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The regions bound by sequence-specific transcription factors can be highly variable across different cell types despite the
static nature of the underlying genome sequence. This has been partly attributed to changes in chromatin accessibility,
but a systematic picture has been hindered by the lack of large-scale data sets. Here, we use 456 binding experiments for
119 regulators and 84 chromatin maps generated by the ENCODE in six human cell types, and relate those to a global map
of regulatory motif instances for these factors. We find specific and robust chromatin state preferences for each regulator
beyond the previously reported open-chromatin association, suggesting a much richer chromatin landscape beyond
simple accessibility. The preferentially bound chromatin states of regulators were enriched for sequence motifs of reg-
ulators relative to all states, suggesting that these preferences are at least partly encoded by the genomic sequence.
Relative to all regions bound by a regulator, however, regulatory motifs were surprisingly depleted in the regulator’s
preferentially bound states, suggesting additional non-sequence-specific binding beyond the level predicted by the reg-
ulatory motifs. Such permissive binding was largely restricted to open-chromatin regions showing histone modification
marks characteristic of active enhancer and promoter regions, whereas open-chromatin regions lacking such marks did
not show permissive binding. Lastly, the vast majority of cobinding of regulator pairs is predicted by the chromatin state
preferences of individual regulators. Overall, our results suggest a joint role of sequence motifs and specific chromatin
states beyond mere accessibility in mediating regulator binding dynamics across different cell types.

[Supplemental material is available for this article.]

Although the genome sequence of each human cell is invariant

across nearly all cell types of the human body, the morphology and

function of each cell is dramatically different owing to their dif-

ferential regulation and gene expression patterns. At the molecular

level, the binding landscape of a given regulator can be extremely

dynamic, although its sequence specificity remains unchanged

(Harbison et al. 2004; Zhong et al. 2010; Mullen et al. 2011;

Trompouki et al. 2011). This is attributed at least in part to the

dynamic chromatin landscape of each cell via active and repressed

regions that can then be epigenetically maintained (Lam et al.

2008; Essien et al. 2009; Segal and Widom 2009; John et al. 2011; Li

et al. 2011; Lickwar et al. 2012). The chromatin landscape is itself

thought to be driven at least in part by the regulators active in each

cell type (Lefterova et al. 2008; Lupien et al. 2008; Steger et al. 2010;

Siersbaek et al. 2011). For example, transient overexpression of a

small number of transcription factors has been shown sufficient

for stable epigenetic reprogramming, which is now commonplace

in the generation of induced Pluripotent Stem (iPS) cells (Takahashi

and Yamanaka 2006; Meissner 2010). However, a systematic study

of the interplay between regulator binding, including both general

and sequence-specific regulators, chromatin accessibility, and

chromatin states defined with histone modification marks, has

been unfeasible due to the lack of systematic genome-wide reg-

ulator binding experiments in multiple cell types with matched

chromatin data sets.

This situation changed with the scale-up of the ENCODE

project (The ENCODE Project Consortium 2012). First, the ge-

nome-wide binding locations of more than 100 regulators have

been mapped in one or multiple cell types (Supplemental Tables 1,

2), identifying thousands of constitutive and variable target loca-

tions for each experiment. Second, the chromatin accessibility

landscape of matched cell types has been mapped using DNase

hypersensitivity and formaldehyde-based FAIRE (Hesselberth et al.

2009; Song et al. 2011). Third, at least eight histone modification

marks have been mapped in the same cell types that can be used to

pinpoint distinct chromatin functions such as enhancer and pro-

moter regions. These data have individually highlighted the re-

markable fact that in a given cell type, only a very small percentage

of the 3 billion bases of the genome have robustly detectable reg-

ulator binding, accessible chromatin, or histone marks denoting

active regulatory elements. Strong relationships between each

pair of data types have been previously reported, and regulatory

motifs have been shown to be over-represented (enriched) within

both active chromatin marks and regions of regulator binding

(Heintzman et al. 2007, 2009; Xi et al. 2007; Boyle et al. 2008; Hon

et al. 2008; Lupien et al. 2008; Robertson et al. 2008; Ernst and

Kellis 2010; Ernst et al. 2011; The modENCODE Consortium 2010;

John et al. 2011; Wu et al. 2011). However, the dynamic changes in

regulator binding and active regulatory elements across cell types

are far from understood at the systems level.

In this paper, we integrate this vast collection of histone

modification, chromatin accessibility, and regulator binding,
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including both transcription factor and general binding as well as

regulatory motif information, to systematically study dynamic

regulatory binding across multiple cell types. We leverage 84 ge-

nome-wide data sets of chromatin-related mark patterns and 456

regulator binding experiments for 119 different regulators gener-

ated by the ENCODE project in six human cell types and 2.76

million total motif instances from 51 different positional weight

matrices (The ENCODE Project Consortium 2012; P Kheradpour

and M Kellis, in prep.). We use a chromatin state model that sum-

marizes biologically meaningful combinations of chromatin marks

(Hoffman et al. 2013), shown to more directly correlate with diverse

functional elements (Thurman et al. 2007; Jaschek and Tanay 2009;

Ernst and Kellis 2010). The model used here integrates both histone

modification and chromatin accessibility into a joint 25-state model,

which enables us to distinguish diverse classes of open chromatin.

We use this rich chromatin annotation to study the interplay be-

tween chromatin state, regulator binding, and regulatory motifs

across multiple cell types, revealing numerous new insights:

• We find several distinct classes of chromatin state preferences

for different regulators, which are stable across experimental

conditions and across different cell types.

• We find different chromatin state preferences for locations of

cell type unique, shared, and excluded binding, respectively

enriched in enhancer, promoter, and repressed states.

• We find that the chromatin states preferentially bound by reg-

ulators show strong enrichment for their cognate regulatory

sequence motifs.

• Surprisingly, however, relative to all regions bound by a given

regulator, binding events within preferred chromatin states are

more often depleted for regulatory motif instances, suggesting

additional nonspecific binding that does not rely on specific

regulatory motif instances.

• Moreover, we find nonspecific binding primarily in those ac-

cessible chromatin states that also contain active histone mod-

ification marks, suggesting that permissive binding is associated

with specific modifications rather than open chromatin alone.

• Lastly, we find that previously reported pairwise enrichment in

the binding locations of regulator pairs can potentially be ex-

plained to a large extent by similar chromatin state preferences.

Overall, our results suggest a previously unappreciated di-

versity in the chromatin state preferences of different transcription

factors that likely underlies nonpermissive binding, potentially

mediates interactions between multiple regulators, and facilitates

the cell type-specific and cell type-restricted regulator binding.

Results

Chromatin landscape reveals diverse classes of accessible
chromatin regions

To study the dynamic nature of regulator binding and chromatin

states, we focused on six human cell types, consisting of lym-

phoblastoid (Gm12878), cervix adenocarcinoma (HeLa-S3), liver

carcinoma (HepG2), umbilical vein endothelial cells (Huvec), my-

elogenous leukemia (K562), and embryonic stem cells (H1-hESC).

These were prioritized as Tier 1 and Tier 2 cells in the ENCODE

project and thus benefit from extensive experimentation across

all the ENCODE groups, enabling integration across histone modi-

fications, chromatin accessibility, transcription factor binding, and

gene expression data sets, although these were generated by differ-

ent the ENCODE production groups.

In each of these cell lines, we characterize the chromatin

landscape by integrating 14 genome-wide chromatin tracks.

These include eight histone modification marks: mono-, di-, and

trimethylation of histone 3 lysine 4 (H3K4me1, H3K4me2, and

H3K4me3), typically associated with enhancer and/or promoter

regions; acetylation of histone 3 lysine 9 and 27 (H3K9ac and

H3K27ac) that mark active regulatory elements; the repressive

mark H3K27me3; H3K36me3; and H4K20me1 associated with

gene bodies (Barski et al. 2007; Wang et al. 2008; Ernst et al. 2011).

These also include three tracks of chromatin accessibility, typi-

cally associated with increased regulator binding: single-cut

DNase (Song et al. 2011), double-cut DNase (Hesselberth et al.

2009), and sonication (Song et al. 2011) assays. Lastly, they in-

clude binding of two general regulators: CTCF, associated with

insulator and other functions; and RNA polymerase POL2; and an

input control.

We used chromatin states (Ernst and Kellis 2010) from

ChromHMM (Ernst and Kellis 2012) to summarize biologically

meaningful combinations of those marks into 25 chromatin states

(Hoffman et al. 2013), which were consistently defined across cell

types. Briefly, the states consist of the following: Transcription start

site (1_Tss), Tss flanking (2_TssF), promoter flanking (3_PromF),

poised (Bernstein et al. 2006) promoter (4_PromP); strong and weak

enhancers (Heintzman et al. 2007) (5_Enh, 8_EnhW) and enhancer

flanking (6_EnhF, 7_EnhWF); three types of open chromatin

states that lack active histone modification marks (9_DNaseU,

10_DNaseD, 11_FaireW preference for double-, single-cut DNase,

and FAIRE, respectively) and also lie distal to active histone modi-

fication states; CTCF in open and closed chromatin (12_CtcfO,

13_Ctcf); gene body-associated (14–19) including 59, 39, and elon-

gating; specific repression (20-22); low signal (23_Low) and quies-

cent (24_Quies) states; and possible artifacts (25_Art).

These states are defined by the frequency of each mark in

each chromatin state (emission probabilities) and the frequency

with which states are found adjacent to each other (transition

probabilities) (Supplemental Fig. 1). The state definitions are

constant across cell types because the model was learned jointly

by a virtual concatenation of the six cell types, but the state as-

signments are cell type-specific because they depend on the

specific combination of chromatin marks observed in a given cell

type. Different states cover very different fractions of the genome:

individual promoter, enhancer, open chromatin, and CTCF states

usually cover <1% of the genome, the set of transcribed states

(14–19) on average cover ;10% of the genome, and the low and

quiescent states 23 and 24 together cover ;70% of the genome

(Supplemental Fig. 2).

Although transcription factor binding is known to be gener-

ally associated with regions of open chromatin (Song et al. 2011),

our chromatin state annotations suggest a much more complex

picture with several types of open chromatin. In fact, at least nine

chromatin states showed DNase hypersensitivity emission pa-

rameter frequencies ;50% or greater (Supplemental Fig. 1), in-

cluding promoter states (1_Tss, 4_PromP), enhancer states (5_Enh,

8_EnhW), DNase-only regions lacking other histone marks

(9_DNaseU, 10_DNaseD), CTCF binding regions (12_CtcfO), the

specific repression state frequently enriched in promoter regions

(20_ReprD), and the artifact state (25_Art). This diversity of open

chromatin states suggests that a more complex relationship may

exist between transcription factor binding and chromatin beyond

simply a general preference for accessible chromatin regions,

which we explore next by studying the preferences of each tran-

scription factor for each chromatin state.
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Regulators show multiple distinct
chromatin state enrichment patterns
As expected, we find that regulators are

typically most enriched for states with

open chromatin. In fact, after collapsing

multiple experiments for the same regu-

lator and excluding CTCF and POLR2A,

we find that 104 of 115 regulators (90%)

with cell type matched chromatin data

available showed a maximum enrich-

ment in either the active promoter state

1_Tss (59 regulators) or the strong en-

hancer state 5_Enh (45 regulators).

However, the extent of each regulator’s

preference for the two states varied sub-

stantially for different regulators, as did

their enrichment for additional open

chromatin states.

We recognized common patterns of

chromatin state preference (Fig. 1; Sup-

plemental Fig. 3), using a k-means clus-

tering algorithm and selecting 12 clusters

(Supplemental Table 3; Supplemental

Fig. 4; see Methods). Regulators profiled

in multiple cell types and conditions

showed generally consistent enrichment

patterns with two-thirds of the individual

regulator experiments showing highest

similarity to the cluster center where the

corresponding regulator was assigned

(Supplemental Fig. 5).

Four of these clusters (C1–C4) had

their strongest relative preference for pro-

moter states:

• Regulators in cluster C1 showed almost

exclusive binding preference in the

1_Tss promoter state. This cluster in-

cluded all six factors annotated as

‘general Pol II associated factor, not site

specific’ (P < 0.001) (Wang et al. 2012),

consistent with nonspecific binding

that may be partly mediated by the

chromatin landscape at transcription

start sites.

• Regulators in clusters C2 and C3 also

had a preference for the 1_Tss state, but

relative to C1 had a stronger preference

for the more repressive 4_PromP state

(both C2 and C3) and for 25_Art (C3

only). Cluster C2 contained both NFYA

and NFYB, which we had previously

predicted to have repressive activity

in enhancer states (Ernst et al. 2011),

suggesting they may also show re-

pressive roles in poised promoters.

• Regulators in C4 showed the strongest

preference for 1_Tss but also a weaker

preference for 5_Enh. This cluster con-

tained both helix-loop-helix hetero-

dimers MAX-MYC and USF1-USF2. The

presence of TFIID-interacting USF1 and

Figure 1. Regulator enrichments for each chromatin state in matched cell types. Different regulators
show distinct chromatin state preferences. For each regulator with matching chromatin data, the
average enrichment is shown for each chromatin state (columns). Enrichments have been row-
normalized, scaling by the largest enrichment value for each experiment. K-means clustering with
12 clusters produced the clusters labeled C1–C12.

Ernst and Kellis
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USF2 in this cluster suggests a possibly underappreciated role in

distal as well as proximal regulatory regions (Rada-Iglesias et al.

2008).

Three clusters (C5–C7) had strong relative enrichment for

enhancer states and varying levels of promoter enrichment:

• Regulators in C5 had a balanced preference for both state 1_Tss

and 5_Enh and likely play dual roles in enhancers and pro-

moters. C5 includes all four regulators that are part of the SWI/

SNF chromatin remodeling complex (P < 0.05), consistent with

previous reports suggesting both enhancer and promoter roles

(Euskirchen et al. 2011).

• Cluster C6 had regulators with a much stronger preference for

enhancers than promoters or other states. Of the 17 regulators in

this cluster, 13 are known to be involved in the regulation of

developmental processes (P < 0.01). The cluster also enriched

for genes involved in intracellular transport (P < 0.01). Among

the C6 genes was EP300 a common coregulator found in large

numbers of enhancers (Visel et al. 2009).

• C7 regulators showed the strongest preference for enhancer state

5_Enh but also a weaker preference for 8_EnhW, 9_DNaseU, and

1_Tss. This cluster contained eight of 12 leucine zipper domain

regulators (P < 0.001) and was also significantly enriched for

positive regulation of cell differentiation genes (P < 0.01).

The remaining clusters (C8–C12) contained a number of

regulators that did not fit the usual enhancer or promoter pattern:

• Cluster C8 regulators had the strongest enrichment for

12_CtcfO and contained RAD21 and SMC3, both members of the

cohesin complex, which is known to interact with CTCF (Wendt

and Peters 2009). It also contained the CTCF paralog CTCFL and

ZNF143, which have been previously implicated with CTCF

(Gerstein et al. 2012).

• Cluster C9 regulators were most enriched in the 9_DNaseU open-

chromatin state that lacks any activating histone marks and con-

tained two regulators, TRIM28 and SETDB1, suggesting a potential

repressive role upon binding. Indeed, both are known to be asso-

ciated with chromatin gene-silencing (Schultz et al. 2002).

• Cluster C10 regulators were associated with multiple states with

DNase but lacking active histone marks and consisted of a

single regulator, REST (NRSF), which has a known role in gene

silencing.

• Cluster C11 also consisted of a single regulator SUZ12, a poly-

comb protein, which had a strong enrichment for the 4_PromP

and 20_ReprD, which is expected given that these states are

associated with high levels of H3K27me3.

• Lastly, C12 regulators had relatively high enrichment for the

‘artifact’ state 25_Art; and indeed, three of the four regulators

(BRF2, HDAC8, and ZZZ3) were independently flagged by the

ENCODE Consortium as being of medium quality (Landt et al.

2012; A Kundaje, LY Jung, PV Kharchenko, BJ Wold, A Sidow,

S Batzoglou, and PJ Park, in prep.). The remaining regulator,

ZNF274, also had a notable enrichment for the 39 gene body state

17_Gen39, consistent with its involvement in recruiting a

methlytransferase to the 39 end of ZNF genes (Frietze et al. 2010).

Dynamic enrichment patterns across cell types are both
regulator and cell-type driven

We next expanded our chromatin state enrichment analysis to

incorporate multiple cell types. For each regulator, we directly

compared the chromatin state enrichment across different cell

types (Fig. 2), extending our analysis focusing on matched regu-

lator-chromatin state experiments to study vectors of enrichments

across six cell types (see Methods). We ordered the resulting matrix

to minimize the total correlation-based distance between neigh-

boring rows by using an instance of the traveling salesman prob-

lem (see Methods), which showed greater coherence in both cell

type and regulator streaks relative to optimal leaf ordering of a

hierarchical clustering solution (Supplemental Fig. 6; Bar-Joseph

et al. 2001). We also generated an unbiased ordering at the in-

dividual experiment level to study whether common cell types or

regulators were preferentially consecutively ordered and to high-

light unexpected similarities in relative or absolute enrichment

patterns (Supplemental Figs. 7–10).

Most cell types exhibited substantial coherence in grouping

together different regulators (Fig. 2; Table 1). For example, 85% of

the regulators in HepG2 fell into one of two groups preferentially

enriched in states 1_Tss or 5_Enh. However, we also observed cases

in which multiple experiments of the same regulator profiled in

different cell types were grouped together (Table 2). Notable

among these was eight of the nine REST experiments and all four

ZNF274 experiments in different cell types, both of which play

repressive roles.

We also observed constitutive regulator enrichments across

cell types, particularly in states 1_Tss and 12_CtcfO, known to

be less dynamic than enhancer states (Heintzman et al. 2009).

We confirmed at the individual experiment level that this was

associated with invariant chromatin states rather than simply in-

dependent enrichments at similar levels in each cell type (Supple-

mental Fig. 7). Ordering experiments by cell type shows that each

regulator is most enriched in enhancers active in the cell type in

which it was profiled (Supplemental Fig. 11), and ordering by

regulator highlights dynamic changes in enrichment across cell

types (Supplemental Fig. 12) primarily for enhancer states and to

a lower degree for promoter states.

Motif depletion suggests abundant nonspecific binding
in permissive chromatin states

To understand the potential role of DNA sequence in guiding ob-

served transcription factor-chromatin associations, we studied the

absolute motif enrichment in each chromatin state for regulators

with a known regulatory motif compared to the rest of the genome

using control motifs (Supplemental Fig. 13; see Methods). The

states for which the greatest number of regulators show significant

absolute motif enrichment were 1_Tss, 4_PromP, 5_Enh, 8_EnhW,

9_DNaseU, and 10_DNaseD (Fig. 3A), corresponding well to the

states showing the greatest transcription factor binding enrich-

ment (with the exception of 10_DNaseD) (Supplemental Fig. 14).

This property also held when considering motifs instances in ag-

gregate across all regulators (Supplemental Fig. 15). Moreover, the

chromatin state enrichments for regulatory motifs mirrored their

chromatin state binding preferences for the corresponding tran-

scription factor clusters (Supplemental Fig. 16). Together, these

results suggest that the chromatin state preferences of sequence-

specific regulators are at least in part encoded by genome sequence.

Surprisingly however, the two most often maximally prefer-

entially bound states, 1_Tss and 5_Enh, showed a depletion of

regulatory motif instances relative to all bound regions (Fig. 3B;

Supplemental Fig. 15). This relative depletion implies that regula-

tor binding in these regions exceeds the level predicted by regu-

latory motifs, suggesting that in addition to motif-driven binding,

Chromatin state, regulator binding, and motifs
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Figure 2. Dynamics of regulator enrichment in different chromatin states across cell types. Each row corresponds to one regulator in a given cell type.
Each column corresponds to a state-cell type combination. The columns are organized first by state and then by cell type in the following order:
Gm12878, H1-hESC, HeLa-S3, HepG2, HUVEC, and then K562. The rows have been automatically ordered computationally using a traveling salesman
problem instance solver, and reveal both regulator and cell type groups. The fold enrichments have been row-normalized, scaled to the maximum
enrichment in the row. In the six columns of each group, yellow indicates higher enrichment values and blue lower enrichment values. The next-to-last
column indicates the cell type of the experiment color-coded, with all GM cell types colored the same and all other non-Tier 1 and 2 cell types colored
white. The last column indicates the regulators of the experiments listed consecutively within the same cell type block.

1146 Genome Research
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these states are conducive to nonspecific binding. A similar de-

pletion of strong CTCF motifs was noted in the presence of active

modifications (Essien et al. 2009) and of many regulator motifs in

hotspots of regulator binding in fly (The modENCODE Consor-

tium 2010) and human (Yip et al. 2012). Indeed, states 1_Tss,

5_Enh, and 25_Art contained on average about half hotspot re-

gions (Supplemental Fig. 17). However, even among hotspot re-

gions, those overlapping states 1_Tss, 5_Enh, and 25_Art were less

likely to contain motifs (Supplemental Fig. 18), suggesting that

chromatin states contain additional properties facilitating tran-

scription factor binding than explained by high-occupancy bind-

ing alone. Enhancer state 5_Enh, which showed the most dynamic

binding across cell types, also showed one of the strongest motif

depletion signals (Fig. 3B; Supplemental Fig. 15), consistent with

permissive binding facilitating condition specificity.

In contrast, relative motif depletion was not found in states

lacking active marks. Instead, repressive states (20_ReprD, 21_Repr,

22_ReprW) and low-activity states (23_Low, 24_Quies) showed

motif enrichments relative to all bound regions. This suggests that

for binding to occur in these regions, a regulatory motif is more

often required; and thus, regulator binding within these regions

is more likely motif-dependent. In other words, binding appears

to be more frequently sequence-mediated in regions that are not

permissive or chromatin mediated.

Importantly, the two DNase-associated open-chromatin states

that lack active chromatin marks showed a signature of non-

permissive, motif-dependent binding characteristic of repressive

states. Recall that States 9_DNaseU and 10_DNaseD showed sig-

natures of open chromatin but had limited H3K4 methylation

marks characteristic of enhancer and promoter regions and also

lacked the H3K9 and H3K27 acetylation marks associated with

Table 1. Different regulators in the same cell type ordered consecutively

(First column) Position in the order from Figure 2; (second column) cell type; (third column) factors. The different individual GM lines are not differentiated
here.

Table 2. Different cell types with the same regulator ordered
consecutively

IDs Regulator Fraction Cell Types

33–34 NR2C2 2/4 HeLa-S3, HepG2
42–43 NRF1 2/5 H1-hESC, GM
48–49 SIN3A 2/4 K562, GM
51–52 NRF1 2/5 HeLa-S3, HepG2
125–128 RAD21 4/6 HeLa-S3, HepG2, SK-N-SH_RA,

H1-hESC
148–149 SUZ12 2/2 NT2-D1, H1-hESC
150–157 REST 8/9 PANC-1, H1-hESC, HepG2, GM,

HeLa-S3, PFSK-1, U87, HTB-11
238–239 USF1 2/6 A549, SK-N-SH_RA
241–242 YY1 2/5 SK-N-SH_RA, GM
249–250 ZNF263 2/2 T-REx-HEK293, K562
253–254 ZZZ3 2/2 HeLa-S3, GM
256–259 ZNF274 4/4 HeLa-S3, K562, NT2-D1, HepG2
265–266 SETDB1 2/2 K562, U2OS

(First column) Position in the order from Figure 2; (second column) reg-
ulator; (third column) fraction of cell types for the regulator in this con-
secutive group of cell types; (fourth column) cell types represented in this
consecutive group. (GM) Any of the GM cell types.

Chromatin state, regulator binding, and motifs
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Figure 3. Motif enrichment and depletion variation across chromatin states. (A) Number of transcription factors with significantly enriched or depleted
motif instances in each state at a P-value of 0.001 (see Methods). The maximum value for the y-axis was 79, corresponding to the number of transcription
factors considered with regulatory motif instances available. If a transcription factor was profiled multiple times, each experiment was counted inversely
proportional to the number of times it was profiled. Stars indicate if the number of transcription factors with significantly enriched (depleted) motifs in
a state is significant based on a binomial distribution with the number of samples equal to the total number of significant enrichments or depletions in the
state and the probability of success equal to the proportion of significant enrichments (depletions) of all significant enrichments or depletions across all
states. Fractional values were first rounded to the nearest integer for the calculation. The P-value cutoff for triple stars was 10�6 and for double stars was
0.01. (B) Number of transcription factors with significantly enriched or depleted motif instances in each state conditioning on regions falling within a peak.
Stars were computed the same way as in A except a 0.05 P-value cutoff was used for double stars. (C ) Fold enrichment for CEBPB motifs in four different
HepG2 chromatin states. (D) Fold enrichments for CEBPB motifs within peaks in the same four states relative to the baseline motif enrichment in peaks.



activation of both enhancer and promoter regions. These states

showed strong relative motif enrichments compared to all bound

regions across all factors and showed more factors with relative

enrichment than with relative depletion, suggesting that they are

strongly motif-dependent.

In summary, promoters, enhancers, and open chromatin

states lacking active histone modifications all show strong ab-

solute enrichments for regulatory motifs (e.g., CEBPB motif for

CEBPB-bound sites in HepG2) (Fig. 3C), suggesting that motifs

at least partially determine regulator binding preferences in

different chromatin states. However, motifs are depleted in

promoter and enhancer peaks, relative to all peaks, suggesting

permissive binding in active states restricted to open chromatin

regions that also show active histone modification marks (Fig. 3D,

for CEBPB).

For regulators profiled in multiple cell types, we also analyzed

the chromatin state enrichments in a given cell type for commonly

bound and differentially bound sites. We defined: (1) ‘‘shared’’

sites, bound in the cell type and at least one other of the six pri-

mary cell types; (2) ‘‘unique’’ sites, bound only in the considered

cell type and none of the other primary cell types considered; and

(3) ‘‘excluded’’ sites, that were bound in at least one other cell

type but not the one considered (Fig. 4; Supplemental Figs. 19,

20). For example, the transcription factor CEBPB shows very

different chromatin state enrichments for these different classes

of bound sites (Fig. 4A): for 1_Tss, enrichment is strongest for

shared sites, consistent with constitutive binding in promoter

regions; for 5_Enh, enrichment is strongest for unique sites,

consistent with dynamic binding in enhancer regions; for

10_DNaseD, enrichment is strongest for excluded sites, consis-

tent with specific repression; for 24_Quies, enrichment is weak

throughout, consistent with lack of binding. Considering all

regulators and all states, uniquely bound locations are preferen-

tially found in States 5_Enh and 8_EnhW, ‘‘shared’’ locations that

are bound in multiple cell types are preferentially found in state

1_Tss, and ‘‘excluded’’ locations that are bound only in other cell

types are more enriched than the other two classes in states

9_DNaseU, 10_DNaseD, and 20_ReprD, suggesting they are spe-

cifically repressed (Fig. 4B). We also found that regions of shared

binding were more likely to contain regulatory motifs (Fig. 4C),

consistent with sequence-driven binding, whereas dynamically

bound regions showed lower enrichments, as expected for dy-

namic binding since motifs are by definition invariant across cell

types.

Figure 4. Dynamic binding enrichments. (A) The enrichment in four HepG2 chromatin states for locations of the genome that are bound by CEBPB in
HepG2 and another cell type, only in HepG2, and in another cell type but not HepG2. (B) The median enrichment over all regulators in Gm12878 for the
three different classes of dynamic binding (for other cell types, see Supplemental Figs. 19, 20). (C ) The median enrichment of regulatory motifs in bound
regions for the different classes of dynamic binding.
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Common chromatin state preferences predictive of regulator
cobinding

We next studied the role of chromatin in the pairwise binding of

regulators. As reported in previous studies (Moorman et al. 2006; Li

et al. 2008; Gerstein et al. 2012), we found extensive cobinding

enrichments ranging from 50-fold to 500-fold on average for

most pairs of regulators (Fig. 5A), which held for both pairs of

regulators and pairs of individual experiments (Supplemental Figs.

21, 22). The computationally ordered pairwise enrichment matrix

Figure 5. Pairwise regulator cobinding enrichments are captured by chromatin state preferences. (A) Pairwise regulator cobinding enrichment for all
pairs of regulators in HepG2 show strong groups of cobinding. The regulators in each group are typically assigned to the same set of chromatin state cluster
preferences from Figure 1. Enrichment levels up to 500-fold are found for the full pairwise enrichment table. Rows of the table have been ordered to
maximize correlation of neighboring rows. Black lines correspond to groups of highly enriched pairs of regulators that emerge from this ordering. (B) After
conditioning on the chromatin state preferences for each regulator (see Methods), the pairwise regulator enrichments are dramatically reduced. (C,D) The
same as A and B except for K562. Other cell types can be found in Supplemental Figure 21.
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showed strong internal structure, revealing several subgroups of

regulators with even higher pairwise overlap to each other, as

reported in previous studies (Negre et al. 2011), but whose origin

has remained unclear.

The chromatin state preferences of regulators in each co-

occupancy group revealed a potential chromatin state basis of

co-occupancy groups because regulators in the same subgroup

showed preferences for the same set of chromatin states. For ex-

ample, among the regulators mapped in HepG2 (Fig. 5A), a large

cobinding group was dominated by regulators almost exclusively

in cluster C1 of Figure 1 that bind primarily promoter states,

whereas another large group consisted of regulators in clusters C5,

C6, and C7 that primarily bind enhancer states.

Remarkably, after controlling for chromatin state preferences,

genome-wide regulator coassociations were dramatically reduced

(Fig. 5B). Cobinding enrichments were reduced approximately

30-fold on average, and the strong structure of cobinding associ-

ations was lost (Fig. 5; Supplemental Figs. 21, 22; see Methods).

Previous work has noted extensive cobinding within DNase I hy-

persensitive regions (Kaplan et al. 2011; Li et al. 2011). However,

we find that conditioning on DNase accessibility still leaves sub-

stantial block structures in the coassociation that are eliminated

when including chromatin state information (Supplemental

Fig. 23). Only small groups of coassociations remained that could

not easily be explained by common chromatin state preferences

for the corresponding regulators. For example, these factors in-

cluded MAFF and MAFK proteins in HepG2, which can be involved

in repression (Blank 2008) and were found together in hetero-

chromatic regions; SETDB1, KAP1, and ZNF274 in K562, three

factors known to interact (Frietze et al. 2010); and POL3-associated

factors in K562 and HeLa-S3 (Fig. 5; Supplemental Figs. 21, 22).

Even when cobinding groups mirrored chromatin state prefer-

ences, the direction of causality remains unclear. It is possible that

cobinding regulators help define chromatin states or that chro-

matin states facilitate regulator interactions.

Discussion
We undertook a global analysis of the relationship between regu-

lator binding across multiple cell types, the dynamic chromatin

landscape, and regulatory motifs. We integrated histone modifi-

cations, DNase hypersensitivity, FAIRE, CTCF, and POL2 to define

chromatin states, revealing several classes of open chromatin,

some of which were surprisingly devoid of histone modification

marks. All chromatin states with open chromatin are enriched in

regulator binding, but different regulators show distinct prefer-

ences for specific subsets of chromatin states: some bind primarily

promoter regions such as NRF1 and TAF1; others bind in enhancers

regions, such as JUN and FOXA1; others bind equally in both, as

members of the SWI/SNF chromatin remodeling complex; and

a smaller number of regulators bind insulators such as RAD21,

SMC3, and ZNF143 or other regions such as SETDB1, TRIM28,

SUZ12, and REST.

Chromatin state preferences are highly stable for a given reg-

ulator across different cell types and conditions and are reflected

in the underlying regulatory motif enrichments for the corre-

sponding regulators. However, specific enhancer and promoter

states that showed enrichment for transcription factor binding

were also least likely to contain regulatory motifs relative to all

bound regions. This suggests that regulatory sequence motifs may

help define promoter and enhancer states; but once these chro-

matin states are established, they in turn provide a permissive

environment for additional binding that does not require regula-

tory motifs. Cooperative and non-sequence-specific binding within

such a generally permissive environment can also explain occur-

rences of regulator binding peaks that lack a sequence motif.

Consistent with this latter possibility, we find that bound locations

lacking a motif interact with locations bound by the same tran-

scription factor and containing a motif, based on 5C interaction

data (Supplemental Table 4; see Methods). Importantly, open

chromatin states that lack histone modifications did not show

evidence of nonspecific regulator binding, suggesting that active

histone marks, rather than open chromatin, may enable permis-

sive regulator binding.

Although cobinding patterns between pairs of regulators have

garnered much attention in previous studies, we find that most of

these patterns can potentially be explained by similar chromatin

state preferences for individual regulators. Once chromatin state

preferences of each regulator are accounted for, cobinding en-

richments are reduced by more than an order of magnitude, re-

vealing only few instances of cobinding regulators that are difficult

to explain by chromatin preferences alone. These results do not

imply that their regulator co-occurrence patterns are not mean-

ingful. In fact, chromatin may simply provide a mechanism for

guiding functionally related regulators to the same locations of

the genome and thus enabling their joint activity even in the ab-

sence of any direct protein–protein interactions between them.

Conversely, interactions between regulators may underlie com-

mon chromatin state preferences by mutual recruitment. In either

case, it is important to recognize that regulator cobinding should

be studied in the context of chromatin that may explain, or facil-

itate, regulator interactions.

Going forward, a systematic understanding of the joint role of

DNA sequence information and epigenetic modifications will be

paramount in understanding the molecular basis of human dis-

ease. On one hand, single-nucleotide polymorphisms (SNPs) have

been shown to result to highly pronounced changes in regulator

binding, chromatin accessibility, and gene expression across in-

dividuals (Montgomery et al. 2010; Degner et al. 2012). On the

other hand, epigenetic changes in the lifetime of an individual,

and sometimes spanning decades and generations, can lead to

reproducible effects on metabolism and health even without un-

derlying genomic alterations. Understanding how genome sequence

and chromatin act jointly to specify the dynamic landscape of

active and repressive regulatory elements across individuals and

cell types will be needed to decipher the regulatory, molecular, and

organismal phenotypes that underlie human disease in the con-

text of genetic and epigenomic variation.

Methods

Inferring chromatin states
The chromatin state model is the 25-state ChromHMM (Ernst and
Kellis 2012) model described in Hoffman et al. (2013). Details on
the data processing and model learning can be found in that paper.

Computing regulator binding enrichments

For binding peak calls, we used the standardized peak calls
produced by the ENCODE Consortium (Gerstein et al. 2012;
A Kundaje, Q Li, J Rozowsky, JB Brown, A Harmanci, SP Wilder,
M Gerstein, S Batzoglou, A Sidow, E Birney, et al., in prep.) using
the SPP peak caller (Kharchenko et al. 2008). To compute the en-
richment for a peak call-data set in a specific chromatin state and
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cell type, s, we computed the enrichment for transcription factor
binding as (as/b)/(cs/d), where as is the total number of bases in
a peak call in s; b is the total number of bases in a peak call; cs is the
total number of bases in s; and d is the total number of bases for
which the segmentation was defined.

Clustering of cell-type matched enrichments

We clustered a single vector of enrichment values for each regu-
lator with matched cell type chromatin data, excluding CTCF and
POLR2A. If multiple experiments were available for the regulator,
we averaged them using the median. If there was an even number
of enrichment values, we used the geometric mean to average
the two middle values. To cluster the experiments based on cell
type matched enrichments of chromatin state and binding, we
used the k-means function in MATLAB. We used the correlation
distance function, 10 random restarts, and singleton as the
empty action. We tried between two and 20 clusters and focused
on 12 clusters since the patterns were largely homogenous and
peaked for enrichment in protein–protein interactions (Sup-
plemental Fig. 4).

Ordering rows of the dynamic enrichment heatmap

We ordered the rows of the dynamic enrichment heatmap to
minimize the distance between rows. The distance between two
rows was defined using the distance metric sqrt[1-corr(x,y)], where
x and y are the vectors of the 150-fold enrichment values for
two experiments. Finding such an ordering can be made trivially
equivalent to the computational traveling salesman optimization
problem (Biedl et al. 2001; Applegate et al. 2006) of finding a
minimum cycle that visits every city once by adding a dummy city
with zero distance to every other city (Supplemental Fig. 24). We
applied a specially designed optimal traveling salesman prob-
lem solver, Concorde (http://www.tsp.gatech.edu/concorde.html)
(Applegate et al. 2006), which despite the general problem being
NP-hard was able to find an optimal solution to our instance of
the problem in less than a minute using a single CPU. When
forming the rows at the matrix at the regulator level, we aver-
aged enrichments for experiments on the same regulator in the
cell type using the median and treating the various GM cell types
as the same.

Motif analysis

The motif instance were obtained from http://compbio.mit.edu/
encode-motifs (The ENCODE Project Consortium 2012; P Kheradpour
and M Kellis, in prep.). The motif instance enrichments were
computed relative to a set of selected permuted control motif
instances based on the approach described in Kheradpour et al.
(2007) without using motif conservation. If a regulator had mul-
tiple known motifs associated with it, the motif that had the
greatest chromatin state fold enrichment in any cell type was se-
lected and used consistently in the analysis. The P-value signifi-
cance of motif instance overlap with a chromatin state was com-
puted using a binomial distribution. The null probability of a motif
falling into a specific chromatin state was the ratio of the number
of control motif instances overlapping the state to the total
number of control motif instances, denoted by fs. For determining
the significance after first conditioning on a peak call, there gen-
erally were too few control motif instances overlapping peak calls
to obtain robust null estimates based on the frequency of control
motifs within peaks. Instead, to determine the frequency, the as-
sumption was made that conditioned on a chromatin state the
random chance expectation of a motif within a peak or outside

a peak was uniform after controlling for the number of bases
considered in the motif scanning. The null probability of motifs in
peaks for a state, s, was computed by first computing the ratio of
the number of bases considered in motif scanning overlapping
a peak call within state, s, to the total number of such bases over-
lapping a peak call, denoted by ps. This was then adjusted by fs and
the total fraction of bases included in the motif scanning falling in
the state, denoted by es, using the formula:

ps

f s

es

+ipi

f i

ei

:

The summation is over all states. For computing both the motif
enrichments in chromatin states and conditioned on peaks, a
P-value significance of 0.001 was used for testing separately en-
richment and depletion. The cell type of the chromatin state cor-
responds to the cell type in which the regulator was profiled. If
multiple experiments on the same regulator were conducted, then
each experiment was counted inversely proportional to the num-
ber of experiments conducted on the transcription factor.

The aggregate motif fold enrichment for a chromatin state
was computed as (as/b)/(cs/d), where as is the total number of motif
bases in state s; b is the total number of motif bases; cs is the total
number of control motif bases in state s; and d is the total number
of control bases. The enrichment conditioned on a peak call was
computed the same way except restricting as, bs, c, and d to only
bases that fell within a peak call. For computing the cluster motif
enrichments, each motif was counted once for each cell type in
which there was a corresponding regulator experiment assigned to
the cluster. The geometric mean of the enrichments after adding
a pseudocount of one was used. For the motif usage in different
classes of bound regions, the median fold enrichment relative to
control motifs across regulators was reported excluding CTCF from
the analysis.

We compared the motif usage within peaks within states
1_Tss, 5_Enh, and 25_Art to the other 22 states restricted to High
Occupancy of Transcription related factors (HOT) regions defined
by (Yip et al. 2012) in Gm12878, H1-hESC, HeLa-S3, HepG2, and
K562. For each experiment in one of these five cell types corre-
sponding to a regulator with a motif defined, we computed the
proportion of bases included in motif scanning that fell within
peaks within HOT regions in states 1_Tss, 5_Enh, and 25_Art to all
bases included in the motif scanning that fell within peaks within
HOT regions. We then determined, based on a binomial test using
this proportion at a P < 0.01, if there was a significant number of
motifs in states 1_Tss, 5_Enh, and 25_Art or the other 22 states out
of the total number of motifs that fell within peaks within HOT
regions. If multiple experiments were conducted for the same
regulator, each was counted inversely to the number of experi-
ments conducted on it.

Pairwise enrichment calculations

We computed the raw pairwise enrichments based on peak overlap
at the base level. Let a and b be the number of bases in peaks for
transcription factors A and B, respectively. Let c be the number of
bases in their intersection. Let d be the size of the genome and e be
a pseudocount of 100 bases for smoothing. In this case, the pair-
wise enrichment is (c + e)/[(a 3 b)/d + e]. To compute the condi-
tional pairwise enrichments, let as and bs denote the number of
bases in peaks for transcription factor A and B, respectively, in state
s, and ds is the total number of bases in state s, then the conditional
enrichment is (c + e)/{[+s(as 3 bs)/ds] + e}. When computing pair-
wise enrichments between pairs of regulators, we averaged using
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the median of all pairs of experiments involving both regulators.
To compute the conditional enrichments based on DNase data, we
used peak calls from one replicate of the University of Washington
DNase data (Thurman et al. 2012). The same formulas above
applied where conditioning on DNase was effectively equivalent
to a two-state model with the states corresponding to being in a
DNase peak or not. When also including state information with
DNase, the same formulas also applied, but the number of states
effectively doubled by partitioning each state into the portion
overlapping a DNase peak or not. The ordering of the heatmaps
was determined using the traveling salesman formulation as was
also used for ordering the dynamic enrichment matrix.

Protein–protein interaction data

The protein–protein interactions used were the Biogrid version
3.1.87 physical interaction data sets (Stark et al. 2011). Fold en-
richments were computed two ways. Let n be the total number of
known protein–protein interactions that fall into a cluster; N is the
total number of known protein–protein interactions involving
regulators considered; K is the number of clusters; r is the number
of regulator pairs that are in the same cluster; and R is the total
number of pairs of regulators. Under the uniform expectation
enrichment was K(n/N), and when conditioned on the cluster size,
it is (n/N)/(r/R).

Dynamic binding analysis

For a given cell type, nucleotides of ‘‘unique,’’ ‘‘shared,’’ and ‘‘ex-
cluded’’ binding for a regulator were defined if they were profiled
in two or more of the Gm12878, K562, HepG2, HeLa-S3, H1-hESC,
and Huvec cell types. If multiple experiments were conducted on
the same regulator in a cell type, they were first combined by
taking the union.

5C-interaction analysis

We used 5C data available on the ENCODE pilot 1% regions
(Sanyal et al. 2012) to investigate if there was a preferential en-
richment for sites with a transcription factor peak without a motif
to interact with locations with a peak containing a motif. We re-
stricted our analysis to transcription factors that had peaks in one
of the four cell types with 5C data available: Gm12878, K562,
HeLa-S3, and H1-hESC. We separately considered peaks without
motifs on the forward primers (not specific to TSS) interacting
with peaks containing motifs on the reverse primers (covering TSS)
and vice versa. Only regulators with a minimum of ten possible
detected interactions were evaluated. When evaluating the signifi-
cance of interaction of forward sites without motifs with reverse
sites with motifs, we compared the count of observed interactions to
the number of interactions when randomizing the interacting
reverse primer for 1000 randomizations. When randomizing the
reverse primers, they were required to be selected from the same re-
gions as the original interactions, thus, to only generate randomized
interacting pairs that could have been observed in the real data. A
similar analysis was conducted for bound sites without a motif on
the reverse primers to interact with forward primers.
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