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Abstract
Noroviruses are the leading cause of acute gastroenteritis around the world. An
individual living in the United States is estimated to develop norovirus infection
five times in his or her lifetime. Despite this, there is currently no antiviral or
vaccine to combat the infection, in large part because of the historical lack of
cell culture and small animal models. However, the last few years of norovirus
research were marked by a number of ground-breaking advances that have
overcome technical barriers and uncovered novel aspects of norovirus biology.
Foremost among them was the development of two different  culturein vitro
systems for human noroviruses. Underappreciated was the notion that
noroviruses infect cells of the immune system as well as epithelial cells within
the gastrointestinal tract and that human norovirus infection of enterocytes
requires or is promoted by the presence of bile acids. Furthermore, two
proteinaceous receptors are now recognized for murine norovirus, marking the
first discovery of a functional receptor for any norovirus. Recent work further
points to a role for certain bacteria, including those found in the gut microbiome,
as potential modulators of norovirus infection in the host, emphasizing the
importance of interactions with organisms from other kingdoms of life for viral
pathogenesis. Lastly, we will highlight the adaptation of drop-based
microfluidics to norovirus research, as this technology has the potential to
reveal novel insights into virus evolution. This review aims to summarize these
new findings while also including possible future directions.
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Introduction
Noroviruses form a genus within the Caliciviridae family that is 
subdivided into seven genogroups (G) and more than 30 genotypes1. 
These non-enveloped viruses have a positive-sense, single-stranded 
RNA genome ~7.7 kb in size that is typically organized into three 
open reading frames (ORFs)2. ORF1 encodes the non-structural 
proteins; ORF2 encodes VP1, the major capsid protein; and ORF3 
encodes VP2, the minor capsid protein3. Murine noroviruses also 
have a fourth ORF, which encodes an antagonist of the innate 
immune response called virulence factor 1 (VF1)4. The major cap-
sid protein VP1 forms virions and is divided in two domains: the 
shell (S) domain, which encases the viral RNA, and the protruding 
(P) domain5. The P domain interacts with the carbohydrate attach-
ment receptors, contains neutralizing epitopes, and evolves under 
immune selection pressure6–8.

Human noroviruses are the leading etiologic agent of viral gas-
troenteritis globally in people of all ages9,10, costing ~4 billion US 
dollars in direct healthcare costs and ~60 billion US dollars in 
societal costs (e.g. lost productivity) worldwide11. These infec-
tions cause an estimated 200,000 deaths annually in children under 
5 years of age in developing countries12. In the US alone, human 
noroviruses are estimated to annually cause 19–21 million infec-
tions and cost ~2 billion US dollars/year13,14. The majority of these 
infections are caused by GII, genotype 4 viruses (GII.4)15. However, 
no directed disease prevention and treatment modalities are avail-
able. This is in part because of historical limitations in working 
with these viruses in the laboratory. However, recent breakthroughs 
are overcoming previous challenges: for example, the develop-
ment of two in vitro culture systems16,17, a mouse model18 and the 
identification of functional receptors for murine norovirus19,20. This 
review aims to summarize current knowledge about norovirus 
tropism, cellular entry, interactions with commensal bacteria, 
and the application of drop-based microfluidics to the analysis of 
viral evolution21–24. Owing to length restrictions, we are unable to 
cover all of the exciting advances in the norovirus field. However, 
the reader is referred to other excellent recent reviews for 
examples of norovirus replication25, norovirus antiviral and 
vaccine development26–28, and norovirus epidemiology and disease 
burden29.

Norovirus cell tropism
Norovirus cell tropism has long been debated in the field30. The first 
culture system for a norovirus was described for murine norovirus 
in murine macrophages and dendritic cells following the observa-
tion that these cell types were infected in STAT1-deficient mice 
in vivo31. Subsequent work demonstrated an additional tropism of 
murine norovirus for murine B cells16, the extent of which is deter-
mined by residues in the VP1 P domain32. An immune cell tropism 
for human norovirus was also observed in some animal models18,33. 
While attempts at culturing human noroviruses in blood-derived 
macrophages and dendritic cells were unsuccessful34, some human 
B cell lines (BJAB, Raji, Namalwa) support infection with one 
strain (GII.4 Sydney) of human norovirus16,35. Additional studies are 
underway to test the susceptibility of these cell lines to additional 
human norovirus strains and genotypes. Nevertheless, subsequent 
work demonstrated the applicability of this first in vitro culture 
system for efficacy studies of human norovirus antivirals36, 
highlighting the power of this system for anti-norovirus drug 

development. In addition to the observed human norovirus infec-
tion of immune cells, an intestinal epithelial cell tropism of 
human norovirus has long been predicted, given the striking gas-
trointestinal symptoms and described perturbations of epithelial 
cells37–40. However, previous attempts to cultivate human norovirus 
in intestinal epithelial cells in vitro were unsuccessful41–44. In con-
trast, a recent breakthrough describes the use of stem-cell-derived 
intestinal enteroids as another in vitro culture system for human 
noroviruses17. Enteroid cultures derived from stem cells from the 
duodenum, jejunum, or ileum are susceptible to human norovirus 
infection when the cells are matured into a monolayer. Unlike 
BJAB B cells16, human norovirus-infected intestinal epithelial cells 
exhibit cytopathic effects17. VP1 capsid protein staining revealed 
that specifically enterocytes, but not goblet cells or enteroendocrine 
cells, are infected. Interestingly, treatment of monolayers with bile 
acids was required for infection by some strains (e.g. GII.3), while 
it was not required but did improve infection by other strains 
(e.g. GII.4). Great variability was observed in overall viral titers 
between different strains and isolates ranging from 10–1000-fold. 
Viral titers typically increase ~10–300-fold in either in vitro 
culture system—thus, a direct comparison of the same virus 
stock in both systems is needed to determine whether one system 
supports greater replication levels than the other. The strength of 
the BJAB system lies in its simplicity and ease of use once 
established. However, further efforts are needed to overcome the 
variabilities seen between laboratories35. While the enteroid system 
is known to support the replication of multiple human norovirus 
strains and isolates, establishment and use of the system is costly 
and time intensive. Nevertheless, the exciting discovery of two 
human norovirus in vitro culture systems provides a technologi-
cal advance for much-needed basic and translational studies in the 
future.

The dual tropism of human norovirus for B cells and enterocytes 
in vitro raises questions about the nature of the human norovirus-
infected cell types in vivo. Intriguing new data obtained from immu-
nostained small intestinal sections of human norovirus-infected 
patients45 are consistent with a dual tropism for immune cells and 
intestinal epithelial cells. Specifically, these data demonstrate the 
expression of structural and/or nonstructural proteins in cells posi-
tive for CD68 or DC-SIGN (i.e. macrophages and dendritic cells), 
CD3 (i.e. intraepithelial lymphocytes and T cells), and villin (i.e. 
enterocytes). This tropism for multiple cell types is also reminiscent 
of bovine norovirus, where capsid antigen was detected in villus 
enterocytes and in lamina propria immune cells46. The temporal 
expression of bovine norovirus antigen, first in epithelial cells and 
subsequently in immune cells46, as well as detection of the epithelial 
marker cytokeratin 8 in human norovirus-infected macrophages45 
were interpreted as evidence for phagocytosis of infected epithe-
lial cells by antigen-presenting cells. However, given the normal 
phagocytic function of these cells, direct viral infection of antigen-
presenting cells cannot be ruled out. Unfortunately, the question of 
whether human B cells are infected in vivo could not be addressed 
since CD20+ B cells were not detectable in the histologic sections 
of human norovirus-infected immunodeficient patients45. However, 
the finding that human SCID patients who lack B cells are able 
to be infected with human norovirus is consistent with a tropism 
for multiple cell types, including B cells47. The viral titer of these 
patients was approximately one log lower compared to patients with  
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B cells, suggesting that B cells contribute to the overall viral loads. 
Taken together, B cells, in addition to enterocytes, are an important 
player in human norovirus pathogenesis, although their precise con-
tribution and viral factors in that process remain to be elucidated. 
For murine norovirus, the interaction with B cells is multi-faceted. 
Early in infection, the murine norovirus minor capsid protein VP2 
antagonizes B cell antigen presentation to CD8 cytotoxic T cells 
in a strain-specific manner32. Later in infection, antibody is critical 
for the clearance of murine norovirus infection48. Further studies 
are clearly required to elucidate the role of each target cell type 
and the temporal pattern of infection during norovirus pathogen-
esis, as well as the contribution of viral factors to any phenotype. 
Furthermore, the susceptibility of enterocytes to murine norovirus 
should be revisited.

Norovirus binding and entry
In general, viral infection of susceptible target cells is a multistep 
process that begins with the binding of viral particles to attach-
ment receptors, which helps to concentrate the particles on the 
cell surface49. Subsequent interaction with additional receptor 
molecules (e.g. functional or entry receptors) actively promotes 
virus uptake: for example, by initiating conformational changes in 
the virus capsid, activating cellular signaling, promoting endocy-
tosis, or directly driving penetration49,50. Although little is known 
about norovirus entry, we hypothesize that the entry process is 
likely characterized by similar features.

The attachment receptors for most human noroviruses are histo-
blood group antigens (HBGAs), terminal complex carbohydrates of 
lipid- or protein-linked glycan chains51–53. HBGAs are expressed on 
multiple cells types, including intestinal epithelial cells, and secreted 
into body fluids, such as saliva51,54. Two to four binding sites within 
the human norovirus P dimer bind to α1,2-linked fucose on HBGAs, 
a residue attached to the carbohydrate core by the α(1,2) fucosyl-
transferase (FUT2) enzyme55–59. Individuals with a functional FUT2 
enzyme are termed secretors, while those without are known as 
non-secretors. Secretors are more susceptible to many human 
norovirus strains (e.g. GII.4) and other diarrheal diseases60–63. In 
culture, GII.4 strains of human norovirus infect enteroids derived 
from secretor but not non-secretor individuals17, suggesting that 
susceptibility to norovirus infection is determined at the level of 
the cell. One potential mechanism of promoting infection may be 
by enhancing cell attachment, since synthetic HBGAs or enteric 
bacteria expressing HBGA-like structures increase viral attach-
ment to B cells16. However, the precise role(s) that specific HBGAs 
play in different locations in the body, or when attached to differ-
ent cores from host or enteric bacteria, remains to be addressed 
in future studies. Studies to date have investigated HBGA-linked 
lipids. Glycosphingolipids (GSLs), including those containing 
HBGA, are a main constituent of the plasma membrane of many 
cells. The ceramide base anchors GSLs to the membrane, while 
the glycan group extends into the extracellular space64. GSLs 
serve as attachment receptors for multiple non-enveloped viruses 
(e.g. rotavirus and polyomavirus)65. Depending on the strain, 
human norovirus virus-like particles (VLPs) can bind to the 
HBGA groups of GSL66 but also to the galactose-containing 
GSL galactosylceramide67 or gangliosides68, which are sialic-acid-
containing GSLs. Similarly, murine norovirus binds to gangliosides 
on murine macrophages, specifically the terminal sialic acid of 

GD1a, in the case of the MNV-1 strain69. The interaction between 
human norovirus particles and the cellular membrane GSLs 
occurs only above a certain threshold concentration of HBGA-
GSL and in a virus strain-specific manner70. This interaction then 
clusters the GSLs to form a lipid microdomain and causes invagi-
nation of that membrane region71. The downstream events of 
human norovirus cellular entry are still unknown and await further 
study in the recently developed cell culture systems16,17. Endocy-
tosis of murine norovirus particles is dependent on dynamin II, 
ceramide, and cholesterol but is independent of clathrin, caveolin, 
and pH72–74. Ceramide is the backbone of GSL structures75, while 
cholesterol stabilizes lipid microdomains76. Therefore, it is pos-
sible that, like murine norovirus, human norovirus entry will also 
depend on these two factors. Interestingly, human norovirus 
infection is dependent on, or enhanced by, bile acids in enteroid 
cultures17. Bile acids can directly induce ceramide production by 
activating the farnesoid X receptor (FXR)77,78, a nuclear receptor 
expressed in many tissues, including in the intestine and immune 
cells79,80. FXR induction, in turn, increases the expression of 
enzymes involved in the production of ceramide, including Smdp3 
(neutral sphingomyelinase II) and Smpd4 (neutral sphingomyeli-
nase III)78, which form ceramide after hydrolyzing sphingomyelin81. 
Ceramide then transactivates glucosylceramide synthase expres-
sion, which generates glucosylceramide, the starting point for 
GSL biosynthesis82,83. A larger quantity of ceramide in a cell may 
thus facilitate the production of GSL attachment receptors for 
noroviruses, providing a potential explanation for the dependence 
of these viruses on bile acids or ceramide.

Other recent studies have described the discovery of multiple pro-
teins involved in murine norovirus binding and entry. CD36, CD98, 
transferrin receptor, and CD44 are cell-type-specific modulators 
of murine norovirus infection in murine macrophages and murine 
dendritic cells, though the mechanism by which these proteins aid 
in infection awaits further study84. An exciting discovery was the 
identification of CD300lf and CD300ld as the murine norovirus 
entry receptors19,20, the first and, to date, only functional receptors 
known in the norovirus genus. CD300lf was identified as a critical 
protein during murine norovirus infection in CRISPR-Cas9 screens 
in BV220 and RAW264.7 cells19. The murine norovirus binding site 
on CD300lf was mapped to amino acids 39 to 45 at the protein’s 
N-terminus. This is a region completely conserved in the related 
family member CD300ld, providing an explanation for the abil-
ity of murine norovirus to bind to both molecules19. Transfection 
of murine CD300lf or CD300ld into non-susceptible but permis-
sive HeLa and HEK293T human cell lines rendered these cells 
susceptible to murine norovirus infection19,20. However, transfec-
tion of human CD300lf into murine cells did not mediate murine 
norovirus susceptibility20, suggesting that CD300lf is a receptor 
determining both cell tropism and species specificity. Whether 
human CD300lf or CD300ld serve as a receptor for human 
norovirus remains to be determined. CD300 proteins, like the 
only other known functional receptor in the Caliciviridae family, 
JAM-A, are part of the Ig superfamily of proteins85,86. Clustering 
in lipid raft domains is essential for CD300 protein function87, pro-
viding a potential interaction platform between norovirus attach-
ment and functional receptors at the cellular level. In vivo, Cd300lf 
deletion renders mice resistant to shedding following oral murine 
norovirus infection20. However, the precise role of CD300lf during 
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pathogenesis remains to be investigated. Expression of CD300lf 
can be induced by conditions known to induce microfold (M) 
cell differentiation88. Since these cells are important for murine 
norovirus transcytosis across intestinal epithelial layers in vitro 
and in vivo89–91, this suggests CD300lf may function in a 
cell-type-specific manner. CD300ld regulates the expression of 
other CD300 molecules85 and stimulates macrophages to secrete 
pro-inflammatory cytokines and chemokines92. In macrophages, 
antibody cross-linking of CD300ld increases the secretion of 
TNF-α and IL-693, two pro-inflammatory cytokines also upreg-
ulated during human norovirus infection in vivo94,95. Future 
investigations are needed to investigate the roles of CD300lf 
and/or CD300ld in species specificity of norovirus infection, 
norovirus cellular and tissue tropism, and murine norovirus 
transcytosis through M cells and pathogenesis.

Taken together, one possible model of norovirus entry might be as 
follows. Norovirus virions bind to one or several GSLs on the host 
cell surface, allowing for viral adhesion to and movement along 
the fluid surface of the plasma membrane. The multivalent parti-
cles then bind more GSLs, which are present in already formed 
lipid domains, such as lipid rafts, or newly form a cluster of lip-
ids at the interaction site between the virus particle and the cell 
membrane. Transmembrane proteins such as CD300 proteins87 
may already be resident in lipid rafts or may be recruited to the 
microdomain induced by norovirus particle binding. This could 
create a stable, cholesterol-dependent platform for noroviruses to 
promote engagement with signaling molecules and the functional 
receptor. The multivalency of the norovirus capsid in concert 
with GSLs may cause invagination of the plasma membrane71. 
Norovirus-containing vesicles may next be released from the 
plasma membrane by dynamin II-mediated scission of the invagi-
nation, followed in quick succession by viral genome release into 
the cytosol73. Although the past 10 years have shed light on some 
aspects of norovirus entry, much still remains to be addressed, such 
as the interplay between different norovirus receptors, potential 
conformational changes in the virus capsid, potential activation of 
cellular signaling, and the mechanism of membrane penetration.

Norovirus and the intestinal microbiome
Recent studies have led to an appreciation that infection by enteric 
viruses, including noroviruses, is influenced by the commen-
sal microbiota16,96,97. While a mechanistic understanding of these 
transkingdom encounters is still lacking, the proviral or antiviral 
functions of the microbiota are both direct and indirect98. In the 
case of noroviruses, one example for a direct effect is the enhance-
ment of GII.4 human norovirus infection of B cells by the com-
mensal bacterium SENG-6, an Enterobacter cloacae strain16. This 
effect is mediated, at least in part, by increasing cell attachment 
via bacterially expressed HBGA-like molecules. Other bacterial 
species similarly express HBGA-like structures99 and thus might 
also be able to stimulate infection in vitro, although this still needs 
to be tested experimentally in both culture systems. The opposite 
was observed in vivo during infection of gnotobiotic pigs, where 
E. cloacae inhibited human norovirus infection, compared to 
uncolonized pigs100. However, the study lacked an important con-
trol (namely, a bacterial strain unable to bind human norovirus) and 
thus the effect of E. cloacae on norovirus infection in vivo remains 

unclear. Another proviral direct effect of bacteria during norovirus 
infection is via increasing particle stability and protecting virions 
from heat stress99. This may promote viral transmission and 
environmental fitness similar to poliovirus101, but future studies are 
required to directly test this.

Indirect mechanisms are thought to occur via modulation of  
the antiviral immune response by the microbiota. This is consist-
ent with the observed increase in murine norovirus loads in the  
ileum of conventional mice compared to antibiotic-treated or 
germ-free mice16,102 and the type III interferon-mediated changes in 
murine norovirus persistence103. In contrast to the proviral effects 
of the microbiota, at least one bacterial genus, Lactobacillus, can 
also play a protective role against norovirus infections. A higher 
abundance of Lactobacillus due to probiotic-fermented milk  
ingestion correlates with a quicker recovery from human 
norovirus-induced fever104. Similarly, a higher abundance of  
Lactobacillus following experimental vitamin A treatment cor-
relates with inhibition of murine norovirus infection105. These 
initial observations suggest that the microbiota and its members 
can be either protective or stimulatory for norovirus infections.  
Another indirect effect may also occur through the modulation 
of glycan molecules that mediate viral attachment. Specifically, 
intestinal colonization with the microbiota upregulates fut2 expres-
sion via ERK and JNK signaling cascades106, while colonization 
with CagA-positive Helicobacter pylori correlates with α(1,2) 
fucosylated epitopes on intestinal surfaces107. Since an individual’s 
secretor status influences their microbiota composition108,109, 
there appears to be a reciprocal relationship between the host 
and bacteria that determine the overall level of fucosylation in 
the intestine110. The modulation of receptor binding sites may 
also extend to proteinaceous receptors. The murine norovirus 
receptor CD300lf is upregulated by lipopolysaccharide (LPS) 
stimulation111,112. Thus, Gram-negative bacteria might upregulate 
this viral receptor. Engagement of CD300lf can also upregulate 
TNF-α expression113, which may explain the observed TNF-α 
increase during human and murine norovirus infection94,114,115. 
Interestingly, TNF-α induces sialyltransferase activity116,117 as well 
as lactosylceramide synthase activity, an enzyme that produces 
lactosylceramide from glucosylceramide, a precursor for most  
glycosphingolipids118. Therefore, engagement of inflammatory 
pathways may upregulate gangliosides and sialic acids on the cell 
surface, known murine norovirus attachment factors69,119. This 
might provide an explanation for why murine norovirus does not 
share the same level of dependence on the presence of bile acids as 
do human noroviruses17,74. Yet both viruses may have evolved ways 
to promote upregulation of host receptor molecules to facilitate  
infection. Clearly, more studies are needed to investigate these 
potential links and gain a mechanistic understanding of the 
multifaceted role of the microbiota on norovirus infections.

Microfluidics in norovirus research
An exciting technical development in the field is the application 
of drop-based microfluidics to norovirus research. This ultrahigh- 
throughput platform uses aqueous drops dispersed in oil as 
picoliter-volume reaction vessels to screen and analyze single 
cells or individual virus particles at a rate and level of sensitivity 
that are far superior to the traditional cell-culture-based techniques 
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used currently, such as plaque assay, and other biochemical-, 
genetic-, and molecular-based techniques21,22,120–124. The production 
of millions of drops that are amenable to high-speed measurements 
in parallel reduces cost and screening time125,126. Furthermore, 
microfluidics overcome the loss of error due to the presence of 
minor alleles associated with bulk viral culture, since each encap-
sulated virus particle constitutes an independent experiment, facili-
tating viral evolution studies. Over the past five years, microfluidics 
has been successfully used to i) grow murine norovirus to iden-
tify mutations that support escape from neutralizing monoclonal 
antibody A6.222, ii) develop a rapid, targeted, and culture-free 
infectivity assay to determine the efficacy of a neutralizing antibody 
for murine norovirus21 with comparable results to plaque-based 
neutralization assays, iii) detect, quantify, and sequence artifact- 
free rare recombinant noroviruses in vitro24 and in vivo23, pro-
viding critical information that cannot be obtained using tra-
ditional methods such as phylogenetic studies127,128 and full 
genome sequencing128, and, lastly, iv) simultaneously screen for 
multiple viruses, including noroviruses, in environmental water 
samples129,130. The microfluidics technology is continually being 
improved and adapted to a wider array of scientific inquiries121 
and has the potential to become an integral platform for future 
norovirus research, specifically aiding in studies of norovirus 
evolution and population dynamics, drug screening, and environ-
mental testing.

Conclusion
Noroviruses have proven difficult to study in the past, but progress 
in overcoming technical barriers has opened doors to much-needed 
basic and translational studies. The recent development of two 
new culture systems has already yielded new biological findings 
about the role of bile acids and HBGAs in norovirus infection16,17.  
Further refinement of each system and improvements in ease 
of use and reproducibility will increase their utility to the scien-
tific community and facilitate new discoveries. In addition, the 
identification of multiple norovirus-infected cell types of both 

epithelial (i.e. enterocytes) and immunological (e.g. B cells, 
macrophages, dendritic cells, and T cells) origin represents a shift 
in the paradigm from the assumed enterocyte-tropic nature of 
noroviruses to a more inclusive definition of an enterotropic virus: 
one that encompasses infection of multiple cell types residing in 
the intestine. Therefore, culture systems that recapitulate infec-
tion of each cell type will advance a greater understanding of the 
cell-type-specific vs. general mechanisms that drive norovirus 
infection. At the same time, the appreciation of this broader 
tropism also suggests that more advanced co-culture systems 
encompassing multiple cell types will be needed to dissect the 
interactions between norovirus and the various cell types and their 
specific roles in pathogenesis. In addition, early findings regarding 
the importance of intestinal microbiota and norovirus encounters 
on the outcome of infection provide an exciting new direction in 
the norovirus field, revealing interesting details about the com-
plex interplay between highly different organisms. Combining the 
expertise of scientists within and outside the norovirus field to take 
advantage of new methodologies such as microfluidics will further 
increase our understanding of norovirus biology and our ability to 
develop effective solutions for infection prevention, treatment, and 
control.
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