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Abstract

Epidemiological models are key tools for designing and evaluating detection and control strategies against animal
infectious diseases. In France, after decades of decrease of bovine tuberculosis (bTB) incidence, the disease keeps
circulating. Increasing prevalence levels are observed in several areas, where the detection and control strategy could be
adapted. The objective of this work was to design and calibrate a model of the within-herd transmission of bTB. The
proposed model is a stochastic model operating in discrete-time. Three health states were distinguished: susceptible, latent
and infected. Dairy and beef herd dynamics and bTB detection and control programs were explicitly represented.
Approximate Bayesian computation was used to estimate three model parameters from field data: the transmission
parameter when animals are inside (binside) and outside (boutside) buildings, and the duration of the latent phase. An
independent dataset was used for model validation. The estimated median was 0.43 [0.16–0.84] month21 for binside and 0.08
[0.01–0.32] month21 for boutside. The median duration of the latent period was estimated 3.5 [2–8] months. The sensitivity
analysis showed only minor influences of fixed parameter values on these posterior estimates. Validation based on an
independent dataset showed that in more than 80% of herds, the observed proportion of animals with detected lesions was
between the 2.5% and 97.5% percentiles of the simulated distribution. In the absence of control program and once bTB has
become enzootic within a herd, the median effective reproductive ratio was estimated to be 2.2 in beef herds and 1.7 in
dairy herds. These low estimates are consistent with field observations of a low prevalence level in French bTB-infected
herds.
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Introduction

Bovine tuberculosis (bTB) is a chronic animal disease most often

caused by Mycobacterium bovis, that mainly affects the respiratory

system [1]. The main route of transmission of the infection

between cattle is the respiratory route [2]. In France, a control

program for bTB became mandatory in 1965. Detection of

infected herds was based on an annual screening of animals using

skin tests, and on routine inspection of carcasses at slaughter for

bTB-like lesions (with subsequent isolation of M. bovis at the

laboratory). Since 1990, the control program was reinforced by the

compulsory screening (using skin tests) of animals introduced in

bTB-free herds, these animals always originating from other bTB-

free herds. In 1999, herd prevalence fell below 0.1% and the

slaughter of all cattle in infected herds (termed below ‘‘total

slaughter’’) was introduced in the control program. In 2001,

France was declared officially free of bTB by the European Union.

However, in recent years, an increase in bTB incidence has been

observed in some departments. Similar trends have been observed

in other European countries. In Great Britain and Ireland, the

control programs became mandatory in 1950 and 1957, respec-

tively. They were also based on an annual screening by skin test,

the slaughter of positive animals and the inspection of carcasses at

the slaughterhouse [3]. bTB incidence decreased in both countries,

but the epidemiological situation began to deteriorate gradually

from the 1980s, partly because of the existence of a wildlife

reservoir in badger populations [4]. In France, such a wildlife

reservoir has not been identified, although wild boars, red deer

and badgers with M. bovis lesions have been found in several

departments. Unlike France, Great Britain or Ireland, there are

countries where ‘‘test and slaughter’’ control programs were

successful in eradicating bTB: Sweden was considered bTB-free in

1958, after 40 years of this type of control program [5] (sporadic

cases have been reported afterwards, the last one in 1978 [6]).

In France, data collected over 35 years, between 1965 and

2000, have shown parallel evolutions of herd management

practices (with a disappearance of family farms and a profession-

alization of breeders) and of herd structures (with changes in herd

types with a switch from dairy to beef and increasing herd sizes).

Besides the effectiveness of control programs, the decrease of bTB

incidence between 1965 and 2000 could be partly attributable to

these changes in herd management practices and in herd

structures [7].
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Neither ante-mortem tests [8] nor post-mortem tests [6,9] used

in bTB control programs have perfect sensitivity and specificity.

With the decrease of infection prevalence and because of the

increase of herd sizes (multiplied on average by 3.5 between 1965

and 2000 in France [7]), ante-mortem false-positive reactions

became a major problem for the surveillance and control program

and its acceptability by breeders. This led to an increasing

complexity of testing procedures over the past fifteen years, with

combinations of several tests: single intradermal tuberculin test

(SITT), single intradermal comparative cervical tuberculin test

(SICCT) and gamma interferon test (cIFN). Additionally, total

slaughter has been replaced in some areas by the slaughter of

reactive animals only. All these adaptations allowed reducing the

number of animals slaughtered due to false-positive tests, the

counterpart being the burdensomeness of control programs due to

prolonged restriction of cattle movements.

The failure of the eradication of bTB in France and other

European countries seems therefore the result of a complex

interaction between the evolution of herd management practices

and herd structures, the evolution of control programs, and the

implication of wildlife as a reservoir for infection in cattle.

Mathematical modelling is used for the study of complex

phenomena such as the dynamics of infectious agents [10].

Diseases with a long incubation period, such as bTB, are difficult

to study experimentally or in the field because of prolonged

waiting times for obtaining results and the high costs of conducting

experimental studies [2]. Mathematical simulation models offer

the possibility to test a range of control programs in a short time

and to identify the most effective one [2].

A number of mathematical models have been developed to

represent the spread of bTB and assess the effectiveness of control

measures, especially for wildlife (badgers, opossums and white-

tailed deer) [11]. Several models have been built to simulate the

dynamics of bTB within cattle herds, to quantify the importance of

within-farm bTB transmission by estimating the within-herd

transmission coefficient of infection [2,12–14] or to evaluate

detection and control strategies against bTB [2,13,15,16].

Each of these models incorporates three processes that shape the

within-herd bTB infection dynamics: (i) the natural history of the

disease, (ii) husbandry practices and (iii) the surveillance and

control program [15]. Because points (ii) and (iii) are specific to a

particular context (geographical area and time period), the models

mentioned above are difficult to extrapolate to other countries.

The aim of this study was to design, calibrate and validate a

model of spread of M. bovis within a cattle herd. Parameter

definition was designed to allow simulating various herd manage-

ment practices as well as control programs of arbitrary complexity.

Materials and Methods

Ethical statement
bTB is a notifiable disease for which there are control and

surveillance campaigns in France. Official methods for diagnosis of

this disease are culture, PCR and histopathology. Therefore, all

the datasets included in this study are issued from animals

analyzed within an official context. No purpose killing of animals

was performed for this study. All datasets were in complete

agreement with national and European regulations. No ethical

approval was necessary.

Data
Four datasets denoted A, B, C and D were used, which had

been collected at different periods (between 1980 and 2010) in 3

French departments (Nord, Dordogne, and Côte d’Or). At that

time and in these departments, four specific control programs were

applied, also denoted A, B, C and D (Table 1).

The total number of herds in the four datasets was 115. All were

submitted to a total slaughter. Out of all these 115 farms, detailed

data for each animal (individual data) were available for 27 herds,

namely the year of birth, the screening tests used, the date and

results of these tests, the date of slaughter and the result of carcass

inspection at the slaughterhouse (presence or absence of lesions).

For the 88 remaining farms, we obtained a single data point

aggregated at the herd level: the within-herd proportion of animals

with detected lesions at total slaughter (Table 1). Dataset A was

obtained from a case study conducted by Carnon [17]. The

median percentage of animals with lesions per herd was 34.6%

(min: 20.8%, max: 86.4%). Dataset B and C were obtained from

the official veterinary services of Dordogne department. In dataset

B, the median percentage of animals with lesions per herd was

6.4% (min: 0.1%, max 52%). In dataset C, it was 3.1% (min:

0.6%, max 43%). Data set D was obtained from the Alfort

Table 1. Description of the four datasets.

Id Data type

Number of herds
(animals)

Period
(geographic origin) Control program

Dairy Beef

A Aggregated 5 (134) 1981–1983 (Nord) Annual screening by SITT, slaughter of all cattle if.40% of SITT-positive animals,
otherwise slaughter of SITT-positive only

B Individual 1 (60) 12 (625) 2004–2006 (Dordogne) Biennial screening by SITT confirmed by SICCT, slaughter of SICCT-positive animals,
slaughter of all cattle in case of lesions and M. bovis isolation

Aggregated 9 (684) 16 (1,011)

C Individual 3 (142) 11 (596) 2007–2010 (Dordogne) Annual screening by SITT with second control by cIFN1 and confirmation by SICCT,
slaughter of SICCT-positive, slaughter of all cattle in case of lesions and M. bovis
isolation

Aggregated 7 (530) 22 (1,344)

D Aggregated 29 (6,317) 2005–2009 (Côte d’Or) Biennial screening by SICCT, slaughter of SICCT-positive animals, slaughter of all
cattle in case of lesions and M. bovis isolation

1To improve the specificity of the control program C, the cIFN assay used in this control program is a combination of two tests: the PPD cIFN and the ESAT-6 cIFN. The
modified cIFN test can be positive (both tests are positive), negative (both tests are negative) or divergent (the results of the two tests are discordant).
doi:10.1371/journal.pone.0108584.t001

Modeling Tuberculosis Dynamics

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e108584



National Veterinary School. The median percentage of animals

with lesions per herd was 1% (min: 0.3%, max: 5%).

Model
The within-herd spread of bTB was modelled using a

compartmental stochastic model operating in discrete time

(Figure 1). The time step was one month. Hereafter, t represents

the current time step and m the current month. Each cattle was

represented by its age in years iMA = {0,…,A_max} and its health

state jMH = {S,E,I}, with: S (susceptible): the animal is not infected,

E (latent): the animal is infected but does not have lesions and does

not excrete bacteria, and I (infectious): the animal is infected, has

lesions and excretes bacteria. Animals were assumed to be grouped

into batches according to their age class. To each age class i (iMA)

was assigned a batch denoted L(i) (with L(i),A). A given batch

thus contained animals of one or several age classes. In practice,

these batches are often placed by farmers on distant pastures and

sometimes in separate buildings, animals from distinct batches

having little contact with each other.

The control program was represented by a succession of steps

numbered from 1 to Dmax. During each of these steps, biological

tests were performed on the entire or part of the herd; the results of

these tests determined the following step. For example, in the

control program B which was applied between 2004 and 2006 in

the department of Dordogne (Figure 2), the first step is the yearly

screening of all animals by SITT. If one animal is positive, the

second step of control program is performed two months later:

positive animals of step 1 are tested by SICCT, as well as a group

of randomly selected negative animals. If one animal is positive in

step 2, step 3 is performed 3 months later: positive animals of step

2 are slaughtered and, when lesions are observed, bacterial

cultures are performed. If one animal is positive to the bacterial

culture, the total slaughter (step 4) is performed 1 month later. The

status of each animal with respect to the step of the control

program was represented by an integer kMD = {0,…,D_max},

with: k = 0 if the animal has never been tested or always had

negative test results, and k.0 if the animal had positive results to

tests performed in step k of the control program, and negative tests

thereafter.

The state of a herd at time step t was represented by a

tripletÆXt,yt,ztæ, where yt is the number of the current step of the

control program (1# yt #Dmax), zt is the date on which the

biological tests associated with this step must be performed (zt$t),
and Xt is a state variable structured on age class, health status and

step of the control program, which represents the state of the

animals at time step t: Xt (i,j,k) represents the number of animals in

age class i (iMA), health state j (jMH), which have the status k (kMD)

with respect to the control program.

The dynamic of infection in the herd resulted from the

implementation of three sequential processes (Figure 1): the

demographic process (ageing and renewal of animals), the

infectious process (transmission of infection and evolution of

infected animals) and the process of detection and control. A full

description of the model is given in Appendix S1.

The size of the herd was assumed constant over time and the

herd was assumed closed. Slaughtered animals (routine slaughter

or implementation of the control program) being replaced by

susceptible young animals (0–1 years old) born in the same herd.

The culling rate kMD was assumed to vary according to the month

and to the age class.

We made the simplifying assumption that transmission can

occur only between animals of the same batch. However, because

of the ageing of animals, the composition of the batch changes

every year. Animal transfers between batches then allowed the

between-batch infection spread. The within-herd transmission of

bTB was modelled by a frequency-dependent function. Because

M. bovis transmission intensity was assumed to vary according to

whether the animals are housed inside a stable (where the intensity

of within-batch transmission is assumed to be high) or allowed to

graze (where the intensity of within-batch transmission is assumed

to be low), the transmission parameter (bm) was assumed to vary

according to the month. The transition from the latent (E) to the

infectious (I) state was based on the transition rate a, where 1/a is

the duration of the latency period in months.

A step of the control program represented the implementation

of one or more biological tests, some of which potentially requiring

the slaughter of the animal (for detecting lesions). Tests

implemented in the context of a control program could be

performed on the entire or part of the herd; the sample of tested

animals depending on the results of previous steps of the control

program. A step k of the control program was then represented by

the quadrupletÆSek,Spk,Mk,Qkæ, where:

– Sek and Spk are the joint sensitivity and specificity of tests

(assumed independent of age and identical for animals in

health states E and I)

– mk equals 1 if the tests require the slaughter of the animal and 0

otherwise

– Qk is a parameter structured according to age class and to the

status of animals with respect to the step of the control

program, which defines the sampling plan for testing animals:

Qk (i,k) is the probability that an animal is tested if it has age i
and status k for the control program. This parameter verifies:

g((i,k)MA6D)Qk (i,k) = 1.

The step k = 1 of the control program corresponded to a

screening in a bTB-free herd. The steps k.1 corresponded to

detection and control measures conducted in a herd known or

suspected to be infected.

At each time step, it was further assumed that slaughterhouse

surveillance allowed the detection of lesions in culled animals. This

slaughterhouse surveillance combined the visual inspection of

carcasses with the isolation of M. bovis from lesions (Figures 2 and

3).

Parameterisation
Fixed parameters. Consistent estimates of the sensitivity and

specificity of diagnostic tests are found in the literature, and herd

management practices were assumed homogeneous in a given

region. The values of the corresponding parameters were thus

fixed according to literature or based on expert opinion.

Three batches were distinguished in beef herds: young heifers

(1–2 years), heifers of reproductive age (2–3 years), and cows (after

the first calving at 4 years) with calves and heifers fed by their

mothers (,1year). In dairy herds, animals were also separated into

three batches: young heifers (,1 year), heifers of reproductive age

(1–2 years), and cows (after the first calving, at 3 years).

For both types of herds, the stabling period was between

November and March. Renewal and routine cull of animals was

assumed to occur between January and March, animals being

culled from the age of 3 years in dairy herds and from the age of 4

years in beef herds. The maximum age of the cattle (Amax) was set

to 15 years. Other fixed parameters (culling rate, sensitivity and

specificity of screening and diagnostic tests) are given in Table 2.

Month-specific transmission parameters allowed representing

the difference between the stabling and grazing period, with

bm = binside during the stabling period (between November and

March) and bm = boutside for the remainder of the year. Because of
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the close contact between dairy cows that occurs twice per day in

the milking parlour, binside was used throughout the year in dairy

herds for the cows’ batch.

Initial conditions assumed the presence of a single infected

animal in the state E. To represent the introduction of infection

through contact during grazing, this animal was randomly selected

among animals that had access to pasture (all batches for beef

herds and the first two batches in dairy herds). Simulations were

stopped when there were no more infected animals (thanks to

routine cull and/or to the control program), the current step of the

control program being 1 (i.e. screening in a bTB-free herd).

Parameter estimation. As estimates available in the litera-

ture are divergent or uncertain, and because many aspects of bTB

pathogenesis are yet to be elucidated, three parameters were

estimated from field data: a (transition rate between the health

states E and I), binside (transmission parameter when animals are

inside the stable) and boutside (transmission parameter when

animals are grazing). Individual-level data from datasets B and

C were used, corresponding to 27 herds and 1423 animals

(Table 1). Control programs B (Figure 2) and C (Figure 3) were

modelled according to memos of the French Ministry of

Agriculture, Food and Forestry.

The ABC (Approximate Bayesian Computation) method was

used to estimate the parameters (a, binside and boutside). This

method aims at estimating the posterior distributions of the

parameters where the calculation of the likelihood is difficult or

burdensome [18].

The generic form of the ABC method’s ‘‘rejection algorithm’’ is

[18]:

1- Sample parameter values h* from the prior distribution p(h).

2- Simulate a dataset x* using parameter values h*.

3- Calculate the summary statistics for the observed data S(xo)

and simulated data S(x*).

4- Compare the simulated data, S(x*), and the observed data,

S(xo), using the distance function, d, and the tolerance e; if d
(S(xo), S(x*)) # e, the value of h* is accepted. When e = 0, the

posterior distribution is exactly p(h/S (xo)), whereas when eR+
‘, the posterior distribution is equal to the prior distribution

[19].

Other algorithms have been proposed for the ABC method (e.g.

Markov Chain Monte Carlo or Sequential Monte Carlo). We used

the rejection algorithm followed by a step of local linear regression

as proposed by Beaumont et al. [19]. This step aims at reducing

the variance of the posterior estimation in order to try to correct

errors that are due to a non-zero value of the tolerance e. A total of

100,000 simulations were performed for parameter estimation.

Prior distributions were uniform distributions U[0.027–

0.50]month21 for a and U [0–2]month21 for binside and boutside.

For a, these values correspond to a period of latency between 2

and 36 months. The lower bound (2 months) is the rounded value

of the lower bound (87 days) of the estimation obtained by Neill

et al. in an experimental study [20], while the upper bound (36

months) is a rounded value of the upper bound (34 months) of the

estimated duration of latency in Perez et al. [2]. For binside and

boutside, the upper bound of the prior distribution was chosen

arbitrarily after having verified by simulation that, using this value,

the median simulated percentage of animals with lesions at total

slaughter (22% and 17% for dairy and beef farms, respectively)

was significantly higher than the observed value in dataset B

(6.4%).

The choice of summary statistics is a crucial step in the ABC

method. This choice involves a compromise between information

loss and size of the statistic [21]. Using a poorly chosen set of

summary statistics can often lead to an overestimation of credible

Figure 1. Schematic representation of the model of within-herd transmission of bTB by three processes: the demographic process
(renewal of cattle, reform and change of batches), the infectious process (transitions between health states S: susceptible, E: latent,
I: infectious) and the process of detection and control. a: age class in years; Batch: group of animals; m: month; mm (a): culling rate for month m
and age class a; bm: month-specific transmission coefficient; Sepr: test sensitivity of step k of programmed surveillance (control program); Sppr: test
specificity of step k of programmed surveillance (control program); FP: false positive; TP: true positive; Seev: sensitivity of passive surveillance at the
slaughterhouse.
doi:10.1371/journal.pone.0108584.g001

Figure 2. Control program B applied in the Dordogne department between 2004 and 2006. Step 1: biennial bTB screening using
SITT (the herd being considered disease-free). All animals are tested (Vi,kQ i,kð Þ~1). Sensitivity (Se) and specificity (Sp): those of SITT.
Transition to step 2 if an animal is positive (npos.0), two months later (Dt = 2 months. Step 2: confirmation of SITT positive results using SICCT. All the
positive animals of step 1 are tested (m i Q(i,1) = 1), as well as 10% of the negative animals (m i Q(i,1) = 1). Sensitivity (Se) and specificity (Sp): those of
SICCT. Transition to step 3 if an animal is positive, three months later. Step 3: slaughter of SICCT-positive animals and isolation of M. bovis from
lesions. All the positive animals of step 2 (m i Q(i,2) = 1) are slaughtered (m = 1) and bacterial culture is performed from observed lesions. Sensitivity
(Se): sequential combination of a visual inspection at the slaughterhouse and of a bacterial culture. Transition to step 4 if an animal is positive, 1
month later. Step 4: total slaughter. All the animals (Vi,kQ i,kð Þ~1) are slaughtered (m = 1). Routine detection of lesions at slaughterhouse. Sensitivity
(Seev): sequential combination of a visual inspection at the slaughterhouse and of a bacterial culture. If a positive animal is thus detected, regardless
of the current stage of control program, transition to step 4. See table 2 for the definition of the other parameters.
doi:10.1371/journal.pone.0108584.g002
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intervals due to the loss of information [22]. One way to capture

most of the information present in the data would be to use many

statistics, but the accuracy and stability of the ABC method

decrease rapidly with an increasing number of summary statistics

[22,23]. In order to choose the best combination of summary

statistics, eight combinations (Table 3) were tested on simulated

data obtained using arbitrarily fixed parameter values. The tested

summary statistics combined two types of variables, the time

between the last negative control and the detection of infection

and the percentage of animals with detected lesions, taking into

account or not the batch, the type of herd and the year. The

procedure used to select the best summary statistics among the

eight tested combinations is described in Appendix S2. Briefly,

parameter values were set to arbitrarily chosen values and used to

generate 100 simulated datasets. In a first step, one of these

datasets was chosen and considered a pseudo-observation. Each

set of summary statistics was then successively used to estimate the

posterior distribution of the parameters, and we kept for further

analysis the set of summary statistics for which the arbitrarily

chosen parameter values were inside the corresponding 95%

credibility interval. In a second step, the preceding procedure was

successively applied to the 100 simulated datasets and we selected

the set of summary statistics that maximized the proportion of

cases for which the arbitrarily chosen parameter values were inside

the 95% credibility interval of the posterior distribution of

parameters.

The tolerance threshold e was determined by choosing the

proportion of retained simulations pe. A leave-one-out procedure

was applied to a set of 100 datasets simulated using parameters (a,
binside, boutside) sampled from the prior distributions, to evaluate the

Figure 3. Control program C applied in the Dordogne department between 2007 and 2010. Step 1: yearly bTB screening using SITT (the
herd being considered disease-free). All animals are tested (m i,k Q(i,k) = 1). Sensitivity (Se) and specificity (Sp): those of SITT. Immediate transition to
step 2 if an animal is positive (npos.0). Step 2: confirmation of SITT positive results using PDD cIFN (cIFN1) and ESAT-6 cIFN (cIFN2). All the positive
animals of step 1 are tested (m i Q(i,1) = 1. Sensitivity (Se) and specificity (Sp): parallel combination of both tests (positivity to any of both tests).
Immediate transition to step 3 if an animal is positive; otherwise: transition to step 1. Step 3: interpretation of the positive results of step 2 as
convergent (both cIFN tests are positive) or not (only one of both tests is positive). All the positive animals of step 2 (m i Q(i,2) = 1) are concerned.
Sensitivity (Se) and Specificity (Sp): sequential combination of both tests in positive animals of step 2. Transition to step 5 if an animal is positive, and
to step 4 otherwise, two months later. Step 4: second confirmation of SITT positive results using PDD cIFN (cIFN1) and ESAT-6 cIFN (cIFN2). All the
positive animals of step 1 are tested (m i Q(i,1) = 1). Sensitivity (Se) and specificity (Sp): same as for step 2. Transition to step 5 if an animal is positive,
two months later; otherwise: transition to step 1, 12 months later. Step 5: confirmation of SITT positive results using SICCT. All the positive animals of
step 1 are tested (m i Q(i,1) = 1), as well as 10% of the negative animals (m i Q(i,0) = 0.1). Sensitivity (Se) and specificity (Sp): those of SICCT. Transition to
step 6 if an animal is positive, three months later. Step 6: slaughter of SICCT-positive animals and isolation of M. bovis from lesions. All the positive
animals of step 5 (m i Q(i,5) = 1) are slaughtered (m = 1) and bacterial culture is performed from observed lesions. Sensitivity (Se): sequential
combination of a visual inspection at the slaughterhouse and of a bacterial culture. Transition to step 7 if an animal is positive, 1 month later (Dt = 1
month). Step 7: total slaughter. All the animals (m i,k Q(i,k) = 1) are slaughtered (m = 1). Routine detection of lesions at slaughterhouse. Sensitivity
(Seev): sequential combination of a visual inspection at the slaughterhouse and of a bacterial culture. If a positive animal is thus detected, regardless
of the current stage of control program, transition to step 7. See table 2 for the definition of the other parameters.
doi:10.1371/journal.pone.0108584.g003
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Table 2. Definitions and values of fixed parameters in the model.

Parameters Description Value Range1 Reference

mm (i) Culling rate (Prof. Coureau, Alfort National Veterinary
School, pers. Comm.)

Dairy herd, 2000’s 0.35 0.25; 0.45

Beef herd, 2000’s 0.25 0.15; 0.35

All herds, 1980’s 0.25

Se.SITT Sensitivity of single intradermal tuberculin test 0.635; 1 [8]

1980’s 0.72

2000’s 0.839

Sp.SITT Specificity of single intradermal tuberculin test 0.755; 0.99 [8]

1980’s 0.988

2000’s 0.968

Se.SICCT Sensitivity of single intra dermal comparative
cervical tuberculin test

0.80 0.52; 1 [8]

Sp.SICCT Specificity of single intra dermal comparative
cervical tuberculin test

0.995 0.788; 1 [8]

Se.PPD cIFN Sensitivity of gamma interferon test (PPD) 0.876 0.73; 1 [8]

Sp.PPD cIFN Specificity of gamma interferon test (PPD) 0.966 0.850; 0.996 [8]

Se.ESAT-6 cIFN Sensitivity of gamma interferon test (ESAT-6) 0.763 0.690; 0.836 [51]

Sp.ESAT-6 cIFN Specificity of gamma interferon test (ESAT-6) 0.992 0.976; 1 [51]

qSICCT Proportion of animals non-reactors to SITT tested
six weeks later by SICCT

0.10 0.05; 0.15 (French Ministry of agriculture, Food and
Forestry)

Se.bac Sensitivity of bacterial culture 0.78 0.729; 0.828 [52]

Se.les Sensitivity of visual inspection of carcass 0.50 0.255; 0.755 [6]

1Values used in the sensitivity analysis.
doi:10.1371/journal.pone.0108584.t002

Table 3. Selection of the set of summary statistics based on simulated datasets generated using arbitrarily fixed parameter values:
a= 0.083 months, binside = 0.5, and binside = 0.1.

Id Summary statistics Dimension Median [95% credible interval] p1

a binside boutside

A Average percentage of animals with detected lesions2 1 0.72
[0.60–0.78]

0.79
[0.44–1.27]

0.61
[0,03–1,92]

–

B Average percentage of animals with detected lesions in each batch 3 0.42
[0.00–2.43]

0.33
[0.28–0.70]

0.29
[0.00–3.9]

73%

C Percentage of animals with detected lesions in each batch (n = 3)
of each herd (n = 27)

81 0.13
[0.06–0.67]

0.35
[0.02–1.97]

0.44
[0.01–2.21]

49%

D Same as C+percentage of herds submitted to total slaughter 82 0.97
[0.48–2.04]

0.05
[0.01–0.15]

0.03
[0.00–0.12]

–

E Same as C+time between the last negative test and the detection
of infection for each herd

108 0.29
[0.07–0.69]

0.35
[0.00–0.77]

0.07
[0.00–0.84]

32%

F Same as E+percentage of herds submitted to total slaughter 109 0.33
[0.12–0.65]

0.29
[0.08–0.57]

0.08
[0.00–0.79]

–

G Average percentage of animals with detected lesion for each batch,
period3 and herd type4; average time between the last negative
test and the detection of infection for each period and herd type

16 0.26
[0.07–0.74]

0.27
[0.04–0.75]

0.07
[0.00–0.52]

71%

H Same as G+percentage of herds submitted to total slaughter
for each period and herd type

20 0.073
[0.05–0.54]

0.48
[0.03–0.76]

0.12
[0.00–0.59]

88%

1Proportion of cases for which each of the three arbitrarily fixed parameter values were inside the 95% credible interval of the posterior distributions (100 repetitions).
2For herds submitted to a total slaughter.
3Before 2007 (control program B) and after 2007 (control program C).
4Dairy of beef.
doi:10.1371/journal.pone.0108584.t003
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robustness of the estimates to the tolerance rate. Each of the 100

simulated datasets was successively considered a pseudo-observa-

tion and parameter values were estimated using the above

procedure. A prediction error coefficient was calculated for each

estimated parameter, for values of pe ranging from 0.1% to 5%

[24]. The smallest value of pe for which the prediction error

coefficient was stable for the three parameters (a, binside, boutside)

was thus selected.

We used the ‘‘abc’’ package of software R [25]. The function

cv4abc was used to select the value for the proportion of retained

simulations pe.

A sensitivity analysis was performed to evaluate the effect of

changing the fixed parameter values (Table 2) on the estimated

values of the transition rate (a) and of the transmission parameters

(binside and boutside). Two different values were selected for each

fixed parameter (Table 2) according to literature (SITT, SICCT,

cIFN and bacterial culture) or using fixed deviations (610% or

65%). Only first-order effects were analyzed and, for each

scenario, a, binside and boutside were estimated by the ABC method,

as described above. This operation was repeated 24 times (12 fixed

parameters and 2 points per parameter) resulting in 24 posterior

distributions for a, binside and boutside. These were analysed using

three generalised linear model (GLMs) (one per estimated

parameter). The explanatory variables were the fixed parameters

values (their deviation from their default values).

The GLMs were used to predict the effect of an increase of 5%

of each fixed parameter on the average values of a, binside and

boutside. To identify the most influential fixed parameters, we

compared the coefficient of variation of the posterior distributions

(obtained using the default values of fixed parameters) with the

relative error induced by a 5% change of fixed parameters, as

predicted by the GLMs.

Validation
An internal validation was first performed using a leave-one-out

cross-validation procedure. One hundred triples of parameter

values (a, binside and boutside) were randomly chosen among the

100,000 used for parameter estimation. Each was successively used

to generate a dataset considered a pseudo-observation, and

posterior distributions were estimated using the above procedure

(without using the pseudo-observation). The reliability of the

estimation procedure was quantified by the proportion of cases for

which the triple (a, binside and boutside) used to generate the dataset

was within the 95% credible interval.

An external validation was performed to test the ability of the

model to reproduce the observational data of bTB in France

between 1980 and 2010, using the data that were not used for

parameter estimation: dataset A, aggregated data from datasets B

and C, and dataset D (Table 1). Each herd of these datasets was

successively used to parameterize the model (herd size and type,

control program - Figures 2, 3, S1 and S2), and the posterior

distributions of parameters (a, binside and boutside) were sampled to

perform 1000 simulations. Those ending by a total slaughter were

kept to compute the distribution of the proportion of animals with

detected lesions. For each herd of the above datasets, the observed

proportion was compared with the simulated distribution thus

obtained. Furthermore, for dataset A, the predicted proportion of

simulations ending by a total slaughter was compared with the

percentage observed in the corresponding department in the

1980s: 5%.

Model exploitation
The basic reproduction ratio (R0) is used to measure the

transmission potential of a disease. It is the number of secondary

infections produced by an infectious animal in a fully susceptible

population that is totally susceptible. This indictor is of great

importance in infectious disease modelling as, when R0,1, the

disease tends to vanish, whereas when R0.1, the disease tends to

spread and a large epidemic may occur [26]. However, in real

situations, the population is rarely entirely susceptible, mainly

because of the spread of infection (and the corresponding decrease

in the number of susceptible individuals). We computed the

effective reproductive ratio R(t): the average number of cases

secondary to an infectious case in a population consisting of

susceptible and infected individuals. Two average herds, respec-

tively representative of a French dairy herd (81 cattle) and a

French beef herd (70 cattle) in the 2000s, were considered. Disease

dynamics was simulated in these herds without a control program,

and the distribution of the effective reproductive ratio R(t) was

calculated each month after the introduction of M. bovis, during

360 months (twice the maximal age of cows in the model: 15

years). Details of R(t) calculation are given in Appendix S3.

Results

Parameter estimation
The procedure used to choose the set of summary statistics first

led to select B, C, E, G and H, for which, when using one

simulated dataset as a pseudo-observation, the arbitrarily chosen

parameter values were all inside the 95% credible interval of

posterior distributions of parameters (Table 3). Their dimensions

varied between 3 for B and 109 for F (Table 3). Among these five

sets of summary statistics, H maximized the proportion of cases

(88%) where the arbitrarily fixed parameters (a, binside and boutside)

were all within the credible interval of 95% of posterior

distributions when using the 100 simulated datasets as pseudo-

observations (Table 3). This set of summary statistics was thus

chosen: a combination of statistics describing the percentage of

animals with detected lesions per batch and the percentage of

herds with total slaughter per herd type (dairy/beef) and per

period (periods where control program B and C were applied).

The evolution of the values of the prediction error coefficient

according to the proportion of retained simulations led to select

pe = 2%.

The median of the posterior distribution of a was 0.28 (95%

credible interval [CI]: [0.13–0.56]), which corresponds to a

median latency period for bTB of 3.5 months (95% CI: [2–8]

months) (Figure 4). The median value of bTB transmission

coefficients were 0.43 month21 (95% CI [0.16–0.84] month21)

inside the stable (binside) and 0.08 month21 (95% CI [0.01–0.32]

month21) outside the stable (boutside) (Figure 4). The median of the

ratio binside/boutside was 5 (95% CI [0.8–100]). It was.1 in 95.6%

of cases (Figure 4). Negative values of Spearman’s rank correlation

coefficient were observed between a and binside (20.47, p,

0.0001), between a and boutside (20.31, p,0.0001), and between

binside and boutside (20.35, p,0.0001). These negative correlations

were expected, as the summary statistics (such as the proportion of

animals showing lesions) may remain approximately the same if a

higher value of a (i.e. a shorter latency period) is compensated by

smaller values of binside and boutside, or if a higher value of binside is

compensated by a lower value of boutside. The results of the

sensitivity analysis of parameter estimates to variations of fixed

parameter values are summarised in a tornado chart (Figure 5). A

5% increase in the values of the fixed parameters had limited

effects on the estimation of a and boutside (Figure 5). For binside, the

relative difference of the average posterior estimate greater than

the coefficient of variation computed from the posterior distribu-

tion of for a single parameter: the specificity of the ESAT-6 cIFN
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test. A 5% increase of the specificity of the ESAT-6 cIFN test led

to a 48.5% decrease of the average posterior estimate of binside.

Predicted bTB dynamics
Figure 6 and Table 4 represents the predicted bTB dynamics in

two herds representing dairy farms (average size in 2000:81

animals) and beef herds (average size in 2000:70 animals) in

France, with and without a control program (control program B,

Table 1 and Figure 2). When the control program was simulated,

after its introduction in a susceptible herd, bTB was predicted to

disappear in 22% of cases in beef herds and in 17% of cases in

dairy farms, thanks to routine cull: the median time from disease

introduction and disease extinction was less than 10 months, in

both types of herds, with or without a control program (Table 4).

In most cases, M. bovis did not disappear from the simulated herds

and the disease was predicted to be detected through passive

surveillance (at slaughterhouse) (13% for beef herds and 21% for

dairy farms) or through active surveillance (screening using skin

tests) (65% for beef herds and 62% for dairy farms). In both cases,

the median time period between the introduction of infection and

total slaughter was less than 3 years in the two types of herds

(Table 4). In the absence of a control program (Figure 6a and 6b),

the median proportion of infected animals was predicted to

increase until reaching a plateau at 61 months in beef herds and

Figure 4. Posterior distribution of parameters a, binside and boutside. Red dots: median value of parameter estimates; black dotted lines: lower
and higher bounds of parameter prior distributions; red dotted lines: 95% credible intervals of the parameter posterior distributions. Histogram
binside/boutside represents the value of log ratio binside/boutside but the x-axis values are not expressed in log.
doi:10.1371/journal.pone.0108584.g004
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40 months in dairy herds (Figure 6a and 6b). The corresponding

level of infection prevalence was predicted to be higher in beef

herds (Figure 6a) than in dairy herds (Figure 6b): once reached the

enzootic infection level the median prevalence of infected animals

was 93% in beef farms and 53% in dairy herds. As expected, when

a control program was used, the maximum percentage of infected

animals was predicted to be lower in both types of herds (Figure 6c

and 7d).

Validation
Internal validation showed that, for 83 of the 100 randomly

selected simulations, the fixed values of the three parameters a,

binside and boutside, were inside the 95% credible interval of the

posterior distributions.

Using dataset A, external validation showed that, in four of five

herds (farms 1, 2, 3 and 4), the observed percentage of cattle with

lesions was between the 2.5% and 97.5% percentiles of the

simulated proportion of animals with lesions at total slaughter

(Figure 7). In the fifth herd, the observed percentage of animals

with lesions was very high (86.6%) and was above the 97.5%

percentile of the simulated distribution (Figure 7). The proportion

of simulations ending with a total slaughter varied between 3%

and 7%, depending on the herd. These values are close to the

proportion of 5% reported by the French Ministry of Agriculture,

Food and Forestry for that department at that time.

Figure 5. Impact of changes of fixed parameter values on the estimates of a, binside and boutside. (a): relative error for a; (b): relative error for
binside; (c): relative error for boutside; black line: value of the coefficient of variation of the posterior distributions obtained when we using the default
values of fixed parameters; if the relative error value is within the two black lines, the effect of fixed parameters values on parameter estimates in the
model is considered limited; qSICCT: percentage of SITT-negative animals tested 6 weeks after by SICCT; see table 2 for the definition of the other
parameters.
doi:10.1371/journal.pone.0108584.g005
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The observed percentage of animals with lesions was located

between the 2.5% and 97.5% percentiles of the simulated

proportion of animals with lesions in 92% (23 herds out of 25)

and 83% (24 herds out of 29) of herds of datasets B and C,

respectively. This percentage was 100% (29 herds out of 29) for

dataset D.

Effective reproductive ratio
Figures 8a and 8b show the evolution of R(t) values over time.

In both types of herds, the shape of the curve was similar, with an

increase in the values of R(t) that reached a plateau 72 months

after disease introduction in dairy herds and at 96 months after

disease introduction in beef herds. After 30 simulated years, which

corresponds to a situation of enzootic circulation of M. bovis

within the herd, the value of R(t) was slightly higher for beef herds

than for dairy herds. The median value and the percentiles [2.5%–

97.5%] of the predicted distribution of R(t) were 2.2 [1.8–2.8] for

beef herds and 1.7 [1.5–2.2] for dairy herds (Figure 8a and

Figure 8b). It was higher than 1 for each of the 1,000 simulations

and higher than 2 for 11% of simulations in dairy herds and 79%

in beef herds (Figure 8c and Figure 8d).

Discussion

In this work, we have built a stochastic discrete-time model to

simulate bTB dynamics and control in cattle herds. The model

accounts for interactions among the three processes that influence

the within-herd evolution of bTB: (i) the natural history of the

disease (infectious process), (ii) husbandry practices (demographic

Figure 6. Monthly evolution of the simulated proportion of infected animals (animals in E or I health state; solid line: median,
dashed: 2.5% and 97.5% percentiles) in standard French beef (a and c, 70 animals) and dairy (b and d, 81 animals) herds without (a
and b) or with (c and d) implementation of control program B (1,000 simulations per scenario).
doi:10.1371/journal.pone.0108584.g006
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process) and (iii) control programs (detection and control process).

The model has been designed to allow simulating control

programs of arbitrary degree of complexity. Parameterization

allows representing various herd types and farming practices (in

particular the differences between dairy herd and beef herd

management). Epidemiological parameters of the within-herd

transmission of bTB (duration of the latent state, transmission

parameters) were estimated using a first set and the model was

validated using a second set of field data collected between 1980

and 2010. Herd management practices and bTB control programs

have evolved during this period and the model could be

successfully adapted by changing parameter values, suggesting a

good level of genericity and an ability to simulate various herd

management systems and bTB detection and control programs of

arbitrary complexity. The simulated effective reproductive ratio

R(t) may allow assessing the effectiveness (i.e. whether R(t),1) of

different bTB control strategies or the effect of changes in herd

management practices on the bTB within-herd dynamic.

Internal validation showed a good reliability of the estimation

procedure of model parameters by the ABC method. External

validation showed that the model was able to reproduce field data

regarding bTB collected between 1980 and 2010 in several French

departments. This suggests that the transmission coefficients

(binside and boutside) and the duration of the latent period (1/a)

have remained roughly constant between the 1980s and today,

despite changes in parameters related to herd management

practices such as the culling rate, the age at culling and the herd

size.

Health states used in the proposed model (susceptible, latent and

infectious) are consistent with the pathology of infection. However,

published models often divide the latent state into two sub-states

(latent, non-skin test-responsive and latent, skin test-responsive

[13–15]) and use shorter time steps (day or week). Latent non-skin

test-responsive animals spend an average of four weeks in this state

before developing a positive skin test reaction [13,14,27]. Conlan

et al. [28] estimated the median period of the latent non-skin test-

responsive state at 28 days. As we used a monthly time step, it was

thus not necessary to represent this health state. Infectious state I
was defined by the presence of detectable lesions at slaughter. The

type (open or stabilised) and the location of the lesions were not

taken into account. This may induce an underestimation of within-

herd transmission: an animal with so-called ‘‘open tuberculosis

lesions’’ may infect the rest of the herd in a short period of time.

However, much is unclear about open tuberculosis lesions,

including the probability of developing this type of lesion, its

duration and its infectivity [15]. Therefore we did not incorporate

the type of lesion in our model. This choice is in line with other

epidemiological models of bTB [13–15].

Most of the models previously developed in the literature that

simulated the within-herd spread of bTB used a single transmis-

sion parameter. In our model, we used two transmission

parameters to distinguish transmission inside buildings and in

pastures. Both transmission coefficients are related to herd

practices, allowing to use the model for representing various

farming systems by changing the grazing periods and the

composition of batches. The within-herd transmission of bTB is

considered higher in dairy herds than in beef herds [12]. This is

attributed to a combination of several factors that contribute to the

spread of infections in dairy herds such as the high contact rate,

especially in the milking parlour [13], the high animal density and

stress factors related to intense animal management [12,29–32].

The estimated value of binside was greater than that of boutside in

96% of cases, suggesting that the definition of two transmission

coefficients allowed capturing the difference between dairy herds

and beef herds in terms of within-herd transmission of bTB.

Indeed, although the 95% credible intervals of the two within-herd

transmission coefficients of bTB (binside and boutside) overlapped,

the median within-herd transmission coefficient inside the stable

was 5 time as high as in the pasture: 0.43 month21 [0,16–0.84]

and 0.08 month21 [0.01–0.32] for binside and boutside, respectively.

These estimated medians were consistent with the estimates of

within-herd transmission of bTB in Spain proposed by Alvarez

et al. [12], with higher transmission coefficients in dairy herds

(median 0.39 month21) than in beef herds (0.19 month21). The

estimated values of the transmission coefficients are also in the

same range as values obtained by other studies: 0.22 month21 in

the study of Barlow et al. [13] and 0.18 months21 in the study of

Perez et al. in Argentina [2].

The only transmission route taken into account in our work is

the direct transmission between animals of the same batch.

Indirect transmission, the potential role of wildlife, contacts with

cattle from other herds at pastures and contacts between cattle of

different batches are not taken into account. In particular,

between-batch disease transmission was not taken into account

because we assumed that the probability of contact between

animals of different batches was low: different batches of the same

herd are often placed by the breeder on different and distant

pastures and even sometimes in separate buildings. It should be

noted that the transmission between batches does nevertheless

occur in the model: as bTB is a chronic, slowly evolving disease,

between-batch transmission occurs when animals are moved from

one batch to another. However, the closed herd assumption would

Table 4. Predicted median and percentiles [2.5%–97.5%] of the distribution of outbreak duration (in months) in standard French
beef herds (70 animals) and dairy herds (81 animals) without or with control programs (1,000 simulations per scenario).

Beef herds Dairy herds

Time to natural extinction of infection Without a simulated control program 7 [3–30] 8 [4–32]

With a simulated control program

No detection of infection 6 [3–11] 7 [4–16]

Infection suspected but not confirmed1 8 [3–25] 8 [3–23]

Time to total slaughter of the herd after infection detection
by routine skin testing

24 [9–50] 23 [9–48]

Time to total slaughter of the herd after infection detection
by slaughterhouse surveillance

24 [8–50] 30 [9–47]

1No isolation of M. bovis, total slaughter is thus not applied.
doi:10.1371/journal.pone.0108584.t004
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likely underestimate the persistence of M. bovis infection in herds,

if wildlife or introduced animals can reintroduce infection [33].

The median duration of the estimated latency period (state E)

was 3.5 months [2–8] months. This range of values is consistent

with the chronic nature of bTB. However, our estimate of the

latency duration was lower than the mean estimated duration of

24 months (95% confidence interval: 15–34 months) that was

obtained by a simulation model of the within-herd transmission of

bTB in Argentina [2]. This difference may be explained by

differences among animals in the two countries, as the incubation

period depends on the susceptibility of the host [34].

Model predictions for 2000 showed that the infected herds

(dairy or beef) were in 15 to 20% of cases detected by

slaughterhouse surveillance. This result was expected because

the frequency of intradermal skin test applied in control program

B was biennial. The percentage of spontaneous extinction of the

disease (thanks to routine cull) was almost identical between dairy

and beef herds.

When no control program was applied, simulated within-herd

prevalence reached.50% in both types of farms. This simulated

prevalence is high compared to the values observed in some parts

of Africa and Asia (between 6% and 15%), where no control

Figure 7. Observed and simulated proportions of animals with detected lesions when total slaughter is performed, for the 5 herds
of dataset A. Black point: observed proportion of animals with bTB-like lesions in each herd; red point: simulated median proportion of animals with
bTB-like lesions in each herd; dotted lines: 2.5% and 97.5% percentiles of the simulated distributions.
doi:10.1371/journal.pone.0108584.g007
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program is applied [35,36]. In Africa and in Asia, most cattle are

zebu (B. indicus) [37]. Ameni et al. [38] report that, under

identical field husbandry conditions, a higher susceptibility to bTB

was observed in Holstein cows than in zebus: (odds ratio: 2.32). In

France dairy cattle are kept most of the time indoors, while beef

cattle have stabling periods of approximately five months each

year. Oppositely, in Africa and in Asia, cattle are most of the time

kept outdoors, where contacts between animals are less intense

than indoors, hence the lower observed within-herd prevalence in

these regions.

The low predicted values of the effective reproductive ratio R(t)

over time are consistent with field observations of a low bTB

prevalence in French infected herds in the 2000s, and support the

results of transmission trials indicating that cattle do not readily

infect other cattle [39,40]. According to our estimation, when no

control program is applied and once bTB has become enzootic

within the herd, the median number of animals infected by an

infectious animal is 2.2 in beef herds and 1.7 in dairy herds. This

difference is due to a lower age at culling for dairy cows than for

beef cows.

Figure 8. Monthly evolution of the simulated effective reproductive ratio R(t) (a and b), and distribution of this R(t) (c and d) when
the disease has become enzootic (after 30 years) in standard French beef (a and c, 70 animals) and dairy (b and d, 81 animals)
herds. Solid line: median; dashed: 2.5% and 97.5% percentiles.
doi:10.1371/journal.pone.0108584.g008
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Several models have been proposed in the literature to simulate

the dynamic of within-herd transmission of bTB: stochastic Reed-

Frost model in discrete time [2,12], Reed-Frost model in

continuous time [14], stochastic individual based model [15],

compartmental stochastic model in continuous time [28] and

compartmental stochastic model in discrete time [13,33,41]. We

used a compartmental stochastic model operating in discrete time.

Bovine TB health states are best represented using discrete health

states (S-E-I), we thus chose to use a compartmental model. The

scarcity and the discrete nature of the main simulated event which

is the infection of animals (in a national survey in France between

2005 and 2007 in infected herds, the median of animals with lesion

was 2), led us to use a stochastic approach rather than a

deterministic approach. ABC methods are computationally

cumbersome. Discrete time simulation was chosen as it appeared

less computationally demanding than continuous time simulation.

The duration of the time step (one month) was chosen because in

literature the estimated duration of the latent state (in models with

a single latent state [2] or with two states of latency [28]) was

greater than one month. In addition, for the modeled screening,

control and demographic processes, a one month time step also

appeared satisfactory (frequency of tuberculin test, stabling

period).

While this type of model is relatively easy to simulate, it is

analytically difficult to manage when the number of states is high.

In this case, numerical resolution by simulation is the only way to

estimate the parameters [42]. The likelihood is difficult to calculate

in our model, because the infection process is only partially

observed (only a fraction of infectious animals is detected at the

slaughterhouse, depending on the sensitivity of the visual

inspection of carcasses). We thus chose to use the ABC method

for the estimation of model parameters because this method does

not require the calculation of the likelihood [43]. The choice of

summary statistics and of the tolerance threshold are two sources

of error in the ABC method [44]. To reduce errors linked to the

choice of summary statistics, a preliminary step was performed in

which several summary statistics were tested and compared using

simulated data. Other methods have been proposed in the

literature such as the algorithm developed by Barnes et al. [45]

to choose a set of summary statistics from all possible summary

statistics. This algorithm uses the mutual information as a selection

tool [45]. Choosing a non-zero value for tolerance, e, can bias the

posterior estimation of the parameters [44]. To reduce errors due

to non-zero values of e, the local linear regression algorithm of the

ABC method was used in our work for estimating the model

parameters [19]. ABC-SMC (Sequential Monte Carlo) algorithm

allows using specific methods to select the tolerance threshold

[46,47]. But, according to Filippi et al. [48], more work needs to

be done on the choice of tolerance threshold in the ABC-SMC

algorithm. Besides, the use of the local linear regression algorithm

is however not without problems, as the relationship between

summary statistics and parameters is highly non-linear in most

cases, which may bias the estimation of parameters [19].

The sensitivity analysis of a model is of great interest [42]

because it helps to determine the most influential parameters. The

sensitivity analysis performed here was used to independently

assess the effect of fixed parameters values on the posterior

parameter estimates. For practical reasons (of computation time

required to perform this sensitivity analysis), the sensitivity analysis

did not assess the effect of interactions among fixed parameters.

Nevertheless, according to the literature, this method is the first

step in exploring global associations (between the estimated and

non-estimated parameters in the model), excluding interactions

[49]. The results of the sensitivity analysis showed that fixed

parameters have only limited effects on the posterior parameter

estimates, except for the effect of the specificity of ESAT-6 cIFN

test on binside. The specificity of ESAT-6 cIFN test is used in

control program C (Figure 3), which includes a 2-steps confirma-

tion of positive SITT using cIFN test (steps 2 and 3 in Figure 3).

When the specificity of ESAT-6 cIFN is increased to 100% (see

Table 2), the overall specificity of the 3rd step of control program

C also reaches 100% (see Figure 3). Because the overall sensitivity

of both cIFN-based confirmation steps is low, the time required to

detect bTB increases, which induces a decrease of binside estimate.

We assumed that the sensitivity and the specificity of the

screening tests were independent of cattle age. Proaño-Perez et al.
[50] reported a negative correlation between the age of cattle and

the response to avian tuberculin. This result suggests that young

animals are more likely to show false positive reactions to SITT

than adult animals. The impact on our results is however likely to

be limited, as the sensitivity analysis showed that the specificity of

screening test had a little effect on the estimated values of the

epidemiological model parameters (a, binside and boutside).

In conclusion, the model proposed here has been designed to be

generic enough to allow simulating various herd management

systems and bTB detection and control programs. Its parameters

have been estimated using field data and it has been validated

using an independent dataset. In the future, this model will be used

to analyse the impacts of changes of control programs and of herd

management practices on the dynamics of bTB in France,

between the beginning of the control program (in 1965) and

obtaining the bTB-free status (in 2000). Besides, it will be used to

assess the effectiveness of bTB control programs, in order to

identify alternative strategies to the total slaughter protocol

currently applied in infected herds.

Supporting Information

Figure S1 Control program A applied in the Nord department

between 1981 and 1983. Step 1: yearly bTB screening using SITT

(the herd being considered disease-free). All animals are tested (m
i,k Q(i,k) = 1). Sensitivity (Se) and specificity (Sp): those of SITT.

Transition to step 2 if the proportion of positive animals exceeds a

predefined threshold (npos/ntest.P.ab), one month later (Dt = 1

months). Transition to step 3 if positive results are observed, the

proportion being below the threshold. Step 2: total slaughter. All

the animals (m i,k Q(i,k) = 1)are slaughtered (m = 1). Step 3:

selective slaughter. Positive animals of step 1 (m i Q(i,1) = 1)are

slaughtered (m = 1). Transition to step 1, 6 months later. See

table 2 for the definition of the other parameters.

(TIF)

Figure S2 Control program D applied in the Côte d’Or

department between 2005 and 2009. Step 1: biennial bTB

screening using SICCT (the herd being considered disease-free).

All animals are tested (m i,k Q(i,k) = 1). Sensitivity (Se) and

specificity (Sp): those of SICCT. Immediate transition to step 2 if

non-negative results are observed (npos.0). Step 2: interpretation

of SICCT non-negative results. All the positive animals of step 1 (m
i Q(i,1) = 1) are concerned. Sensitivity: for an infected animal,

probability that a non-negative positive result is not doubtful (pi:

probability of a doubtful SICCT result for animals in health states

E or I); specificity: for a susceptible animal, probability that a non-

negative SICCT result is doubtful (ps: probability of a doubtful

SICCT result for animals in health state S). Transition to step 3 if

all the non-negative SICCT animals are doubtful, 2 months later;

otherwise: transition to step 4, 3 months later. Step 3: confirmation

of the positive results of step 1 using SICCT. All the positive

animals of step 1 are tested (m i Q(i,1) = 1), as well as 10% of the
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negative animals (i Q(i,0) = 0.1). Sensitivity (Se) and specificity (Sp):

those of SICCT. Transition to step 5 if an animal is positive, three

months later; otherwise: transition to step 1. Step 4: slaughter of

the positive animals of step 2 and isolation of M. bovis from

lesions. All the positive animals of step 2 (m i Q(i,2) = 1) are

slaughtered (m = 1) and bacterial culture is performed from

observed lesions. Sensitivity (Se): sequential combination of a

visual inspection at the slaughterhouse and of a bacterial culture.

Transition to step 6 if an animal is positive, 1 month later (Dt = 1

month). Step 5: slaughter of the positive animals of step 3 and

isolation of M. bovis from lesions. All the positive animals of step 3

(m i Q(i,3) = 1) are slaughtered (m = 1) and bacterial culture is

performed from observed lesions. Sensitivity (Se): sequential

combination of a visual inspection at the slaughterhouse and of

a bacterial culture. Transition to step 6 if an animal is positive, 1

month later (Dt = 1 month). Step 6: total slaughter. All the animals

(m i,k Q(i,k) = 1) are slaughtered (m = 1). Routine detection of

lesions at slaughterhouse. Sensitivity (Seev): sequential combination

of a visual inspection at the slaughterhouse and of a bacterial

culture. If a positive animal is thus detected, regardless of the

current stage of control program, transition to step 6. See table 2

for the definition of the other parameters.

(TIF)

Appendix S1 Model equations.

(DOCX)

Appendix S2 Choice of summary statistics.

(DOCX)

Appendix S3 Effective reproductive rate R(t).

(DOCX)
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