated and compared to the original curve in
Figure 5(c).The second growth curve is described by (2) with
𝑟 = 1, and the derived cubic spline and the original curve are
contrasted in Figure 5(d).

It is observed fromFigures 5(c) and 5(d) that the spline fits
the original growth curve well (and will fit it better withmore
interpolation points), which indicates that 𝐸-index works
well even without knowledge of the growth curve type.

Next, spline is calculated for each of the functions in the
bunch illustrated in Figure 1(a). For the same value of the
parameter 𝑟, 𝐸-index of the original function and that of the
spline are calculated, respectively. And the obtained 𝐸-index
values are contrasted in Figure 5(e). Similarly, the 𝐸-index
values are contrasted in Figure 5(f) for the original functions
illustrated in Figure 1(b) and their splines. The results are
encouraging, since 𝐸-index values of the splines are quite
close to those of the original functions if the number of inner
interpolation points is 5 or more (see Figures 5(e) and 5(f)).

3.4. Statistical Framework of 𝐸-Index. How can we apply
𝐸-index to differentiate complex dynamic traits? We are
typically given two genotypes 𝐴 and 𝐵 with 𝑚 samples of
𝐴 and 𝑛 samples of 𝐵, each sample measured at 𝑇 time
points. And our purpose is to judge whether the genotypes
significantly affect the phenotypes.

Suppose that the value vector of the 𝑖th sample of 𝐴 is
V𝐴
𝑖

= (V𝐴
𝑖,1

, V𝐴
𝑖,2

, . . . , V𝐴
𝑖,𝑇

), 𝑖 = 1, 2, . . . , 𝑚, and that of the 𝑗th
sample of 𝐵 is V𝐵

𝑗

= (V𝐵
𝑗,1

, V𝐵
𝑗,2

, . . . , V𝐵
𝑗,𝑇

), 𝑗 = 1, 2, . . . , 𝑛. The
computation steps are as follows, using 𝑡-test of (𝑚 + 𝑛 − 2)
degrees of freedom to discover the significance.

(a) For each V𝐴
𝑖

and V𝐵
𝑗

, we can use spline interpolation to
get continuous functions (curves) 𝑓𝐴

𝑖

(𝑡) and 𝑓𝐵
𝑗

(𝑡).
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Figure 5: Simulations validating the effectiveness of 𝐸-index. (a) is 𝐸-indices of growth curves in Figure 1(a) plotted against parameter 𝑟. (b)
is 𝐸-indices of growth curves in Figure 1(b) plotted against parameter 𝑟. (c) contrasts a growth curve in Figure 1(a) with 𝑟 = 1 and its spline.
(d) contrasts a growth curve in Figure 1(b) with 𝑟 = 1 and its spline. (e) compares 𝐸-index values of the bunch of functions in Figure 1(a) and
those of their splines. (f) compares 𝐸-index values of the bunch of functions in Figure 1(b) and those of their splines.
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(b) Then (4) is employed to calculate each 𝐸-index of
the curves, namely, 𝐸𝐴

𝑖

and 𝐸𝐵
𝑗

, respectively, for 𝑖 =
1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛. And we denote that
𝐸
𝐴

= (𝐸
𝐴

1

, 𝐸
𝐴

2

, . . . , 𝐸
𝐴

𝑚

) and 𝐸𝐵 = (𝐸𝐵
1

, 𝐸
𝐵

2

, . . . , 𝐸
𝐵

𝑛

).
(c) After that we define a test statistic,

𝑡 =
𝐸
𝐴

− 𝐸
𝐵

√𝑠2 (1/𝑚 + 1/𝑛)

, (7)

where 𝐸
𝐴

is the mean of the vector 𝐸𝐴 and 𝐸
𝐵

is the
mean of the vector𝐸𝐵 (here we suppose that𝐸

𝐴

> 𝐸
𝐵

)
and the common variance

𝑠
2

=
(𝑚 − 1) 𝑠

2

𝐴

+ (𝑛 − 1) 𝑠
2

𝐵

𝑚 + 𝑛 − 2
, (8)

where 𝑠2
𝐴

is the sample variance of the vector 𝐸𝐴 and
𝑠
2

𝐵

is that of 𝐸𝐵.
(d) We can test the null hypothesis that the two groups of

samples are not significantly different:

𝐻
0

: 𝐸
𝐴

− 𝐸
𝐵

= 0, (9)

versus the alternative hypothesis that the two groups
are significantly different:

𝐻
1

: 𝐸
𝐴

− 𝐸
𝐵

> 0. (10)

𝐻
0

will be rejected if

𝑡 > 𝑡
𝛼

(𝑚 + 𝑛 − 2) ; (11)

otherwise𝐻
0

will be accepted, where 𝑡 is the compu-
tation result of (7) and 𝑡

𝛼

(𝑚+𝑛−2) is the 𝑡-distribution
value with the confidence level 𝛼 and (𝑚 + 𝑛 − 2)
degrees of freedom.

3.5. Applying 𝐸-Index. With the statistical framework of 𝐸-
index in the previous subsection, we can now apply it to
differentiate complex dynamic traits.

Two bunches of growth curves of genotypes 𝐴 and 𝐵,
respectively, are generated by simulation, and they, together
with their 𝐸-indices, are illustrated in Figure 6.

The relative measurement value of each sample at the
beginning time point 0 is 0 percent, and that at the ending
time point 20 is 100 percent. Consequently, we are not able
to differentiate them merely by the measurement value at
the mature state and have to resort to the difference of
developmental processes.

Intuitively, the two groups are far apart. But we fail to
apply the functional mapping framework to differentiate the
two groups, since there exist no parameters like 𝑟 in (1) and
(2) responsible for the curve shape. In addition, each curve is
nonmonotonic, which functional mapping is not able to deal
with.

But using the statistical framework given in Section 3.4,
we get the standard deviations of the 𝐸-indices for genotypes
𝐴 and 𝐵, 𝑠

𝐴

= 0.0428 and 𝑠
𝐵

= 0.0597, respectively. We have
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Figure 6: Simulated organ growth curves of different genotypes 𝐴
and 𝐵 with sample size 5 each.

by (8) the common sample variance 𝑠2 = 0.0027 and by (7) the
test statistic 𝑡 = 10.77, much larger than 𝑡

0.01

(5+5−2) = 2.896,
which means that there is sufficient evidence to indicate that
the genotypes are clearly responsible for the developmental
processes of the organs.

4. 𝐸-Index Vector

As is mentioned earlier, a curve may theoretically provide
infinite amount of information about growth. Though the 𝐸-
index is sometimes capable of differentiating growth curves, it
is after all only one characteristic value revealing one aspect of
information. Therefore, it is natural for us to extend 𝐸-index
into 𝐸-index vector.

4.1. Definition of 𝐸-Index Vector. Where and why is 𝐸-index
insufficient to differentiate growth curves? An example from
Figures 7(a), 7(c), and 7(e) will illustrate this.

Comparing the sizes of shade in Figures 7(a), 7(c), and
7(e), we will find that 3 totally different growth curves lead to
the same 𝐸-index value (0.5). This is mainly due to the fact
that the effect caused by the higher growth rate in Figure 7(b)
or Figure 7(c) is counteracted by lower growth rate earlier or
later.

This example indicates that 𝐸-index does not work in
some cases to differentiate growth curves. Consequently, we
have tomove forward for amore sophisticated tool. Naturally
we will extend 𝐸-index into 𝐸-index vector.

Definition 6. Suppose that 𝑓(𝑡) describing a growth curve is
continuous on a closed interval [𝑎, 𝑏], 𝑎 < 𝑏. And suppose



BioMed Research International 9

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

t

y

(a)

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

t

y

(b)

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

t

y

(c)

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

t

y

(d)

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

t

y

(e)

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

t

y

(f)

Figure 7:The limitation of𝐸-index and the definition of𝐸-index vector. (a) and (b) illustrate𝐸-index and𝐸-index vector for constant growth
rate, respectively. (c) and (d) illustrate 𝐸-index and 𝐸-index vector for higher growth rate in earlier half and lower growth rate in later half. (e)
and (f) illustrate 𝐸-index and 𝐸-index vector for lower growth rate in earlier half and higher growth rate in later half. 𝐸-indices of the curves
in (a), (c), and (e) are of the same value 1. 𝐸-index vectors for the curves in (b), (d), and (e) are (0.5, 0.5), (0.716, 0.284), and (0.284, 0.716),
respectively.
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that 𝑄 = {𝑝
𝑖

}
𝑛

𝑖=0

is a prescribed sequence of points, 𝑝
0

= 𝑎,
𝑝
𝑛

= 𝑏, 𝑝
𝑖

< 𝑝
𝑗

, 0 ≤ 𝑖 < 𝑗 ≤ 𝑛. Then the 𝐸-index vector of 𝑓(𝑡)
according to 𝑄 is defined as follows:

𝑉
𝑄

(𝑓) = (𝑛𝐸
𝑝

1

𝑝

0

(𝑓) , 𝑛𝐸
𝑝

2

𝑝

1

(𝑓) , . . . , 𝑛𝐸
𝑝

𝑛

𝑝

𝑛−1

(𝑓)) . (12)

𝑉
𝑄

(𝑓) is denoted as 𝑉(𝑓) for simplicity and (𝑛𝐸𝑝1
𝑝

0
(𝑓),

𝑛𝐸
𝑝

2

𝑝

1
(𝑓), . . . , 𝑛𝐸

𝑝

𝑛

𝑝

𝑛−1
(𝑓)) as (𝐸

1

(𝑓), 𝐸
2

(𝑓), . . . , 𝐸
𝑛

(𝑓)).

The 𝐸-index vectors of the growth curves in Figures 7(b),
7(d), and 7(f) are calculated with (12). And the three resulting
𝐸-index vectors, (0.5, 0.5), (0.716, 0.284), and (0.284, 0.716),
are apparently different, as is also illustrated with shaded
areas in Figure 7. But how can we evaluate this difference
quantitatively? In order to answer this question, we above all
give another definition as the following.

Definition 7. Suppose𝑓(𝑡) and 𝑔(𝑡) are two functions defined
on a closed interval, describing two growth curves with
the same prescribed sequence of points 𝑄 = {𝑝

𝑖

}
𝑛

𝑖=0

. Then
the growth dissimilarity between 𝑓(𝑡) and 𝑔(𝑡) is defined as
follows:

𝐷(𝑓, 𝑔) = [

𝑛

∑

𝑖=1

(𝐸
𝑖

(𝑓) − 𝐸
𝑖

(𝑔))
2

]

1/2

. (13)

It is easy to prove that growth dissimilarity satisfies
distance axioms; that is,

𝐷(𝑓, 𝑓) = 0,

𝐷 (𝑓, 𝑔) = 𝐷 (𝑔, 𝑓) ,

𝐷 (𝑓, 𝑔) + 𝐷 (𝑔, ℎ) ≥ 𝐷 (𝑓, ℎ) .

(14)

And we hence have transformed problems about growth
curves into problems about vectors which will help to analyze
the relation between different growth curves in Figure 7.
Denote the functions describing the growth curves in Figures
7(b), 7(d), and 7(f) as 𝑓

1

(𝑡), 𝑓
2

(𝑡), and 𝑓
3

(𝑡), respectively.
According to (13), their dissimilarities are calculated and
listed as follows:

𝐷(𝑓
1

, 𝑓
2

) = 0.355,

𝐷 (𝑓
1

, 𝑓
3

) = 0.355,

𝐷 (𝑓
2

, 𝑓
3

) = 0.611.

(15)

The results above show that, in the growth perspective of
earlier and later halves, 𝑓

2

(𝑡) is more similar to 𝑓
1

(𝑡) than it is
to𝑓
3

(𝑡), which is consistent with what is observed in Figure 7.
Different weights can be designated to differently impor-

tant phases of growth according to specific problems. So
the growth dissimilarity defined in (13) can be accordingly
redefined as the following equation with 𝑊

𝑖

denoted as the
𝑖th weight:

𝐷(𝑓, 𝑔) = [

𝑛

∑

𝑖=1

𝑊
𝑖

(𝑉
𝑖

(𝑓) − 𝑉
𝑖

(𝑔))
2

]

1/2

. (16)

Equation (16) enables 𝐸-index vector to help differentiate
two growth curves. What is more important, however, is
to differentiate a set of growth curves or to divide them
into groups or clusters, which will be discussed in the next
subsection.

4.2. Grouping or Clustering Growth Curves by 𝐸-Index Vector.
More and more growth traits are available and they can be
described by growth curves. Studies [12] indicate that growth
traits are powerful to identify genes some of which cannot be
identified by traits only in one time point.

In order to identify genes with growth traits, we are
required to divide into groups all growth curves that are as
similar as possible in the same groupwhile being as dissimilar
as possible in different groups. But a common situationwe are
encountering is that it is difficult for us to obtain reasonable
groups.
𝐸-index, 𝐸-index vector, and the growth dissimilarity

definition based on these two concepts may help us to group
or cluster the growth curves.

With the 𝐸-index vectors, we can define describing rules
for a curve group. Take the growth curves in Figures 7(b),
7(d), and 7(e), for instance. We define the rule describing the
first group as “the first component of the 𝐸-index vector is
greater than 0.6 and the second less than 0.4.” And the second
rule is defined as “the first component is less than 0.6 and the
second greater 0.4.” These two rules describe and define two
groups, with growth curve (d) in the first group and growth
curves (b) and (e) in the second one.

Though describing rules are capable of grouping growth
curves, human experts are involved in prescribing the rules,
and thus the rules, consequently the grouping results, may be
different from person to person.

Unlike the grouping technique with describing rules, the
clustering technique, 𝑘-mean algorithm, and its variations are
almost automatic. It is a recursive algorithmwith 𝑘 randomly
selected centers. To cluster the growth curves, the growth
dissimilarities between each growth curve and each center are
calculated with (16), and a group corresponding to a center
will include all the growth curves nearer to its center than to
the other centers. This process continues until the inclusion
of each group keeps unchanged.

We simulated the 𝑘-mean algorithm by randomly gen-
erating 60 growth curves and dividing them into 5 clusters
by the algorithm, according to 𝐸-index vector definition in
(12) and growth dissimilarity definition in (16). In Figure 8,
the primitive growth curves and the resulting groups are
displayed. It can be seen from Figure 8 that each group
represents a distinct growth style.

5. Conclusions

In order to generalize functional mapping and overcome the
shortages of it, 𝐸-index and 𝐸-index vector are proposed
in this paper, respectively, by means of measuring earliness
degree of growth or development in the overall process and
in a growth phase. We summarize their features as follows.
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Figure 8: Clustering growth curves based on their 𝐸-index vectors. (a) illustrates 60 randomly generated growth curves, with a random color
designated to each of them. (b)∼(f) are the resulting groups after applying 𝑘-mean algorithm, with a group in each figure. Each growth curve
in (b)∼(f) retains its shape, position, and color from its original in (a).
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(i) 𝐸-index is capable of differentiating growth curves
(such as logistic curves) as function parameters are
in the applications of functional mapping. Like func-
tional mapping, 𝐸-index is good at differentiating
growth trajectories with the same values of mature
state, which traditional QTL takes as the same. In this
sense, 𝐸-index generalized functional mapping.

(ii) 𝐸-index is sometimes unavailable according to its
primitive definition given in Definition 1, due to strict
restrictions. But it is always available for a growth
curve and easier to calculate from another perspective
stated in Proposition 4. Moreover, measuring the
earliness degree of growth or development, 𝐸-index
is as biologically meaningful as the important curve
parameters employed in functional mapping.

(iii) A function globally and thoroughly describing the
process of growth is unnecessary for calculating 𝐸-
index. In fact, a cubic spline (as employed in [32])
approximates that well. Furthermore, 𝐸-index can be
applied in any period of the developmental process;
on the contrary, functional mapping can only be
applied to the whole process in order to get suitable
parameters.

(iv) Being a key and general characteristic value though,
𝐸-index provides limited information. As an exten-
sion of 𝐸-index, 𝐸-index vector is focused on the
growth in different phases, the number of which may
vary, and the time spans for the same vector may
not be of equal length, according to the application
background and requirements.

(v) By extracting the growth information in a curve
and forming a vector, we can use well developed
techniques for analysis, such as describing rules and
𝑘-mean algorithm.

(vi) 𝐸-index vector helps us reveal detailed characteristics
in growth curves. It may be looked on as amicroscope
employed to observe a desired level of growth detail.
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