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Abstract

Disruptive and damaging ultra-rare variants (URVs) in highly constrained (HC) genes are enriched 

in individuals with neurodevelopmental disorders. In the general population, this class of variants 

was associated with a decrease in years of education (YOE; −3.1 months; P-value=3.3×10−8). This 

effect was stronger among high brain-expressed genes and explained more YOE variance than 

pathogenic copy number variation, but less than common variants. Disruptive and damaging URVs 

in HC genes influence the determinants of YOE in the general population.

Educational attainment, measured by the highest number of years of education (YOE) 

attained, is a complex trait influenced by public policy 1, economic resources2 and many 

heritable traits, including cognitive abilities and behavior 3. Importantly, YOE is positively 

associated with healthy behaviors and lower rates of chronic diseases 4.

Genome-wide association study (GWAS) meta-analyses have identified 162 genome-wide 

significant loci for YOE 5. The additive heritability of YOE explained by common genetics 

variants has been estimated at 21% (95% confidence intervals [CI] 11-31%) 6, which is 

approximately half of the total heritability estimated from twin studies (40%; 95% C.I. 

35-44%) 7. It has been hypothesized that rare to ultra-rare exonic variants might account for 

some of the heritability currently not captured by GWAS 8.

Recent studies of intellectual disability, autism and schizophrenia have shed light on the 

impact of de novo and ultra-rare variants (URVs: variants that are observed only once 

(singletons) in the study and not observed in 60,706 exomes sequenced in the Exome 

Aggregation Consortium (ExAC) 9) on the genetic architecture of these disorders 10-12, 

showing a specific enrichment in highly constrained (HC: genes intolerant to loss-of-

function or missense mutations, i.e. having a probability of being loss_of_function intolerant 

(pLI) > 0.9). Moreover, emerging evidence suggests that de novo loss-of-function mutations 

are associated with reduced adaptive functioning in individuals without diagnosis of 

autism13.

We tested the hypothesis that a burden of URVs in HC genes is associated with YOE in 

14,133 individuals participating in four studies from three Northern European countries: 

Sweden, Estonia and Finland. Of these, 5,047 individuals have been diagnosed with 

schizophrenia.

The average numbers of YOE were 13.1, 13.6, and 11.8 in Swedish, Estonian, and Finnish 

participants, respectively. These differences are partially explained by different age and sex 

distributions, as well as by different methods used to measure educational attainment 

(Supplementary Table 1).

We observed lower YOE among men (12.8 vs. 13.2 years, P-value=4.8×10−12) and older 

individuals (0.8 month less of education for each additional year of age, P-value < 1×10−15) 

(Supplementary Table 2).
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We developed a new software package called Hail to very efficiently perform quality 

control, annotation and analysis of large-scale sequencing data (Online Methods).

We identified URVs in HC genes using whole exome sequencing (WES) data (N. 

individuals=11,431) and protein coding regions in high-coverage whole genome sequencing 

(WGS) data (N. individuals=2,702). The primary reason to focus on URVs in HC genes is to 

maximize the expected deleteriousness of the variants included (due to purifying selection).

Within the set of URVs in HC genes we defined variants that were: (1) disruptive: putative 

loss-of-function variants including premature stop codons, essential splice site mutations and 

frameshift indels; (2) damaging: missense variants classified as damaging by seven different 

in silico prediction algorithms (Online Methods) and (3) negative control: synonymous 

variants not predicted to change the encoded protein. We observed one or more of such 

mutations in 25%, 24% and 78% of individuals, respectively (Supplementary Table 3). 

Principal components of genetic data showed that individuals within each study were of 

similar ancestry (Supplementary Fig. 1).

On average (Fig. 1), we observed a 3.1 months reduction in YOE for each disruptive 

mutation (95% CI: −4.3,-2.0; P-value=3.3×10−8), and similar effect for damaging mutations 

(2.9 months less YOE; 95% CI: −4.1,-1.7; P-value=1.3×10−6). Furthermore, each additional 

disruptive mutation on average reduced the chance of going to college by 14% (odds 

ratio=0.86; 95% CI: 0.78,0.95; P-value=0.0017). These results were consistent when using a 

mixed linear model approach to correct for population stratification in the Finnish and 

Estonian samples with WGS data (2.4 months less YOE; 95% CI: −4.3, −0.95; P-value= 

0.014, N=2,702).

The negative association between URVs and YOE remained consistent when we examined 

the control cohort and schizophrenia case cohort separately (Supplementary Fig. 2). 

Furthermore, the effect remained consistent when excluding individuals diagnosed with a 

neurodevelopmental disorder (i.e. schizophrenia, bipolar disorder, autism, mental retardation 

and Asperger's syndrome), as identified via linkage with the Swedish national inpatient 

registry (Supplementary Fig. 3). We did not observe any significant association when we 

restricted our analysis to synonymous variants in HC genes (P-value=0.62) or disruptive 

mutations in unconstrained genes (P-value=0.73).

We used gene-expression data to determine whether restricting to genes enriched for brain 

expression concentrated our URVs burden signal. Specifically, we used the Genotype-Tissue 

Expression consortium data 14 to identify the 20% top brain-expressed HC genes. The 

intersection between HC and brain-expressed genes (N. genes=683 and 313 for disruptive 

and damaging URVs, respectively) more than doubled the impact on YOE (6.5 less months 

of YOE per each additional disruptive variant; 95% CI: −9.6,-3.4; P-value=3.4×10−5; Fig. 
2). When using increasingly liberal thresholds for defining genes enriched for brain-

expression, we saw a consistent decrease in the association (Supplementary Fig. 4). The 

association was not significant when considering non brain-enriched HC genes or all brain-

enriched genes (P-value > 0.05). We further examined a subset of genes for which basal 

gene-expression was at least two fold higher in the brain compared to other tissues (brain-
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enriched HC genes; Supplementary Fig. 5). Although, the impact on YOE was higher for 

brain-enriched HC genes than non brain-enriched HC genes, the signal was specific to 

disruptive variants. Overall, this approach was less effective in identifying a HC gene subset 

impacting YOE.

To place disruptive and damaging URVs into context, we also examined the impact of 

previously reported genetic influences on YOE, including a polygenic score from common 

variants 5, runs of homozygosity 15 and a burden of rare pathogenic copy number variants 

(CNVs) 16. We sought to establish if these different forms of genetic variation act 

independently on YOE. For this purpose we defined four scores: (1) a polygenic score 

including all the independent single nucleotide polymorphisms (SNPs) with P-value for 

association with YOE < 1 (as this threshold has been shown to maximize variance explained 

in YOE) in a large GWAS consortia of YOE 5 (2) the summed length of all runs of 

homozygosity (3) burden of disruptive and damaging URVs in HC genes and (4) burden of 

self-curated list of pathogenic CNVs from the literature (Supplementary Table 4). The 

polygenic score was only calculated in the Swedish samples (N=10,644), since the other 

three studies were included in the original GWAS of YOE.

We first explored the association between each genetic score and YOE separately. The 

strongest change in YOE was observed among CNV carriers (−7.6 months less YOE; 95% 

CI: −13.7,-1.5; P-value= 0.015). However, these events were rare in the population (161 

carriers among 11,999 individuals with CNV measured).

We then fit the four normalized scores in the same regression model to assess the relative 

contribution of each genetic class to YOE. All four scores were independently associated 

with YOE (Fig. 3). The polygenic score showed the strongest association in standard 

deviations from the mean, explaining the largest proportion of the variability in YOE (2.9% 

vs 0.4% for the ultra-rare variants, 0.2% for runs of homozygosity and 0.1% for pathogenic 

CNVs).

We further evaluated whether the association between the polygenic score and YOE changes 

in individuals with and without disruptive or damaging URVs or CNVs. We found that the 

polygenic score was more strongly associated with YOE in individuals without disruptive or 

damaging URVs or CNVs (8.2 vs. 6.2 more months of YOE for 1 standard deviation 

increase in the polygenic score; P-value for interaction=0.007, Supplementary Fig. 6).

We sought to identify individual genes driving the observed association between disruptive 

and damaging URVs and YOE. Using a gene-based burden test implemented in SKAT 17, 

and using an exome-wide significance threshold of 1×10−6, we didn't identify any 

statistically significantly associated gene (Supplementary Fig 7, upper panels). Similar 

results were observed when we included all variants with minor allele frequency < 0.05%, 

rather than only URVs (Supplementary Fig 7, lower panels).

In this study we focused on YOE, a phenotype that is relatively easy to collect in large 

samples and which has a strong genetic correlation with intelligence and cognitive 

function 6,18. We integrated WGS, WES and array data on more than 14,000 individuals and 

described the impact of URVs disrupting HC genes on YOE. This class of variants have 
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been previously associated with autism3 and schizophrenia4, but the impact on YOE in the 

general population has not been described before. Here, for the first time, we show that 

disruptive and damaging URVs in HC genes are likely to affect factors underlying education 

attainment among individuals not diagnosed with psychiatric or neurodevelopmental 

disorders. Exploring the extent to which this association is mediated by cognitive-related 

determinants of YOE, or by other non-cognitive factors will require studies integrating 

detailed cognitive, psychological and personality measurements. Similar to the analyses of 

schizophrenia10 and autism, the majority of the signal lies in genes highly expressed in 

brain. This observation does not exclude the existence of causal mutations outside this gene 

class, but suggests that strong acting mutations are heavily concentrated within these genes.

Furthermore, we show that disruptive and damaging URVs in HC genes, common variants 

associated with YOE, runs of homozygosity, and pathogenic CNVs, all act on cognitive 

function or personality traits ultimately reflected in the educational attainment of our study 

participants. This effect was not simply additive. We identified a modest, but significant 

interaction between the polygenic score and the presence of URVs or CNVs. Whether this 

observation is driven by the interplay of partially overlapping pathways between common 

and rare variants or by genotype-phenotype heterogeneity (e.g. common and rare variants 

impacting different subsets of individuals) will be a matter of future investigation.

We report that, on average, an additional disruptive URVs in HC genes results in a 3.1 

months reduction in YOE. This effect is likely to be a mixture of variants with larger effect 

and variants that are not associated with YOE. The polygenic score based on common 

variants effect sizes estimated from a much larger cohort of 405,072 individuals explained a 

larger fraction of the YOE. This is not surprising, given that common variants are expected 

to have the largest contribution to heritable variation in most complex traits 19.

The prioritization approaches used to select variants contributing to the score from common 

variants and the score from rare variants are different. The former uses estimates of the 

association with YOE and the proportion of variance explained by the score is likely to 

improve once the sample size used to originate these estimates increases. The latter uses in-
silico prediction of the variants’ functional effect coupled with population genetics 

expectations built on the mutation rate. As with the common variant score, we expect that 

the score based on URVs in selected gene sets will continue to improve in predictive validity 

of YOE as a more precise characterization of which genes and genomic regions are 

associated with YOE emerges.

Our study could not detect disruptive or damaging mutations in a given gene as being 

unequivocally associated with YOE; however, as sample sizes increase, specific genes will 

emerge. Nevertheless, our proof-of-concept work shows that a wide range of genetic 

variation from URVs and CNVs to common variants influence determinants of YOE in the 

population.
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ONLINE METHODS

Studies description and selection

In this study we used epidemiological studies with YOE and exome or whole-genome 

sequencing information available, no formal power calculation was done.

Ethical committees in Sweden, Estonia and Finland approved all procedures and all subjects 

provided written informed consent (or legal guardian consent and subject assent).

Sweden-WES—A total of 12,384 blood-derived DNA samples from Swedish research 

participants were collected from 2005 to 2013. Psychiatric cases with a diagnosis of 

schizophrenia were ascertained from the Swedish National Hospital Discharge Register. The 

register is complete from 1987 and augmented by psychiatric data from 1973-86. It contains 

dates and ICD discharge diagnoses (World Health Organization, 1992) for each 

hospitalization, and captures the clinical diagnosis made by the attending physician. Case 

inclusion criteria: ≥2 hospitalizations with a discharge diagnosis of schizophrenia, both 

parents born in Scandinavia, and age ≥18 years. Case exclusion criteria: hospital register 

diagnosis of any medical or psychiatric disorder mitigating a confident diagnosis of 

schizophrenia as determined by expert review, and included removal of 3.4% of eligible 

cases due to the primacy of another psychiatric disorder (0.9%) or a general medical 

condition (0.3%) or uncertainties in the Hospital Discharge Register (e.g., contiguous 

admissions with brief total duration, 2.2%). The validity of this case definition of 

schizophrenia is strongly supported as described in 20. Controls were selected at random 

from Swedish population registers. Control inclusion criteria: never hospitalized for 

schizophrenia or bipolar disorder (given evidence of genetic overlap with schizophrenia), 

both parents born in Scandinavia, and age ≥18 years.

Estonia-WGS—Estonian-WGS samples are the subset of the Estonian Biobank of the 

Estonian Genome Center at the University of Tartu 21. It is a population-based biobank, 

containing almost 52,000 samples of the adult population (aged ≥18 years), which closely 

reflects the age, sex and geographical distribution of the Estonian population. All subjects 

have been recruited randomly by general practitioners or physicians in hospitals throughout 

the country. The participants donated blood samples for DNA, white blood cells and plasma 

tests and filled the Computer Assisted Personal Interview (CAPI).

In total, 2,300 geographically diverse samples have whole genome sequencing data, selected 

randomly by county of birth.

Finnish-WES and Finnish-WGS—All of the Finnish individuals are part of the 

FINRISK cohort, a national survey on risk factors of chronic and non-communicable 

diseases in Finland 22. The survey has been conducted every five years since 1972 in 

randomly selected, representative population samples from different parts of Finland. All of 

the samples are from FINRISK 1992, 1997, 2002 and 2007 surveys.

Finnish-WES mainly includes individuals that are part of an IBD case-control study, where 

controls were selected to have a high IBD polygenic risk score 23.
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Finnish-WGS includes schizophrenia cases and controls selected using nationwide hospital 

discharge registry and/or nationwide medicine reimbursement registry where all psychosis 

cases or psychosis medication purchases are systematically recorded. Controls were selected 

to have high polygenic risk score for schizophrenia 24.

Phenotype definition

We matched the original educational categories with the International Standard 

Classification of Education (ISCED), as described in Supplementary Table 1. Thereafter 

we used the equivalent of United States years of schooling to obtain the YOE. Going to 

college was defined as having an ISCED category > 4.

To remove potential bias introduced by uncompleted education, we excluded all the 

individuals younger than 30 years at the time of sample collection. For the Estonian and 

Finnish samples, we used self-report data; whereas for the Swedish sample, we obtained 

YOE from the national registries. YOE was approximately normally distributed.

Sequencing procedures

Estonian WGS and Finnish WGS samples have been sequenced at Broad Institute on 

Illumina HiSeq X Ten machines run to 20x and 30x mean coverage (150bp paired reads), 

respectively. Estonian samples followed a PCR-free sample preparation. Swedish-WES and 

Finnish-WES samples were sequenced using either the Agilent SureSelect Human All Exon 

Kit or the Agilent SureSelect Human All Exon v.2 Kit. Sequencing was performed at Broad 

institute on Illumina GAII, Illumina HiSeq2000 or Illumina HiSeq X Ten. Mean target 

coverage was 90x.

All samples have been aligned against the GRCh37 human genome reference and BAM 

processing was carried out using BWA Picard. Genotype calling was done using GATK 

Haplotype Caller and was performed at Broad Institute for all studies.

Hail software

To overcome the growing computational challenge of learning from large genomic datasets, 

we utilized Hail, an open-source software framework for scalably and flexibly analyzing 

such data (https://github.com/broadinstitute/hail). Hail, under active development, includes 

support for data import/export, quality control, analysis of population structure, and methods 

for performing both common and rare variant association. Hail is written in Scala (a Java 

virtual machine language) and builds on open-source software for scalable distributed 

computing including Hadoop (http://hadoop.apache.org/) and Spark (http://

spark.apache.org/). Hail achieves near-perfect scalability for many tasks and can run on 

thousands of nodes. Hail automates fault-tolerant distribution of data and compute, greatly 

simplifying distributed pipeline execution compared to traditional HPC job schedulers like 

LSF and Grid Engine. Pipelines written in Hail's high-level language typical require orders-

of-magnitude fewer lines of code than comparable pipelines written in general purpose 

languages.
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Samples and variants QC

Quality control was performed independently for each study using Hail. We excluded 

individuals with high proportion of chimeric reads (>5%), high contamination (>5%) or an 

excessive number of singletons variants not observed in ExAC (> 100 for WES and > 20,000 

for WGS). We included only unrelated individuals (IBD proportion < 0.2) and those for 

whom the sex predicted from genetic data matched the self-reported gender. We kept only 

‘PASS’ variants, as determined by The Genome Analysis Toolkit 25 Variant Quality Score 

Recalibration (VQSR) filter, are set to missing variants with GQ < 20 and allele balance > 

0.8 or < 0.2. We further excluded variants with call rate < 0.8. In WGS data, we excluded 

low complexity regions as defined by Li 26. In the burden test analysis we excluded variants 

with both Hardy-Weinberg equilibrium test P-value < 1×10−6 and negative inbreeding 

coefficient (expected heterozygosity less than observed heterozygosity).

Annotation and URVs scores definition

Annotation was performed using SnpEff 4.2 (build 2015-12-05) 27 using Ensemble gene 

models from database GRCh37.75. We further annotated variants with SnpSift 4.2 (build 

2015-12-05) 28 using annotations from database dbNSFP 2.9 29. In Supplementary Table 3 
we have provided a detailed description of the criteria used for selecting variants in each 

score. The set of HC genes was defined separately for disruptive and damaging variants. For 

disruptive and synonymous mutations we defined HC genes those having a probability of 

being loss_of_function intolerant (pLI) > 0.9 (N genes=3,488). For missense damaging 

mutation we used a missense z-score > 3.09 (N genes=1,614) 30. Both measures have been 

previously described 30 and available online at ftp://ftp.broadinstitute.org/pub/

ExAC_release/release0.3/functional_gene_constraint. We used a version derived from The 

Exome Aggregation Consortium without cases of psychiatric disorders.

Principal component analysis and mixed models

We used a subset of high confidence SNPs to calculate principal components. We selected 

variants with minor allele frequency larger than 5%, call rate > 90%, Hardy-Weinberg 

equilibrium test P-value > 1×10−6 and we pruned for variants in linkage disequilibrium 

using plink with command line ‘--indep 50 5 2’.

We used a similar approach to filter variants used to generate the genetic relationship matrix 

(GRM). We then fit a liner mixed model including the GRM as random effect and age, sex, 

year of birth, (year of birth – 1950)2, (year of birth – 1950)3, the number of singletons 

synonymous variants not in ExAC and the number of URVs in HC genes as fixed effects.

Association between URVs and educational attainment

We fit a linear regression model where the dependent variable was YOE and the independent 

predictors were: age, sex, year of birth, (year of birth – 1950)2, (year of birth – 1950)3, the 

10 first principal components, the number of singletons synonymous variants not in ExAC, 

schizophrenia status (only in studies including schizophrenic patients) and the URV score 

(count of disruptive, damaging or synonymous URVs). We adjust for the number of all ultra-

rare synonymous variants to correct for potential technical artifacts. We observed similar 
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results when adjusting for number of ultra-rare synonymous variants + number of ultra-rare 

disruptive (or damaging) variants in HC genes.

Brain-expressed and brain-enriched HC genes analysis

Using the Genotype-Tissue Expression consortia (GTEx) data 14, we ranked gene-

expression levels (in RPKM) in brain tissues and defined the top 20% HC genes as “brain-

expressed” (N. genes=683 and 313 for disruptive and damaging, respectively). Conversely, 

we defined “non brain expressed” the bottom 20% of the HC genes (N. genes=683 and 313 

for disruptive and damaging, respectively).

We also compute estimated fold-change in the brain as follows. Suppose samples 1, 2, ..., Nb 

are brain samples and samples (Nb+1), (Nb+2), ... , N are the samples from other tissues. 

Denote with xij the expression of gene j and sample i, in reads per kilobase of transcript per 

million (RPKM). We compute fold-change (FC):

We label the genes j, such that FCj > 2 as “brain-enriched genes” and FCj < 0.5 as “non-

brain-enriched genes”. The number of brain-enriched HC genes was 447 and 287 for 

disruptive and damaging mutations, respectively. The number of non brain-enriched HC 

genes was 2,225 and 935 for disruptive and damaging mutations, respectively.

Polygenic score, CNVs and runs homozygosity

The polygenic score for YOE was obtained from array data in the Swedish WES study 

(quality control for the array data have been previously described 20) and directly from WGS 

data in the Finnish-WGS and Estonian-WGS studies. We included all the independent 

markers with P-value < 1 in largest GWAS of educational attainment 5 and obtained the 

polygenic score as weighted sum of risk alleles using the --score command in Plink 31.

CNVs for the Swedish WES study were called as part of a separate project 32 using a 

composite pipeline comprising the CNV callers PennCNV, iPattern, Birdsuite and C-Score 

organized into component pipelines. We considered only rare CNVs by filtering out all 

CNVs that present at ≥ 1% allele frequency. CNVs < 20kb or having fewer than 10 probes 

were also excluded. We used the plink --cnv-intersect function with a value of 0.5 to 

determine the overlap between detected CNVs and the list of pathogenic CNVs reported in 

Supplementary Table 4.

CNVs in Finnish WGS and Estonian WGS were genotyped according to the methods 

described in 33 and implemented in Genome STRiP 2.0. Briefly, read depth information was 

collected from WGS data, excluding regions of the genome that are not uniquely alignable 

or have low sequence complexity, and adjusted for GC content bias. Each CNV reported in 

Supplementary Table 4 was directly genotyped using Genome STRiP's genotyping 
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module, which examines the read depth across all samples and fits a constrained Gaussian 

mixture model with components representing each possible diploid copy number and 

sample-specific variance terms to account for differences in sequencing depth.

The summed runs of homozygosity were determined using the same pipeline described in 15. 

Specifically we used plink with command line ‘--homozyg --homozyg-window-snp 35 --

homozyg-snp 35 --homozyg-kb 1500 --homozyg-gap 1000 --homozyg-density 250 --

homozyg-window-missing 5 --homozyg-window-het 1’.

Gene-based burden test

We first extracted from each dataset variants falling within UCSC known genes and merged 

the four datasets using plink. If a variant was not present in all cohorts, we forced it as 

homozygous reference across the remaining cohorts (using “--fill-missing-a2” option in 

plink). We then computed principal components for the combined dataset after further 

merging with 1000 Genomes project samples as described in (Genovese et al, jointly 
submitted). To test the hypotheses that disruptive URVs in individual genes were associated 

with YOE and college status, we performed a burden test 34 using the SKAT software 35 

using default parameters (method=davies, impute.method=bestguess, r.corr=1.0), adjusting 

for age, sex, year of birth, (year of birth – 1950)2, (year of birth – 1950)3, the first 10 

principal components, schizophrenia status and number of URVs identified in coding 

regions. We used a python wrapper to run the SKAT software (available at https://

github.com/freeseek/gwaspipeline).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Association between number of disruptive, damaging, and synonymous URVs in HC genes 

and YOE. Disruptive and damaging, but not synonymous URVs are significantly associated 

with reduced YOE. The size of the squares is proportional to the size of the study. The 

horizontal bars represent 95% confidence intervals. All the estimates are obtained from a 

linear regression model. Meta-analysis results are obtained using a fixed-effect approach.
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Figure 2. 
Association between numbers of disruptive, damaging and synonymous URVs for different 

gene sets. The intersection between HC and brain-expressed genes yield the strongest 

reduction in YOE. We only report the meta-analysis results (N=14,133). The horizontal bars 

represent 95% confidence intervals. All the estimates are obtained from a linear regression 

model and combined using fixed-effect meta-analysis.
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Figure 3. 
Association between each of the normalized scores (polygenic, runs of homozygosity, URVs 

and pathogenic CNVs) and YOE. The results presented are from meta-analysis of Swedish 

WES, Estonian WGS and Finnish WGS studies (N=13,353), except for the polygenic score, 

which is calculated only in the Swedish WES study (N=10,651). Notice that we plot 1-

polygenic score to obtain a negative association with YOE. The horizontal bars represent 

95% confidence intervals. All the estimates are obtained from a linear regression model and 

combined using fixed-effect meta-analysis.
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