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ABSTRACT: Clinical translation of nanoparticle-based therapeu-
tics has been limited, and a lack of preclinical delivery
characterization is partly to blame, limiting our understanding of
the mechanisms of failure. The improvement of the preclinical
delivery assessment requires nanoparticles with higher detect-
ability. This work focused on the exploration of several aromatic
carboxylic ligands (terephthalic acid, quinaldic acid, and kynurenic
acid) for the sensitization of europium oxide nanoparticles with a
long emission lifetime to overcome cellular autofluorescence, a key
confounder of detection in luminescence-based bioimaging. A
facile one-pot synthesis and ligand exchange process generated and
sensitized ultrasmall Eu2O3 cores. As reflected in the emission
spectra and lifetimes, ligand binding yielded unique coordination
environments around Eu3+. Then, the efficacy of sensitization was tested against the autofluorescence provided by tissue lysate.
Normal (simultaneous excite-read) measurements showed integrated signal improvements over autofluorescence of 2.2-, 3.9-, and
14.0-fold for EuTA, EuQA, and EuKA, respectively. In time-gated mode, the improvements over autofluorescence were more
dramatic with fold differences of 75-, 89-, and 108-fold for EuTA, EuQA, and EuKA, respectively. The investigation of novel
sensitizers expands the breadth of the field of sensitized lanthanide oxide nanoparticles, and the signal enhancement observed with
sensitization and time-gating supports the utility of the generated samples for future bioimaging applications.

1. INTRODUCTION
Nanoparticles (NPs) are well suited to various drug delivery
problems; given the variety of physicochemical properties, they
can assume and the resulting pharmacokinetic behavior.1−4

Previous preclinical work in conditions including stroke and
traumatic brain injury has shown improved delivery and
outcomes through the use of NP-based therapeutics.5−7 Drug
delivery in these conditions is severely complicated by the
blood−brain barrier, but pathologic changes in its function
offer opportunity, particularly with NP-based therapeutics.8−10

Clinical translation has been limited as more robust character-
ization of preclinical delivery including pharmacokinetics and
(sub)cellular localization is needed to better understand target
engagement and improve predictions of clinical efficacy. This
characterization, however, is dependent on improving the NP
detectability. Studies commonly rely on exogenous fluorescent
dyes conjugated to the NP surface to facilitate their detection.
This strategy has proven useful but is ultimately limited by
fluorophore dissociation, photobleaching, and emissions on the
same time scale as biological autofluorescence.11,12 NP systems
with native luminescence, such as ultrasmall lanthanide oxides
and quantum dots,13−15 can circumvent these issues in

preclinical use. While luminescence microscopy offers
adequate spatial resolution for describing cellular localization,
autofluorescence hinders the detection of exogenous signals.
To overcome this, several strategies have been employed.
Methods have focused on different procedural steps including
staining and image processing, in the forms of electromagnetic
or chemical quenching pretreatments and spectral unmixing
algorithms, respectively.16,17 Others have approached the issue
through material design, with organic and inorganic nanoma-
terials that fluoresce or excite in the first or second biological
transparency windows.18 A final approach has been the
development of materials whose emission lifetimes extend
beyond the ps to ns range of most autofluorescence.19 The
development of such luminescent NPs with long excited state
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lifetimes may be combined with time-gated imaging to provide
a more accurate and sensitive understanding of the cellular
distribution of the NPs.

Several ions in the lanthanide series exhibit excited state
lifetimes on the order of μs to ms, related to the forbidden
nature of their intra 4f transitions.20 The long lifetimes and
narrow emission lines, particularly those of Eu and Tb, have
been leveraged to yield highly sensitive immunoassays for
biomarkers of cancer and other conditions.21,22 Time-resolved
assays can substantially increase signal-to-noise ratio (SNR),
lowering detection limit, and required sample volumes, and
increasing throughput.23 Other lanthanides exhibit upconver-
sion luminescence, which can enhance detectability through
minimization of background signal and increased tissue
penetration using near-infrared wavelengths.24 The forbidden
4f transitions that provide longer emission lifetimes have the
drawback of low molar absorptivity, below 1 M−1 cm−1, within
the series. Yb3+ is an exception with a partially allowed
transition with absorption at 980 nm, motivating its use as a
dopant sensitizer in upconverting NPs. The low absorptivities
the lanthanide series exhibit can be overcome via the antenna
effect, in which a sensitizing molecule absorbs energy and
transfers it to the lanthanide ion.23 Organic sensitizing ligands
commonly exhibit molar absorptivities orders of magnitude
larger than lanthanide ions, in the range of 103 to 105 M−1

cm−1.25 Small-molecule Eu complexes have been prepared with
various sensitizers including bipyridine and terpyridine
derivatives,26,27 as well as aromatic carboxylates.28,29 In
addition to small-molecule chelates, Eu has been used as a
majority component or dopant in inorganic NPs including

oxides and fluorides, limiting metal−solvent interactions.30−34

Compared with Eu3+, the sensitization of upconverting
NaGdF4 NPs with surface-bound ligands has only more
recently been investigated, with applications including
bioimaging, optogenetics, and photovoltaics.25,35−37 In the
realm of bioimaging, ligand-sensitized rare earth sesquioxide
NPs (e.g., Eu2O3), though present in the literature, have not
been nearly as widely explored as small-molecule com-
pounds.38,39 Yet, they present advantages including control
over physicochemical properties like size and surface
chemistry, cargo loading potential, higher absorption per unit
contrast agent, protection of emitters from high-energy
oscillators, and potential for doping with multiple ions for
multiplexing applications.37,40 Further investigation is therefore
needed to more fully realize the potential of such sensitized
particulate systems in bioimaging applications to help in the
preclinical evaluation of nanomedicines to accelerate their
clinical translation.

A suitable sensitizer will efficiently absorb and transfer
energy to Eu centers while limiting nonradiative losses during
energy transfer (ET). These losses are related to factors
including the relative energy levels of donor−acceptor excited
states and the number of water molecules coordinated to Eu, as
the high energy O−H oscillators quench the lanthanide-
centered emission.41,42 The hard acid behavior of Eu and other
lanthanides yield effective binding with hard base ligands,
frequently involving multiple oxygen−lanthanide bonds in
small molecule chelates.43 Species with carboxyl groups have
been used as surface agents for inorganic lanthanide NPs,
commonly oleic, citric, and D-glucuronic acids, as the acid self-

Figure 1. High-resolution TEM of EuTEG NPs (A) shows lattice fringes characteristic of crystallinity. Fast Fourier transform of NPs along distinct
zone axes (B) further shows the crystalline nature of NPs. A sample of roughly 150 NPs was used to generate a core size distribution (C). Ligands
coordinate with the surface of the Eu cores; one potential orientation of each ligand is shown (D). Of note, different sensitizing ligands were not
used in combination; the aim of the diagram is to show ligand structure and putative localization at the NP surface.
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assembles on the surface through bidentate or bridging
modes.44 Dipicolinic acid has been used to sensitize Eu3+

emission, but there are limited alternative options for ligand
sensitization without unwieldy synthetic protocols.45 The
sensitization of Eu2O3 NPs for bioimaging is underexplored
in the literature, and the surface binding of carboxyl groups
represents an established coordination strategy with promise to
enhance luminescence detectability.

In this work, a low-temperature one-pot polyol method was
used to produce sesquioxide NPs, and sensitization was
performed via ligand exchange to one of several aromatic
carboxylates: terephthalic acid (TA), quinaldic (2-quinoline-
carboxylic) acid (QA), and kynurenic acid (KA), which were
compared against the control capping agent triethylene glycol
(TEG). These were chosen as simple molecules that may offer
expanded excitation options in sensitized Eu NPs. TA was
previously explored in other NP systems,46−48 while QA
showed efficacy in chelates,49 and KA was yet undescribed for
the sensitization of Eu3+. The core structure of the NPs was
analyzed with transmission electron microscopy (TEM), while
the ligand-surface binding and luminescence effects were
analyzed with attenuated total reflectance infrared (ATR-IR)
spectroscopy, ultraviolet−visible (UV−vis) spectroscopy,
phosphorescence spectroscopy, and phosphorescence lifetime
measurements. The samples were then imaged in solution with
tissue lysate to incorporate cellular autofluorescence using
normal and time-gated collection modes as a proof-of-concept
use case to show high detectability.

2. RESULTS AND DISCUSSION
2.1. Core Synthesis and Characterization. A modified

polyol method was used to synthesize ultrasmall Eu2O3 NPs.
The high boiling point alcohol, in this case TEG, served as
both solvent and capping agent for the nanocrystals. TEM

study revealed ultrasmall, roughly spherical crystals with an
average core diameter of 5.5 nm (Figure 1A,C). Fast Fourier
transform and quantification of lattice spacing of selected
crystals confirmed the expected body-centered cubic (BCC)
structure of Eu2O3 (Figure 1B), with prominent planes
including (220), (221), and (224), with plane spacing of
approximately 3.33, 3.14, and 1.92 Å, respectively. Inductively
coupled plasma mass spectroscopy (ICP-MS) verified Eu
presence in the NP samples. These combined data confirmed
the generation of Eu2O3 nanocrystals in the desired ultrasmall
size range with the expected BCC crystal structure.
2.2. Ligand Exchange. Ligand exchange to sensitize the

emission of Eu(III) was performed following the validation of
the core synthesis. Three aromatic carboxylic acids, TA, QA,
and KA were chosen for this purpose. Previous work in
lanthanide oxides has shown self-assembly of carboxyl-based
ligands on the NP surface.44 The ligand exchange protocol
consisted of adding the ligand to the EuTEG solution at 60 °C
and stirring overnight under an argon flow. Unreacted ligand
and other precursors were then removed via dialysis. The
expected surface coordination schemes of TEG and the 3
sensitizing ligands are shown in Figure 1D. ATR-IR spectros-
copy was used to assess the surface-bound ligand on the NPs
(Figure 2A−C). The presence of TA was confirmed on the NP
by the appearance of the peaks at 1537 and 1585 cm−1, which
correspond to the carboxylate.50 QA was confirmed on the NP
surface by the peak at 1596 cm−1, corresponding to the
benzene ring and carboxyl of the ligand. KA on the NP was
confirmed based on a similar benzene−carboxyl peak at 1593
cm−1 as well as the peak at 1505 cm−1 related to aromatic
carbon−carbon double bonds.51 The ATR-IR spectra of
sensitized NPs were seen to be distinct from that of EuTEG
(black line Figure 2A−C) indicating that the ligand exchange
process was successful and TEG capping was replaced by the

Figure 2. ATR-IR spectroscopy confirms the presence of ligands on the NP surface based on peak shifts from the pure ligand spectra as well as
differences from the EuTEG spectrum. (A−C) UV−vis spectroscopy was used to measure the absorbance of NPs and free ligand in solution. (D)
The normalized absorbance spectra of NPs closely resemble those of the respective free ligands, corroborating successful ligand exchange.
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desired ligands. TEM study of NPs after ligand exchange and
dialysis showed similar core sizes (Figure S2). Dynamic light
scattering of the NP samples showed the formation of
aggregates (Figure S3), which motivated future work to
improve colloidal stability.

To test how surface coordination of ligands affected NP
optical properties, UV−vis absorbance spectroscopy was
performed on samples of free ligand as well as control and
ligand-sensitized NPs suspended in phosphate-buffered saline
(PBS) at pH 7.4 (Figure 2D). At this pH value, these three
ligands existed in their anionic base forms. EuTEG showed an
increasing absorbance as the wavelength decreased, with λmax at
220 nm, the lower bound of our absorbance measurement.
EuTEG exhibited a sharp decrease as wavelength increased up
to about 250 nm, after which the decline slowed but
continued. Free TA and EuTA showed similar spectra with a
maximum of around 240 nm and a shoulder near 280 nm. Free
QA showed a peak at 232 nm (λmax) and a broad peak centered
near 290 nm. EuQA was highly similar to a peak at 235 nm
(λmax) and the same broad peak near 290 nm. Free KA and
EuKA both showed a peak near 248 nm (λmax), with a broader,
smaller peak at 332 nm. The presence of similar strong
absorption peaks in free ligand and ligand-sensitized NPs
indicates that TEG was displaced by a sensitizer at the NP
surface during the ligand exchange.

The experimentally observed UV−vis absorption spectra
were well reproduced and explained by TD-CAMB3LYP
calculations of these ligands in their aqueous solvated anionic
base forms (Figure S1, Tables 1 and S1). It is well known that

TD-CAMB3LYP tends to overestimate excitation energies,
typically by ∼0.5 eV. Here, a −0.5 eV correction is applied to
all TD-CAMB3LYP calculated singlet excited state energies.

The excitation energies and intensities for each species
(anion and water molecules, Figure S1) were computed for
only one molecular geometry that was identified as the global
minimum with the MMFF94 force field method and
subsequently optimized with B3LYP method (in the gas
phase) on the S0 ground state potential energy surface. In
reality, a large number of low-lying dynamic structures exist
that can contribute to the experimentally measured UV−vis
absorption spectrum. The fact that the calculated absorption
energies (after −0.5 eV correction) and intensities are close to
experimental maximum values suggests that the geometries
used in the calculations are among the most probable
hydrogen bonding network geometries for the anions and
the first layer of solvent water molecules around the
carboxylate groups. After binding to the surface of the NPs,
these ligands exhibited almost identical UV−vis absorption
spectra (Figure 2D), implying that they remained in anionic
base forms, and their carboxylate groups were well solvated by
water molecules.

UV−vis was also used to determine the amount of ligand
bound to the 3 sensitized NPs. NPs were dissolved and fitted

to standard curves. NP number concentration was estimated
based on EuTEG core size, the density of Eu2O3, and ICP-MS
ion concentration values. Quantified ligand loads were 1759,
4216, and 3274 ligands per particle of EuTA, EuQA, and
EuKA respectively. On a per surface area basis, these values
become 18.5, 44.4, and 34.4 molecules/nm2 for EuTA, EuQA,
and EuKA, respectively.
2.3. Sensitization Effect on Luminescence. Following

confirmation of the sensitizing ligand at the NP surface, the
effect on the luminescence was investigated. The excited state
energy levels of sensitizers were calculated, and details are
given in the Methods section. Energy levels are shown relative
to the 5DJ → 7FJ′ (J = 0−1, J′ = 0−3) transitions of Eu in a
Jablonski diagram (Figure 3). While work in small molecule

chelates has often focused on the energy difference between
the lowest triplet excited state (T1) and the emissive state of
Eu,52,53 there is also evidence for excitation of Eu and other
lanthanides via the singlet state or higher lying triplet
states.54−57 The calculated T1s of TA, QA, and KA (in their
anionic base forms), ranging from 19,575 to 22,366 cm−1

(footnotes of Tables S2.2, S2.4, S2.6), were all above the 5D0
and 5D1 states of Eu3+, which lie near 17,200 and 19,350 cm−1

respectively.58 Though the high-resolution elucidation of ET
processes is beyond the scope of this work, the calculated
energy levels suggest that T1 → 5D0/1 is likely the predominant
pathway in the tested systems. The calculated T1s indicated
that the ligands were generally well suited to sensitize Eu based
on Latva’s empirical rule, which indicates that efficient ET
would be expected for an energy gap of roughly 2000−4000
cm−1.52,59 More recent data suggests that optimal T1 levels for
efficient ET to Eu3+ should lie in the range of 19,532−21,740
cm−1,53 which the ligands fit with the exception of TA that lies
just above that upper bound. The calculations also indicated T1
should be efficiently populated by intersystem crossing within
the ligands, based on Reinhoudt’s empirical rule which
suggests an energy gap greater than 5000 cm−1 between the
lowest singlet excited state (S1) and T1.

60,61 Luminescence
excitation and emission spectra (Figure 4 top row) and
intensity decay curves (Figure 4 bottom row) were collected

Table 1. Comparison of Measured and Calculated
Absorbance Peaks

sensitizing
ligand

experimental absorbance
peak wavelengths (nm)

corrected TD-CAMB3LYP
absorbance peak wavelengths

(nm)

TA 240, 280 265, 280
QA 232, 290 243, 310
KA 248, 332 250, 326

Figure 3. Jablonski diagram of excited states in sensitizing ligands
calculated via density functional theory. Excited singlet states can
populate excited triplet states via intersystem crossing (ISC). ET
processes move energy from ligand-excited triplet (T1) states to Eu3+

excited states from which the characteristic radiative emission can
then occur. Back transfer (BT) from Eu3+ to the ligand can occur
when the T1 state energy levels are too close to those of the Eu3+,
limiting emission. Details on computations can be found in the
Methods section.
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for all of the NPs in water. In EuTEG no Eu emission was seen
regardless of excitation wavelength. Even direct excitation of
the Eu ion at 395 nm (7F0 → 5L6) did not yield any metal-
centered emission. This is not surprising, as TEG itself does
not have any significant absorption that could sensitize the Eu
emission, and the molar absorptivity of the 7F0 → 5L6 is rather
low, ε < 10 M−1 cm−1.62 Moreover, the presence of multiple Eu
centers in close proximity can facilitate energy migration to
surface quenching sites, limiting luminescence.63 Doped
Gd2O3 and Y2O3 systems often show luminescence intensity
peaks with 10% Eu-doping or less, exhibiting quenching at
higher concentrations. The Eu2O3 NPs here have more
concentrated Eu centers, comparatively, which may yield
more substantial quenching.30,64 Passivation of the surface with
an inert inorganic layer or a ligand has been shown to help
limit such quenching, but TEG is not effective in this
function.65

Sensitization enabled detectable luminescence with each of
the three ligands, despite the range of T1 energy levels.
Interestingly, the synthesis atmosphere was shown to be an
important variable. Syntheses under argon showed substan-
tially higher emission from Eu3+ transitions at 593 and 617 nm
with sensitization than syntheses under air (Figure S4). The
excitation spectrum of EuTA (Figure 4A) showed one broad
band, with a maximum at 327 nm. This was red-shifted with
respect to the absorption spectrum, which had a peak at 240
nm and shoulder at 280 nm, but the similar but broadened
shape led us to conclude that the organic ligand sensitized the
Eu-centered emission. The emission spectrum showed the
characteristic 5D0 → 7FJ (J = 1−4) transitions in the red region
of the visible spectrum. The peak at 617 nm, corresponding to

the electric dipole 5D0 → 7F2 transition, was more intense than
that at 593 nm, corresponding to the magnetic dipole 5D0 →
7F1 transition, indicating a low degree of symmetry around the
Eu centers.66 The electric dipole transition is hypersensitive to
the local environment of luminescent centers, while the
magnetic dipole transition is independent of ligand field.67−69

The ratio of the electric to magnetic transition emission
intensities, R1, has been employed as a metric of the symmetry
of the Eu center, with higher values indicating lower
symmetry.70 The profile of this spectrum was quite different
from the ones for QA- and KA-capped NPs, indicating a
different geometry for the surface Eu3+ ions.

The emission decay lifetimes τ of EuTA were 123.9 and
323.2 μs (Table 2), as the decay curve was fitted with a double
exponential (Figure 4D), which gave better results than fitting
to a single exponential, as indicated by residuals and statistical
parameters (Figures S5 and S6). The two lifetimes indicate
two coordination environments around the Eu3+ ion;71−73 the
longer lifetime corresponds to 85.8% of the sites and will,
necessarily, correspond to a site with decreased nonradiative

Figure 4. (A−C) Normalized excitation (orange) and emission (black) spectra of sensitizer-capped Eu NPs (0.05 mM Eu3+). (D−F) Intensity
decay curves (three independent trials) of the 5D0 → 7F2 transition (617 nm) from the same samples. Excitation spectra were recorded at emission
wavelength 617 nm. Emission spectra were collected with excitation at 327, 334, and 363 nm for EuTA, EuQA, and EuKA, respectively. Excitation
and emission slit widths were respectively 10 and 4 nm for EuTA, 10 and 5 nm for EuQA, and 10 and 9 nm for EuKA.

Table 2. Lifetime τ of the Eu 5D0 Excited State in the
Different Samples

sensitizing ligand τ1 (μs) τ2 (μs)
TA 123.9 ± 9.1 (14.2%)a 323.2 ± 3.8 (85.8%)a

QA 120.5 ± 0.1
KA 111.6 ± 0.7

aPercentage population of the site calculated as the normalized pre-
exponential factors.
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quenching. QA and KA are monocarboxylic acid sensitizers
and have the potential for N,O-hybrid coordination.74 TA, on
the other hand, is a dicarboxylic acid without N. The two
carboxylate functional groups presented the opportunity for
different coordination modes.29,42,48,75−77 The double expo-
nential fit provided further evidence of the different
coordination environments for TA initially suggested by the
lower ligand density relative to QA and KA.

The excitation spectrum of EuQA (Figure 4B) showed
bands with maxima at 264 and 334 nm. Like the EuTA, the
excitation spectrum was red-shifted compared to the
absorption spectrum, which had bands at 235 and 290 nm,
leading us to conclude that the capping ligand sensitized the
Eu-centered emission. The emission spectrum showed
characteristic Eu3+-centered emission bands for the 5D0 →
7FJ (J = 0−4) transitions in the red region of the visible
spectrum. This system’s most intense peak corresponded to
the 5D0 → 7F1 transition, and R1 was just below 1. These
points suggest the possible presence of an inversion center,78,79

while the presence of the 5D0 → 7F0 transition suggests a low
symmetry environment. As the most intense transition for the
TA-capped system was the 5D0 → 7F2 transition, R1 was much
greater than 1, and the 5D0 → 7F0 transition was not observed;

we concluded that the Eu3+ ions were in different coordination
environments in each system.41,42

The emission decay lifetime τ of EuQA was 120.5 μs (Table
2). The decay curve was fitted with a single exponential decay
(Figures 4E and S7), consistent with one coordination
environment around the Eu3+ ion.42

The excitation spectrum of EuKA (Figure 4C) showed a
broader and a narrower band with maxima at 282 and 363 nm,
respectively, consistent with sensitization of the Eu-centered
emission through the capping ligand. Compared with the peaks
of the absorption spectrum near 248 and 332 nm, we saw a
redshift of the maxima of 34 and 31 nm, respectively. We
believe that the ligand coordination with the metal increased
its planarity, causing the redshift.80−82 A similar redshift in
excitation relative to absorption was seen in lanthanide
nanoparticles sensitized with dipicolinic acid.45 When excited
at 363 nm, EuKA nanoparticles emitted in the red region of the
visible spectrum, and the characteristic metal-centered
emission peaks of the 5D0 → 7FJ (J = 1−4) transitions were
observed. The R1 of this system was slightly greater than 1,
indicating a distinct Eu coordination environment compared
with that of EuTA and EuQA.

The emission decay lifetime τ of the Eu-centered emission of
EuKA was 111.6 μs (Table 2). The decay curve was fitted with

Figure 5. Excitation−emission matrices (A) of tissue-spiked NPs collected in simultaneous (left) and time-gated (right) modes with a 0.2 ms delay.
The time−course diagram (B) shows the conceptual rationale for using the time-gated rather than simultaneous read mode to detect Eu over short-
lived autofluorescence originating from tissue. Integrated signal intensity plots (C) show fold increases in NP signal relative to tissue noise in time-
gated reads versus simultaneous. Signal was integrated over excitation wavelengths from 300 to 400 nm and emission from 590 to 640 nm. The
Eu3+ concentration was 0.05 mM for all samples, and the tissue concentration was 100 μg/mL.
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a single exponential decay (Figures 4F and S8), consistent with
one coordination environment around the Eu3+ ion.41,42

Table 1 summarizes the lifetimes of the studied sensitizer-
capped NPs described above. EuTA exhibited the longest
lifetime, while EuKA had the shortest lifetime. In addition,
EuTA showed a dual lifetime decay. As TA was the only
dicarboxylic ligand employed, it was supposed that this enabled
the formation of two coordination environments, with the
longer-lived component corresponding to a site with less
nonradiative decay.

Zhao and co-workers synthesized Eu complexes that
contained the TA sensitizer as well as other ligands, including
2-thienyltrifluoroacetonate and trioctylphosphine oxide; they
exhibited lifetimes from 0.46 to 0.52 ms.48 These complexes
were bi− and polynuclear, as TA is a common bridging ligand,
which accounted for the long lifetimes observed. Xiaochun and
co-workers synthesized zinc-, chromium-, and cadmium-doped
Eu complexes containing the TA sensitizer that exhibited
lifetimes from 0.35 to 0.38 ms.83

In Eu NPs, investigators have seen a range of emission
lifetimes in various media (i.e., solid state or in aqueous
solutions).84−88 Irfanullah and co-workers synthesized sensi-
tizer-capped Eu-doped LaF3 nanocrystals with an average Eu
emission lifetime of 0.41 ms.84 We observed shorter lifetimes
in this work, likely because our measurements were in water,
while the reported values for the LaF3 nanocrystals were
measured in the solid state. The tetracycline-capped Eu-doped
carbon nanoparticles synthesized by Pacheco and co-workers
exhibited a double exponential decay with lifetimes of 0.0796
and 0.174 ms.85 They were attributed to two different
environments for the Eu3+ ions with the longer lifetime
coming from the Eu3+ ions protected from the surroundings.
Similarly, we saw a turn-on in luminescence in this work upon
the addition of the capping ligands, as they replaced the water
molecules at the nanoparticle surface. Adusumalli and co-
workers obtained a double exponential decay with lifetimes of
2.17 and 6.43 ms for TA-capped Eu-doped nanoparticles.86

These long lifetimes were measured in aqueous media;
interestingly, quenching from the presence of the O−H
vibrations was not discussed. Atrazine-capped Eu2O3 particles
synthesized by Feng and co-workers exhibited a Eu emission
lifetime of ∼100 μs.87 Hybrid Eu3+ and silica nanoparticles
isolated by Zhang and co-workers exhibited a lifetime of 0.98
ms, which was longer than the emission lifetime of 0.42 and
0.74 ms of the non-nanoparticle-supported Eu complexes.88

This was attributed to the rigid covalent Si−O−Si network,
which inhibited ligand vibrations that could quench lanthanide
emission. The lifetime values observed in this work fell within
the range expected, although consistently toward the shorter
end. However, the comparison of lifetimes is complicated by
the inconsistency of the medium used in different works, which
strongly influences quenching.42 Ligands can limit solvent
quenching by passivating surface ions to a degree, but
discrepancies in system synthesis and measurement conditions
between papers still complicate comparison. Along with
passivation, ligands can affect lifetime through the presence
of high-energy oscillators, as shown in the work of Varaksina et
al.89 By replacing 2C−H bonds in a β-diketonate with C−F,
which is a lower frequency oscillator, they increased
luminescence lifetime from 0.18 to 0.70 ms. Further increasing
the fluorination yielded a lifetime of 0.96 ms. A final factor to
mention in the emission lifetimes is concentration quenching,
with reports from Rastogi et al. and Khudoleeva et al. showing

shorter Eu3+ emission lifetimes at higher doping ratios.90,91 We
thus attributed the shorter lifetimes here to several factors
including poor surface passivation, concentration quenching,
and nonradiative decay through high-energy oscillators.42,89−91

Nonetheless, the novel ligands tested here add breadth to the
literature regarding the sensitization of nanoparticulate Eu.
2.4. Time-Gated Imaging and Autofluorescence

Interference. To test the sensitizer-capped NPs in an
environment with cellular autofluorescence, solutions were
prepared containing NPs and brain tissue lysate in PBS. The
samples were then examined in a fluorescence plate reader in
both normal and time-gated read modes. Excitation−emission
matrices were collected with excitation from 250 to 640 nm,
emission from 300 to 700 nm, and a step size of 10 nm. The
normal, simultaneous excitation−emission matrices (Figure 5A
left) show roughly similar appearance across conditions with
the exception of EuKA, which shows strong ligand-based
luminescence in the range of excitation 300−400 nm with
emission 400−500 nm. Emissions from the expected Eu
transitions around 600 nm were not especially clear, though
integrating emission intensities from 590 to 640 nm over
excitation from 300 to 400 nm showed a higher signal in NPs
than tissue alone (Figure 5C left). The NP-tissue intensity
ratios for EuTEG, EuTA, EuQA, and EuKA were 2.5, 2.2, 3.9,
and 14.0, respectively. Samples were also collected in time-
gated mode with a 200 μs delay, allowing the decay of short-
lived autofluorescence and the capture of long-lived Eu
luminescence (Figure 5B). Time-gated matrices (Figure 5A
right) revealed discernible Eu emission lines around 600 nm in
all NPs and a lower autofluorescence signal. EuTEG, EuTA,
EuQA, and EuKA showed NP-tissue intensity ratios of 45, 75,
89, and 108, respectively. The difference between EuTEG and
the sensitized NPs, particularly with time-gating, showed the
efficacy of surface sensitization to increase NP detectability
related to autofluorescence. Notably, EuTEG showed signals
with a time-gated collection that were undetectable in the
phosphorescence excitation and emission spectra. This was
likely related to differences between the instruments and
protocols used in data collection as well as the dilute presence
of species capable of sensitizing Eu in the buffer used for tissue
lysate preparation, such as ethylene glycol-bis(2-aminoethyl
ether)-N,N,N′,N′-tetraacetate (EGTA).92

3. CONCLUSIONS
TEG-coated Eu2O3 NPs were synthesized via a modified
polyol route. Though no emission was observed for the control
NPs, ligand exchange with TA, QA, or KA and sensitization via
these ligands enabled the detection of the expected Eu3+

transitions. EuQA and -KA showed 5D0 → 7F1 and 5D0 →
7F2 peaks with similar intensities, while the 5D0 → 7F1
transition of EuTA was less intense than the 5D0 → 7F2
transition. The differences in emission profiles suggest different
coordination environments around the Eu3+ ion. Another point
of distinction was in the biexponential emission decay of
EuTA, suggesting two unique environments within the system,
unlike EuQA and EuKA, which showed monoexponential
decay. The NPs showed drastic signal-to-autofluorescence
noise improvements with ligand sensitization and time-gated
imaging. These results support the utility and further
investigation of ligand-sensitized Eu2O3 NPs for bioimaging
applications to achieve high-sensitivity detections.
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4. EXPERIMENTAL SECTION
4.1. Chemicals. Triethylene glycol (TEG, 99%), europium-

(III) nitrate pentahydrate (Eu(NO3)3·5H2O, 99.9%), KA, QA,
and TA were purchased from Sigma-Aldrich. Sodium
hydroxide (NaOH) was purchased from Fisher. Float-A-
Lyzer G2 dialysis devices were purchased from VWR.
4.2. Nanoparticle Synthesis. 60 mL TEG was stirred in a

250 mL three-necked flask equipped with a reflux condenser
under argon flow. To the TEG at room temperature, 2 mmol
of Eu(NO3)3·5H2O was added, followed by 6 mmol of NaOH.
The solution was gradually heated and then held at 90−100 °C
for complete dissolution of the solid precursors. After
dissolution, the flask was kept at 140 °C for 1 h. The
temperature was then increased to 180 °C at a rate of about 5
°C/min and maintained there for 4 h. The light brown solution
was then cooled to room temperature overnight. This solution
was then dialyzed for the control EuTEG or used further for
ligand exchange.
4.3. Ligand Exchange. Ligand exchange was performed to

sensitize the nanoparticles with the desired surface groups.
One mL of undialyzed solution from the above synthesis was
added to a test tube followed by 2 mmol of either TA, QA, or
KA. The solution was stirred under argon flow and held at 60
°C overnight (∼12 h) in a silicon oil bath. After ligand
exchange, the solution was cooled to room temperature and
thereafter stored at 4 °C.
4.4. Nanoparticle Washing. Directly following synthesis,

for EuTEG, or after ligand exchange, for EuTA, EuQA, and
EuKA, samples were washed via dialysis using Float-A-Lyzer
G2 devices with a molecular weight cutoff of 3.5−5 kDa.
Dialysis served to remove unreacted precursors from the
synthesis as well as excess sensitizer from the ligand exchange.
Samples were dialyzed against deionized water with a ratio of
1:2000 maintained over 24−36 h with water exchanged at least
3 times. Samples were then recovered from the dialysis devices
and used for characterization.
4.5. Characterization. Inductively coupled plasma-mass

spectrometry (Agilent 7500 cx) was performed on dialyzed
samples to determine the Eu concentration. High-voltage TEM
(Fei Tecnai Osiris (S)TEM, 200 keV) was used to measure the
core size and assess the crystal structure of the NPs.
Undialyzed EuTEG was diluted 1:30 in ethanol and drop
cast on a lacey carbon-coated copper grid (PELCO mesh size
400, TED PELLA, INC). Image processing was performed
using Landyne software suite and ImageJ.93−95

Attenuated total reflection infrared spectroscopy (Nicolet
AVATAR 380 FT-IR) was performed on dried NP samples to
verify the surface coordination of ligands. Dry NP samples
were prepared by centrifugation of aqueous dispersions and
resuspension of pellets in acetone before being dried in air.
UV−vis absorbance spectra were collected on NP suspensions
in PBS at pH 7.4 and a Eu3+ concentration of 0.05 mM.
Absorbance spectra of free ligand were collected following
dispersal in suitable solvents. TA was dissolved in DMSO and
then diluted roughly 24,000× in PBS; KA was dissolved in 0.1
M NaOH and then diluted more than 1000× in PBS, while QA
was dissolved directly in PBS. The absorbance spectra
presented were normalized to their individual peak values in
the range of 220−400 nm.

The electronic singlet excitation energies of the ligands in
aqueous solution were calculated with the time-dependent
density functional theory (TDDFT) method.96−98 Since the

pH was controlled at 7.4, these ligands existed in their anionic
base forms (kynurenate, quinaldate, and terephthalate). To
correctly describe the water hydrogen bonding effects on the
electronic structures of these anions, water molecules were
included in the calculation (Figure S1). Eight water molecules
were included for kynurenate and for quinaldate, as they have
one negatively charged carboxylate group. Sixteen water
molecules were included for terephthalate, as it has two
carboxylate groups. The anion-water clusters were first
modeled with the MMFF94 force field,99−102 and their global
minimum structures were identified using the MDOPT
scheme.103 In the MDOPT calculation, a molecular dynamics
(MD) simulation at 300 K was run for 10 ns. At every
picosecond, the MD was paused, but not interrupted, for a
steepest descendent geometry optimization to locate a
minimum-energy structure. For the small molecules involved
in this study, a 10 ns MD simulation was sufficient for finding
the true global minimum. The identified global minimum
structures were then geometrically optimized with the
B3LYP104 density functional theory method and the SPK-
ADZP105 basis set on the potential energy surfaces of both the
singlet ground state (S0) and the first triplet excited state (T1).
For the S0 electronic ground state, closed shell (RHF) wave
functions were used. For the T1 electronic state, the spin-
unrestricted open shell (UHF) wave functions were used and
no significant spin contaminations were observed. Based on the
six optimized molecular structures, TDDFT calculations were
performed to estimate the low-lying singlet and triplet excited
state energies and oscillator strengths. In the TDDFT
calculations, the CAMB3LYP106 density functional and the
SPK-ADZP basis set were used. The aqueous solvent effect (in
addition to the explicit water molecules in hydrogen bonding
with the ligand molecules) was included in the TDDFT
calculation with the FixSol107 continuum solvation model with
an electronic dielectric constant 1.777, which is the square of
the refractive index 1.333 of pure water. It is well known that
TD-CAMB3LYP tends to overestimate the singlet excited state
energies of aromatic molecules.108,109 To obtain better
estimations for S0 to Sn excitation energies, a straightforward
−0.5 eV correction was applied to all calculated singlet excited
state energies. The TD-CAMB3LYP also tends to predict
triplet state energies that are slightly higher (by roughly +0.04
eV; see Table S1) than the corresponding singlet states. While
in some cases, a triplet state can indeed have slightly higher
energy than its singlet partner, this is not the case here.
Therefore, this is a systematic and severe error of the TD-
CAMB3LYP method for triplet states of the species in this
work. To obtain more realistic estimation, the T1 state energies
were instead calculated with restricted open shell (ROHF with
spin multiplicity = 3) CAMB3LYP wave function and the
FixSol continuum solvation model with an electronic dielectric
constant 1.777, and the S0 state energies were calculated with
closed shell (RHF with spin multiplicity = 1) CAMB3LYP
wave function and the FixSol continuum solvation model with
the same electronic dielectric constant 1.777. These S0 and T1
CAMB3LYP single-point energy calculations were performed
with the gas phase spin-UHF B3LYP-optimized T1 geometries.
The results are presented as footnotes of Tables S2.2, S2.4, and
S2.6. The calculations were performed with the General
Atomic and Molecular Electronic System (GAMESS) quantum
chemistry software package110 and the QuanPol program,111

which was integrated in the GAMESS package.
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The emission and excitation spectra were measured on a
PerkinElmer Lambda LS-55 instrument equipped with a 450
W xenon lamp. The data were collected in phosphorescence
mode with a 0.1 ms delay, 0.1 ms gate time, and 20 ms cycle
time. Excitation and emission slit widths varied and are
indicated in the captions of the figures. Lifetimes were
measured in phosphorescence mode with a 0.01 ms delay,
0.01 ms gate, and 20 ms cycle time. Unless otherwise indicated,
all excitation and emission spectra and lifetimes were measured
at 25.0 ± 0.1 °C. The data presented are the averages of at
least three independent measurements.

The excitation−emission matrices were collected with a
microplate reader (Synergy H1, BioTek). End point reads were
performed from excitation wavelengths of 250−640 nm and
emission wavelengths of 300−700 nm with steps of 10 nm.
Samples were prepared by diluting NPs to 0.05 mM Eu3+ with
tissue at 100 μg/mL in PBS. Data collection was performed in
simultaneous excited-read mode and in time-gated mode with
a 0.2 ms delay and 0.2 ms gate.
4.6. Tissue Lysate Preparation. Naiv̈e male C57BL/6J

mice (N = 3) were humanely euthanized following their
completion of a separate study via perfusion with PBS at 80
mmHg. Following perfusion, brains were harvested, separated
into two hemispheres, and homogenized using bead disruption
with the TissueLyser II (Qiagen) in 300 μL of RIPA buffer (50
mM Tris HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.5%
Na deoxycholate, 0.1% SDS, 1 mM EOTA, 0.5 mM EGTA, 1
mM PMSF, 1 mM Na3VO4, 1 mM NaF). Samples were
sonicated using a horn sonicator for 20 s at 20% pulse
frequency and centrifuged at 4 °C for 5 min at 17,740 rcf.
Supernatants were collected, and total protein content was
measured using a bicinchoninic acid (BCA) assay. Aliquoted
tissue lysates were snap frozen in liquid nitrogen and stored at
−80 °C.
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