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Functional validation of TERT and TERC variants
of uncertain significance in patients with short
telomere syndromes
Alejandro Ferrer 1,2, Abhishek A. Mangaonkar3, Susanna Stroik4,9, Michael T. Zimmermann 5, Ashley N. Sigafoos6,
Patrick S. Kamath7, Douglas A. Simonetto7, Mark E. Wylam8, Eva M. Carmona8, Konstantinos N. Lazaridis1,7,
Steve Peters8, Keith Stewart1,2, Eric W. Klee1,2, Eric A. Hendrickson 4 and Mrinal M. Patnaik 3

Dear Editor,
Accelerated shortening of telomeres can induce pre-

mature cell senescence that can clinically manifest as
bone marrow failure (BMF), idiopathic pulmonary fibrosis
(IPF), cryptogenic cirrhosis, nodular regenerative hyper-
plasia, vascular malformations, immunodeficiency, and
structural brain abnormalities, all of which are included
under the umbrella term of short telomere syndromes
(STSs)1. Two main criteria used to diagnose STS include
the documentation of shortened telomere lengths (TLs)
by a Clinical Laboratory Improvement Amendments
(CLIA)-certified flowFISH (fluorescence in situ hybridi-
zation) assay2 and the presence of pathogenic variants in
genes related to telomere maintenance identified through
next-generation sequencing (NGS). These genes include,
but are not limited to, hTERT (human telomerase reverse
transcriptase) and hTERC (human telomerase RNA
component), the two main components of the telomerase
holoenzyme complex that is responsible for creating new
telomeric DNA (Supplementary Fig. 1)1.
In our experience, a pathogenic variant in the coding

sequence of a telomere-associated gene can be identified
in only 40% of STS cases using current sequencing
approaches, with the remaining cases either having no
identifiable variant or possessing a variant(s) of uncertain
significance (VUS)1,3. In addition, in some of these cases,
the TL values were not conclusively shortened (i.e., not <

first percentile in lymphocytes and/or granulocytes
documented by a CLIA-certified FlowFISH assay) com-
plicating the diagnosis. At Mayo Clinic, we established a
dedicated BMF clinic in collaboration with the center for
Individualized Medicine and the division of Hematology,
so as to leverage the latest NGS technologies and func-
tional assays to assist patients with unexplained BMF
syndromes, including STS-related marrow failure3,4. We
have developed a systematic algorithmic approach to
assess STS patients that includes TL testing by flowFISH
and genomic assessment of STS-related gene mutations
using an in-house designed targeted NGS panel (Supple-
mentary Table 1). Through this effort, we have identified
32 patients with an STS phenotype and TLs at or below
the tenth percentile. Twenty-two patients (69%) did not
have detectable pathogenic variants (in spite of a clinical
phenotype) or were found to carry a VUS in STS-related
genes (ten patients; 31%). In the latter group, the VUS
were located in hTERT (four variants), hTERC (one
patient), RTEL1 (regulator of telomere elongation helicase
1; two variants), TINF2 (TERF1-interacting nuclear factor
2; two variants), and NAF1 (nuclear assembly factor 1
ribonucleoprotein; one variant). Patients with hTERT
VUS (Table 1 and Supplemental Fig. 2) were selected for
three-dimensional (3D) computational modeling and
functional interrogation, largely due to the availability of a
well-described functional assays, namely the telomerase
repeat amplification protocol (TRAP), which can be used
to test telomerase activity (Supplemental Methods)5,6.
All patients (Table 1) had BMF with additional STS

features (IPF in patients 2 and 5, and premature graying of
hair in patients 1 and 2). FlowFISH testing indicated a TL
below the first centile in both lymphocytes and
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granulocytes in all patients, except in patient 2 were the
TL was at the tenth centile range (Fig. 1a). NGS testing
uncovered hTERT variants in patients 1–4 and a hTERC
variant in patient 5. To increase our interpretive resolu-
tion for hTERT variants, we created a computational 3D
protein model of the human telomerase complex that we
used to assess the intra- and inter-molecular interactions
within the complex. Our current model includes all amino
acids of hTERT and a contiguous section of hTERC with
the bound DNA heteroduplex. This model was generated
using homology-based methods7,8 and the experimentally
solved structure of TERT from Tetrahymena thermophila
[PDB 6d6v9]. The human Reverse Transcriptase thumb
domain of telomerase was experimentally solved [5ugw10]
and added to our model using threading. Genomic var-
iants were assessed in their 3D context using FoldX11.
Recent model fitting to a cryogenic electron microscopy
map of human telomerase core particle was published12

and was used here in comparison to our current model of
full-length TERT.
When indicated, we used our 3D model to suggest

mechanisms of pathogenicity for these variants as fol-
lows1: hTERT c.2768 C > T; p.Pro923Leu (patient 1) is
located near the helix required for oligomerization and is
adjacent to p.Arg901 and p.Lys902—sites where bona fide
loss-of-function mutations have been described (Fig. 1b)2.
hTERT c.3362 C > T; p.Pro1121Leu (patient 2) is present
at the end of the reverse-transcriptase thumb domain at a
position where the peptide chain crosses back against
residues 999–1003. Further, hTERC wraps around one
side of this thumb and the DNA winds across the other
side, so that any changes to the internal organization/
arrangement of this thumb may significantly alter func-
tion (Fig. 1b)3. The third variant hTERT c,1765A > C;
p.Ile589Leu (patient 3) affects a residue located in the helix
near the hTERC interface possibly affecting stability of this
interaction (Fig. 1b)4. The fourth variant, hTERT c.1885G
> A; p.Gly629Arg is located in a loop between the DNA
strand of the heteroduplex, and Lys626 and Arg631, both
of which make contact with the DNA strand (Fig. 1b).
In addition to this information, further functional test-

ing was pursued for these variants with the exception of
hTERT c.2768 C > T; p.Pro923Leu (Patient 1), where we
considered the evidence already available, including a
published functional report, to be strong enough to con-
sider this variant as being pathogenic13 (more information
in ref. 3). For the remaining patients with hTERT variants,
we evaluated their telomerase activity using the TRAP
assay5. TRAP semi-quantitatively measures the capacity to
elongate a telomere-imitating oligonucleotide via hTERT
processing in a patient’s samples over several amplifica-
tion cycles, akin to a quantitative PCR reaction. The
commercially available TRAPeze Telomerase Detection
Kit (Supplemental Methods) was employed in peripheralTa
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Fig. 1 (See legend on next page.)
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blood mononuclear cells from patients 2–4 and the
results indicated decreased telomerase activity in all
samples compared to age-matched patient controls
(Fig. 1c). This data, together with our 3D-prediction
models, allowed us to re-classify these variants as patho-
genic or likely pathogenic (Table 1).
The hTERC VUS in patient 5 (n.238 G > C) was located

in the stem loop in the CD4/5 region and our 3D model
analysis indicated a likely reorganization of the stem loop
as a consequence of this change, thereby altering the
secondary structure of the RNA. Additionally, a previous
report had indicated decreased telomerase activity in
patients carrying this variant when tested by the TRAP
assay14. We felt that given the clinical context, this
information was sufficient enough to classify this variant
as pathogenic without the need for additional testing.
In conclusion, we demonstrate the importance and

feasibility of using 3D molecular modeling and functional
assays to classify variants identified in the hTERT
holoenzyme. By using these methods, we were able to
provisionally re-classify five VUS identified in patients
with STS, an important step forward in mutational
nomenclature. Importantly, pathogenic variants in
hTERT/hTERC comprise 52% of STS-related mutations
described in the Human Gene Mutation Database
(https://portal.biobase-international.com/hgmd/). For the
remaining 48% of mutations that encompass several genes
involved in TL regulation, there currently are no reliable
functional assays (e.g., assessment of RTEL1 abnormalities
by T-circle detection demonstrates considerable variability).
Thus, variants identified in our clinic impacting RTEL1,
TINF2, and NAF1 still remain unclassifiable and their causal
impact on TL in these patients remains unknown. TRAP
assays also demonstrate inherent variabilities between
tissue samplings and between individuals within the same
age range, limiting the routine implementation of these
assays in clinic. The development of cell line-based assays
utilizing genetic engineering of variants and assessing their
impact on TL could be one potential way of overcoming
these limitations. In summary, while we were able to assess
the pathogenicity of hTERT/hTERC variants using 3D

modeling and the TRAP assay, a lot more work is needed to
help develop accurate in silico approaches and functional
testing for variants in other genes regulating TL.
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