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Abstract

Background: Microorganisms adapt their transcriptome by integrating multiple chemical and physical signals
from their environment. Shake-flask cultivation does not allow precise manipulation of individual culture
parameters and therefore precludes a quantitative analysis of the (combinatorial) influence of these parameters
on transcriptional regulation. Steady-state chemostat cultures, which do enable accurate control, measurement
and manipulation of individual cultivation parameters (e.g. specific growth rate, temperature, identity of the
growth-limiting nutrient) appear to provide a promising experimental platform for such a combinatorial analysis.

Results: A microarray compendium of 170 steady-state chemostat cultures of the yeast Saccharomyces cerevisiae
is presented and analyzed. The 170 microarrays encompass 55 unique conditions, which can be characterized by
the combined settings of |10 different cultivation parameters. By applying a regression model to assess the impact
of (combinations of) cultivation parameters on the transcriptome, most S. cerevisiae genes were shown to be
influenced by multiple cultivation parameters, and in many cases by combinatorial effects of cultivation
parameters. The inclusion of these combinatorial effects in the regression model led to higher explained variance
of the gene expression patterns and resulted in higher function enrichment in subsequent analysis. We further
demonstrate the usefulness of the compendium and regression analysis for interpretation of shake-flask-based
transcriptome studies and for guiding functional analysis of (uncharacterized) genes and pathways.

Conclusion: Modeling the combinatorial effects of environmental parameters on the transcriptome is crucial for
understanding transcriptional regulation. Chemostat cultivation offers a powerful tool for such an approach.
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Background

The transcriptional program of a cell is to a large extent
determined by its extracellular environment. Signaling
pathways, transcription factors (TFs) and chromatin
remodeling mediate the transcriptional response that ena-
bles the organism to adapt to changed conditions. In
order to understand the transcriptional response to
changes in the extracellular environment, a large majority
of the transcriptome analysis studies are based on the
comparison of a single "reference" condition against a dif-
ferent condition. Genes that show a different transcript
level between the two situations are often labeled "upreg-
ulated" or "downregulated" in the non-reference situa-
tion. This binary mode of analysis does not take into
account the fact that many genes are influenced by multi-
ple environmental stimuli and regulated by multiple TFs.
The rate of transcription of a gene is, in general, the net
result of the integration of multiple inputs. Consequently,
transcriptional responses to individual environmental
stimuli may be strongly dependent on the experimental
context in which they are studied.

While the context dependency of transcriptional
responses has been acknowledged as an important factor
by several authors (e.g. [1,2]), it is only rarely considered
in experimental design and in data interpretation. Three
main reasons can be identified for this omission. First,
most transcriptome studies on micro-organisms are based
on shake-flask cultivation, in which key physiological
parameters such as the specific growth rate and nutrient
availability change continuously and cannot be ade-
quately controlled. This makes it impossible to quantify
the context dependency of transcriptional responses. Sec-
ondly, research questions are often approached from a
one-dimensional perspective, in which differential gene
expression is completely attributed to the difference
between a condition of interest and a reference condition.
This strategy is implicitly incorporated into the two-chan-
nel microarray experimental design, where the ratio of
intensities from the channels represents the gene expres-
sion ratio between the condition of interest and the refer-
ence condition. A final factor that complicates meaningful
combinatorial analyses of transcriptional regulation is
that integration of data from different studies and labora-
tories may be hampered by differences in experimental
procedures for microarray experiments (including the use
of different microarray platforms, mRNA extraction, nor-
malization and summarization algorithms [3,4]).

The "one-dimensional" design of transcriptome studies,
as outlined above, ignores combinatorial effects of growth
parameters, i.e., the possibility that repetition of the meas-
urements in, for example, a different medium composi-
tion or temperature, might yield a different transcriptional
response to the same change in the parameter of interest.
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Recently, a relatively small number of studies have quan-
titatively explored the context dependency of transcrip-
tional regulation in chemostat cultures of the yeast
Saccharomyces cerevisiae [5-8]. In steady-state chemostat
cultures, individual environmental parameters can be
manipulated in a controlled manner and at a fixed specific
growth rate [9,10]. This forms an important advantage
over the use of shake flasks and other batch cultivation
procedures, in which changes in environmental parame-
ters affect specific growth rate, thus precluding the dissec-
tion of primary responses to environmental parameters
and indirect effects of a different specific growth rate.
Recent chemostat-based studies have demonstrated that,
indeed, specific growth rate itself has a strong effect on
transcriptional regulation in S. cerevisiae [8,11,12]. Addi-
tionally, chemostat experiments on combinatorial effects
of macronutrient limitation, oxygen availability and tem-
perature provided compelling evidence for the impact of
context dependency [5,6,13].

The goal of the present study is to quantify the influence
of cultivation parameters on gene expression and specifi-
cally focus on the influence of combinatorial (or context-
specific) effects of the cultivation parameters. To this end,
we have compiled a microarray compendium of well-
defined chemostat cultivations of yeast and employed a
computational framework to analyze the effect of the cul-
tivation parameters on gene expression. The compendium
of chemostat-based transcriptome datasets is comprised
of 170 microarray measurements, which have been per-
formed over the past years in the Kluyver Centre's yeast
research programme. These measurements, the majority
(111 out of 170) of which have been previously published
separately, encompass 55 unique growth conditions with
(mostly three) independent biological replicates for each
condition. Across the 55 different conditions, there are ten
varying cultivation parameters, such as growth-limiting
substrate, specific growth rate, aeration, pH and tempera-
ture. A forward step-wise regression model was designed
and applied to quantify the (combinatorial) effect of indi-
vidual environmental parameters on transcriptional regu-
lation. This strategy is based on the assumption that the
observed difference in the transcript level of a gene
between two microarrays can be fully attributed to the dif-
ference in environmental parameters (and measurement
noise) between these arrays. The results show that mainly
due to the accurate control and measurement of the
growth parameters enabled by steady-state chemostat cul-
tivation, this assumption holds to a large degree. By
employing these results from the regression analysis, we
explore the significance of context dependency through-
out the compendium. Its applicability for functional anal-
ysis of (uncharacterized) genes and pathways is
demonstrated using the inferred causal relationship
between environmental parameters and gene expression.
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Results and discussion

This section starts by describing the steady-state chemo-
stat microarray compendium and the regression analysis
to assess the influence of cultivation parameters on gene
expression. Then, the combinatorial effects of cultivation
parameters on the transcriptome are investigated using
enrichment tests and through biological interpretation of
these effects on genes of functional categories and bio-
chemical pathways. To demonstrate the usefulness of the
compendium, this section concludes by presenting two
case studies concerned with, firstly, the functional analysis
of uncharacterized and dubious genes, and secondly, the
interpretation of shake-flask-based transcriptome studies
using the compendium.

Inferring the influence of cultivation parameters on gene
expression

The Saccharomyces cerevisiae laboratory reference strain
CEN.PK 113-7D (MATa) was grown at steady state in che-
mostat cultures under 55 different conditions. A condi-
tion can be characterized by a specific configuration of the
settings of ten different cultivation parameters. One of
these cultivation parameters is the available carbon
source. Throughout the compendium five different car-
bon sources were used, i.e. acetate, ethanol, galactose, glu-
cose and maltose. Thus, these five compounds form the
settings that the cultivation parameter carbon source can
assume. Table 1 provides an overview of the settings for all
cultivation parameters. Figure 1 depicts the expression

Table I: Settings within the cultivation parameters
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levels of the gene UPC2 across all 55 conditions. The
lower part of this figure is a schematic representation of
the settings of the ten cultivation parameters over all con-
ditions. Note that the expression levels are absolute
expression levels that come from a single-channel micro-
array system and not relative expression levels, where a
reference condition is employed. A regression model was
designed to assess the influence of the cultivation param-
eters on gene expression. The model was applied to all dif-
ferentially expressed genes individually. (A large majority
(6005 of 6383) of the genes in the S. cerevisiae genome
was found to be differentially expressed in at least one of
the 55 conditions.) Using a step-wise approach, the
regression model iteratively selects significant predictors
in order to reconstruct the expression pattern of a gene.

Here, the cultivation parameters form the predictors. We
incorporated single effects and two types of combinatorial
effects. See Figure 2 for a schematic example of genes that
are influenced by these effects. A single effect is consti-
tuted by one setting of one cultivation parameter. For
example, limiting element carbon is a predictor. (This will
be a significant predictor for genes, which show differen-
tial expression between carbon-limited growth and
growth that is limited by the residual quantity of other
substrates.) In Figure 2 gene g1 responds solely to a single
effect. The first type of combinatorial effect is constituted
by applying the logic AND function between two settings
of two different cultivation parameters. For example, lim-

Aeration type C-source N-source S-source Limiting element
Aerobic Acetate (Ace) Ammonium chloride (A.cl.) Methionine (Met) Carbon
Anaerobic Ethanol (Eth) Ammonium sulfate (A.s.) Sulfate Iron (Iro)
Galactose (Gal) Asparagine (Asp) Nitrogen
Glucose Leucine (Leu) Phosphorus (Pho/Phos)
Maltose (Mal) Methionine (Met/Meth) Sulfur (Sul/Sulf)
Phenylalanine (Phen) Zinc (Zin)
Proline (Pro)
Growth rate Temperature (C) pH Extra compound Protocol
0.03 12 35 Acetate (Ace) B
0.05 30 5 Benzoate (Benz) A
0.1 6.5 co,
0.2 Ethanol 18.72 mM (Eth)

Ethanol 9.38 mM (Eth)
Formate (For)
Propionate (Pro)
Sorbate (Sor)
Tween 80 (Twe)
none

This table presents the different settings within each of the ten cultivation parameters. Each of the 55 conditions in the chemostat compendium is
characterized by a combination of settings of the ten cultivation parameters. The colored matrix in Figure | is a schematic representation of the
settings of the cultivation parameters for each condition. Abbreviations of cultivation parameter settings used in the schematic representation are

stated between parentheses in this table.
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Expression levels of UPC2 across the 55 cultivation conditions. The colored matrix is a schematic representation of
the settings of the ten cultivation parameters over the 55 conditions. The colored lanes indicate the cultivation parameters that
are employed to order the experiments, in this case, aeration type and limiting element. The applied regression model was able
to explain 71% of the variance in the expression of this gene. The model selected one significant single effect, i.e. aeration type,
and two significant combinatorial effects, i.e. aeration type anaerobic together with limiting element zinc and the usage of pro-
line or asparagine as nitrogen source. The reconstructed expression pattern based on these three effects is indicated by the

shaded area.

iting element carbon AND aerobic growth (in short: aero-
bic carbon-limited growth) form such a combinatorial
effect. Of course, the cell's transcriptome and metabolome
are known to respond in a combinatorial fashion to par-
ticular environmental conditions or parameters. That is,
the simultaneous presence of certain environmental fac-
tors results in a transcriptional and metabolic state that is
not a simple aggregation of the states reached based on
the single presence of one of these factors. For example,
when glucose is present, it is utilized in different ways by
S. cerevisiae, depending on the presence of oxygen. Includ-
ing these AND effects enables the systematic investigation
of the influence of combinations of cultivation parame-
ters on gene expression. Gene g2 in Figure 2 responds to
an AND effect. The second type of combinatorial effect is
constituted by applying the logic OR function on two dif-
ferent settings within the same cultivation parameter.
Here, carbon-limited OR iron-limited growth forms an
example.

This effect is included, because we expect that closely
related settings within a cultivation parameter, e.g. similar
carbon sources, will have a similar effect on gene expres-
sion. Gene g3 in Figure 2 responds to an OR effect. In the
case of UPC2 (Figure 1), the regression model successively
selected the single effect aeration type, the AND combina-
torial effect anaerobic zinc-limited growth and the OR
combinatorial effect nitrogen source proline or asparag-
ine. (Note that cultivation parameter aeration type can
assume only two settings, i.e. aerobic growth and anaero-
bic growth. Since these two predictors are mutually redun-
dant, only one of them (aerobic growth) is included as a
predictor in the regression model and labeled as aeration
type. A positive regression coefficient for aeration type
indicates that the gene is more highly expressed under aer-
obic conditions; a negative coefficient indicates the
reverse scenario.) The regression model keeps on adding
cultivation parameters as predictors, until no further sig-
nificant improvement can be made. For example, for g4 in
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Figure 2

Schematic representation of the normalized expression patterns of genes affected by a single effect, combina-
torial effect or a mixture of these. In this example there are two cultivation parameters, A and B, which can assume two
and five different values, respectively. Genes gl, g2 and g3 are affected by a single effect, AND effect and OR effect, respec-
tively. The expression of genes g4 and g5 is constituted by the influence of both a single effect and a combinatorial effect.

Figure 2 the single effect A+ is selected first, followed by  sion patterns across the 55 conditions. See Figure 3a. The
the combinatorial effect A*&Bi. See Methods section for =~ amount of explained variance does not depend that much

details. on the average expression level of a gene, although there
is a steady increase in explained variance with increasing
The expression of many genes responds to combinatorial average expression level. Much more important is the
effects degree to which a gene is differentially expressed. The F-
For most genes the regression model was able to explain  statistic, i.e. the ratio between the variance of the average
60 to 80% of the variance, which is present in their expres-  expression levels across the 55 conditions and the average
a b ¢
2500
AL [7142.7)6.742.5|6.842.1| 7£1.9 |7.3+1.9]7.5+1.8|7.61 341 3+1.8] 8£1.7 - single effects Aeration type
] Bl AND effects
FS  p.8:0.86.9£0.994.5512|5341.5[6.741.9[8.6:22| 1243.1 | 18452 | 34214 | 99281 B OR cffects C-source B single effects
} 2000 all effects B AND effects
NCP  paasodiaz0.5{ 200,68 p.6z0.8d3321.1 3901 3[a.621.6] 5722 [252.5]0 230 N-source B OR offects
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5000
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Figure 3

General statistics of the applied regression model. a: Histogram plot indicating how much variance within the gene
expression patterns could be explained by the regression model for all (differentially expressed) genes. The black bars indicate
the percentage of explained variance when excluding the variance present in the replicates, and which, therefore, cannot be
explained by the regression model. Above the histogram are the mean and variance of the average expression level (AE), the F-
statistic (FS) and the number of selected cultivation parameters (NCP) for the groups of genes with explained variance (includ-
ing replicate variance) as stated on the x-axis of the histogram. b: Histogram plot indicating the number of single and combina-
torial effects as well as the total number of effects that were selected to explain the observed gene expression patterns. c:
Histogram plot indicating the number of genes influenced by particular cultivation parameters, either as a single effect, AND
effect, OR effect or independent of the effect type (‘all effects'). The 'all effects' bar is not the sum of the other three, because
genes can be affected by a cultivation parameter both as a single effect and as a combinatorial effect.
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replicate variance across these conditions, is strongly cor-
related with the degree to which the gene's expression pat-
tern can be reconstructed. The expression levels of genes
with small F-statistics are obscured by measurement noise
and do not differ significantly between the growth condi-
tions. Also not surprisingly, when more significant culti-
vation parameters are selected by the regression model,
more of the variance of the gene can be explained. Figure
3b, ¢ outlines which and how many cultivation parame-
ters were selected to reconstruct the expression patterns of
all genes. On average, a gene is influenced by 1.25 (&
1.18) single effects, 1.73 (+ 1.43) AND effects and 1.01 (+
1.04) OR effects. The limiting element, aeration type and
protocol (which is dealt with in more detail below) are
the most prominent factors that influence gene expression
behavior. Here it should be noted that the setup of the cul-
tivation parameters in the compendium is not fully com-
binatorial, i.e. not all possible combinations of
cultivation parameters are present in the dataset. For
example, across the 55 conditions, 53 have been culti-
vated under pH 5, while only a single condition was per-
formed with a lower pH (3.5) and similarly for a higher
pH (6.5), thereby precluding combinatorial effects
between the higher or lower pH and other environmental
parameters. Thus, the numbers of genes, which are influ-

5000
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I
B

4000

3500

3000

2500

2000

1500

1000

500

# times a method improves over the other

EV>0 EV>20 EV>40 EV>60 EV >80
Explained variance (EV) threshold (%)

Figure 4
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enced by a particular cultivation parameter (as visualized
in Figure 3c), are biased by the number of different set-
tings of the cultivation parameters and the number of
combinations of cultivation parameters present in the
compendium. Anyhow, the results indicate that the
expression of many genes is influenced, not only inde-
pendently by particular cultivation parameters, but also in
a combinatorial fashion, i.e. there are many combinato-
rial effects between cultivation parameters that affect gene
expression behavior.

The regression analysis was repeated using only the single
effects as predictors. For most genes this resulted in a
lower percentage of explained variance. See Figure 4a. Of
course, this result could be expected based on the fact that
many combinatorial effects were selected as significant
predictors in the original regression model. Subsequent
enrichment analysis provided additional evidence for
combinatorial regulation. Genes, of which their expres-
sion levels are manipulated by a particular single effect or
combinatorial effect, were grouped and checked for func-
tional overrepresentation. Additional File 1 provides an
overview of all enrichment analysis results. It reveals the
many cases (> 1000) in which a particular combination of
environmental parameters leads to the up- or downregu-

b

450
—
o
£ 400 B R
o B R
= 350
=
(&)
>
S 300
7]
2
° 250
£
= 200
<
2
= 150
=
<100
w2
o
-
T

0

P<10° P<10’ P<10"” P<10"
P-value threshold (%)

P<10°

Comparison between the regression analysis including including both the single and the combinatorial effects
(Rs¢) and the regression analysis including only the single effects (Rs). a: Histogram plot indicating how many times
one method (Rsc or Rs) leads to a higher percentage of explained variance (EV) of a gene given that the EV of this gene is larger
than the EV threshold (x-axis) for at least one of both methods. b: Histogram plot indicating how many times one method (Rsc
or Rs) leads to a higher enrichment value (lower p-value) for a functional category given that the enrichment of this category is
below a p-value threshold (x-axis) for at least one of both methods.
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lation of a group of functionally related genes. Also, func-
tional enrichment was compared between the regression
analysis including both single and combinatorial effects
and the analysis including only single effects. Genes were
clustered based on their reconstructed expression patterns
that were obtained for both regression models and these
clusters were evaluated for enrichment in functional
annotation categories. Figure 4b shows that the inclusion
of the combinatorial effects leads to increased functional
enrichment, and thus further substantiates the existence
of the combinatorial influence of the presence of environ-
mental factors and the importance of modeling them.
Additional File 2 describes the complete comparison
between the regression models including and excluding
the combinatorial effects.

The sample preparation protocol has a large impact on
the measured gene expression levels

As indicated in Table 1 and Figure 1 the tenth cultivation
parameter is termed "Protocol". Unlike the nine other
parameters, "Protocol” is not directly related to the culti-
vation conditions under which yeast is grown, but refers
to the protocol to process RNA samples. Several years ago,
an improved sample preparation kit was introduced [14].
This kit obviated the need for the expensive and time-con-
suming poly-A mRNA purification step included in the
original procedure. The decision to omit the purification
step, which was also made in other yeast research groups,
was supported by information indicating that samples
prepared with or without this step were similar [15]. Thus,
two different protocols were used to generate the chemo-
stat compendium's samples for microarray hybridization:
Protocol A and Protocol B. The main difference between
these protocols is that Protocol A includes the polyA-
mRNA isolation step (with cDNA synthesis being per-
formed on purified mRNA), while Protocol B excludes the
purification step (with cDNA synthesis being performed
on total RNA). (The Methods section and Additional File
3 provide the complete details on both protocols.)

As apparent from Figure 3¢, the measured transcript levels
of many genes appeared to be influenced by the protocol.
Enrichment analysis revealed a significant overrepresenta-
tion of characterized genes amongst the genes that have
higher apparent transcript levels under protocol B; all
three GO root-categories (biological process, cellular
component and molecular function) were highly
enriched. On the other hand, significantly many unchar-
acterized genes yielded higher apparent transcript levels
under protocol A. Further investigation revealed a trend
between transcript level and protocol influence: Genes
with higher average expression level tended to yield a
higher transcript level in protocol B and genes with a
lower average transcript level tended to yield lower tran-
script levels under protocol B (Figure 5). In general,

http://www.biomedcentral.com/1471-2164/10/53

uncharacterized genes have a lower expression than char-
acterized genes, which explains the results from the
enrichment analysis. Further evidence for this hypothesis
is found when analyzing the genes that encode ribosomal
proteins (RP genes), whose mRNA's are highly abundant.
Again, significantly many RP genes exhibit higher expres-
sion when analyzed with protocol B (middle and bottom
plots in Figure 5).

The relationship between mRNA abundance (expression
level) and protocol is only weak and does not hold for
each gene individually. It may, for example, be influenced
by the average length of the polyA-tail of different tran-
scripts. Indeed, analysis of mitochondrial genes lacking a
poly-A tail demonstrated a large influence of the protocol.
Of the 52 transcripts on the microarray representing mito-
chondrial genes, 27 (amongst which 16 unique mito-
chondrial genes) were influenced by the protocol, i.e. the
regression model selected the protocol as a significant pre-
dictor of the expression pattern of these genes. All these 27
mitochondrial genes showed a higher (apparent) tran-
script level under protocol B. These results illustrate that
not only different microarray platforms, labs, and strains,
but also the hybridization preparation steps can affect the
outcome of microarray analyses. This strongly underlines
previous warnings on the challenges involved in compar-
ing microarray results from different experiments.

The chemostat compendium allows us to adequately
model the influence of the hybridization protocol on
expression. In particular, the compendium contains 18
growth conditions (9 sets of two), where the only differ-
ing cultivation parameter is the protocol setting: The
growth conditions were identical in these nine cases, only
the protocol was different. This provides extra statistical
power in the regression procedure and enables us to suc-
cessfully model the protocol effect. This allows us analyze
the influence of the environmental cultivation parameters
without interference of the protocol's confounding effect.

Functional categories are specifically associated with
combinations of environmental parameters

Many functional categories are specifically influenced by
a combinatorial effect. Many genes within such a category
are influenced by a combinatorial effect, whereas none or
only a few genes are affected by the single effects that con-
stitute this combinatorial effect. See Methods section for
these details. This analysis was performed on all MIPS cat-
egories. In total 153 significant combinatorial effect-MIPS
category pairs were identified. These are depicted in Addi-
tional File 4. Here, we focus on the biological interpreta-
tion of two such combinatorial effects: Carbon source
acetate OR ethanol, and, Limiting element phosphorus
OR Sulfur. See Table 2.
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Figure 5

The influence of the protocol on gene expression. All
genes that are affected by the modifications to the protocol,
either as a single effect or as an interaction effect, are ana-
lyzed. First, the mean expression levels of these genes across
all 55 conditions are computed. The genes are divived in
seven groups based on their mean expression levels such
that each group holds the same amount (i.e. 14,3%) of the
genes. Each group is characterized by a lower and a higher
bound on the expression value; these two numbers repre-
sent the range of the mean expression levels of the genes
within the group. Also, we dichotomize the genes into the
ones with positive regression weights (i.e. upregulation under
Protocol B with respect to Protocol A) and the ones with
negative regression weights. a: The blue bars indicate the
percentage of genes with positive regression weights (higher
under Protocol B) across these groups (or expression
ranges). Similarly, the red bars indicate these percentages for
the genes with negative coefficients (higher under Protocol
A). b, c: For the same ranges, each bar represents the per-
centage of genes in the range annotated to a particular func-
tional category over all of the genes that are annotated with
this category and affected by the protocol.

The first example is provided by the OR effect of carbon
sources ethanol and acetate on metabolism and energy
household. These C2-compounds share a drastically dif-
ferent impact on central metabolism when compared to
using the sugars glucose, maltose and galactose as carbon
source. During growth on sugars, all metabolic building

http://www.biomedcentral.com/1471-2164/10/53

blocks can be derived from glycolysis, the tricarboxylic
acid cycle and the pentose phosphate pathway, while dur-
ing growth on C2-compounds, gluconeogenesis and the
glyoxylate cycle are essential for the provision of some of
these precursors. Furthermore, the higher ATP require-
ment for biosynthesis during growth on the C2-com-
pounds implies that, at a fixed specific growth rate,
dissimilatory fluxes have to be higher with the C2-com-
pounds than with a sugar as the sole carbon source. This
is supported by the significant shared influence of the C2
carbon sources on the genes of gluconeogenesis and the
tricarboxylic acid pathway.

Besides this and other examples that can be easily
explained by current knowledge, there are also many
interactions that might represent as of yet unknown regu-
latory mechanisms. For example, we find that the limiting
elements sulfur and phosphorus have a similar effect (i.e.
OR effect) on transcription regulation genes. A close
inspection of the genes influenced by this OR effect
revealed the presence of five genes encoding subunits of
Mediator (MED3/PGD1 (complex tail), MED7 and
MED10/NUT2 (middle), MEDI11 and MEDI18/SRB5
(head)), an evolutionarily conserved coregulator of RNA
polymerase II [16] and nine genes encoding chromatin
remodeling enzymes (ARP7, GCN5, HST2, RIF1, RSC6,
RVB2, SFH1, SNF6 and SPT8). In eukaryotes, gene tran-
scriptional regulation depends on a complex interplay
between signal transduction, specific and general gene
regulators and complexes that modify chromatin and
RNA polymerase II. Under sulfur limitation S. cerevisiae
adapts its transcriptome in order to reduce the expression
of sulfur rich genes and proteins [17,18]. This response is
mediated by Met4 the main sulfur metabolism regulator.
The transcriptional changes upon phosphate limitation
are mainly related to high affinity phosphate transport,
phosphate assimilation and polyphosphate metabolism
[5,18]. Although S. cerevisiae requires the transcription of
different specific genes under sulfur or phosphate limita-
tions, it is tempting to speculate that the mechanisms that
govern the transcription control of these specific sets of
genes are shared and depend on shared mechanisms
involving specific subunits of the Mediator complex. Such
high degree of specificity was demonstrated with the
implication of Med2 (a Mediator tail subunit) in the reg-
ulation of the low iron response regulon [16].

Combinatorial regulation within biochemical pathways
provides further insight into sulfur metabolism and
scavenging

As demonstrated above, we can assess whether groups of
genes are influenced by particular (combinations of) envi-
ronmental parameters using enrichment tests. This opens
up the interesting possibility to correlate new and previ-
ously known patterns of regulation of individual genes
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with the regulation of larger families of genes connected
to each other in pathways. In contrast to other gene
groups, in a metabolic pathway clear connections exist
between the gene products and their functions, which
allows for more in-depth analysis. Here, we focus on bio-
chemical pathways as described in SGD, which depict the
series of chemical reactions converting metabolites, and
the enzymes catalyzing these reactions. Enrichment anal-
ysis indicated that 5 of the 9 downloaded 'SGD superpath-
ways' were influenced by at least one significant
combinatorial effect (atp < 103, g < 0.08).

An illustrative example is presented by analyzing the
expression profiles of the gene family involved in sulfur-
and sulfur containing amino acid-metabolism in yeast
(Figure 6). Sulfur amino acid biosynthesis involves a con-
siderable number of enzymes required for the de novo
biosynthesis of methionine and cysteine and the recycling
of organic sulfur metabolites. Expression of the genes
encoding the enzymes for this metabolic network is
tightly controlled by the available sulfur source, through
modulation of the intracellular S-adenosyl-methionine
levels. Six different cultivation parameters were signifi-
cantly often selected to explain the expression patterns of
the genes in this pathway (p < 10-3). Five of these are com-
binatorial cultivation parameters. Not surprisingly, the
only single effect is sulfur limitation, which causes the
upregulation of ten out of the eighteen genes [19]. See box
1 of the bars near the enzyme names in Figure 6. Despite
large variations in expression under different combina-
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tions of conditions, many of the MET-, CYS-, SAM- and
HOM -genes invariably respond to the presence of
methionine in the growth medium by clearly reduced
expression. See Figure 7, which depicts the normalized
gene expression patterns of all genes of the pathway. This
response is independent of the presence of oxygen or
growth limitation by carbon or nitrogen sources. Only in
the case where methionine is utilized both as sulfur and
nitrogen source and methionine is the limiting element,
we observe that the expression of the corresponding genes
is not reduced (but even slightly induced, mimicking the
(known) response under sulfur limitation). This explains
the selection of the combinatorial effects involving
methionine depicted by boxes 4, 5 and 6 in Figure 6.

Interestingly, two genes involved in this sulfur-metaboliz-
ing network in part respond differently. HOM2, which is
involved in homoserine biosynthesis, responds recipro-
cally to the availability of methionine in the growth
medium compared to the other HOM genes, especially
under aerobic conditions. The same observation is made
for STR2, which is involved in cystathionine biosynthesis.
(In Figure 7 magenta boxes mark the conditions, where
methionine is part of the growth medium.) This discrep-
ancy is indicative of a differential regulatory mechanism
operating between the HOM2, HOM3 and HOMG6 genes
of the homoserine pathway, and of the complex regula-
tion of the transsulfuration pathway, involving CYS3,
CYS4, STR2 and STR3. Further detailed analysis would be
required to elucidate the molecular mechanisms operat-

Table 2: MIPS functional categories specifically associated with combinatorial effects

MIPS category

Enrichment p-values

single effects comb. effect

Acetate Ethanol both Acetate | Ethanol

METABOLISM 0.065 0.077 | 7.8:10-18
metabolism of glutamate | 0.048 | 1.4-10-¢
C-compound and carbohydrate metabolism 0.027 0.082 | 1.4-10-22
C-compound and carbohydrate utilization 0.02 0.043 | 1.3:-10-17
C-compound, carbohydrate catabolism 0.2 [ | 81013

sugar, glucoside, polyol and carboxylate catabolism 0.44 | | 9.3-10-!!
ENERGY 0.013 I I [-10-17

glycolysis and gluconeogenesis | | | 3.810°
tricarboxylic-acid pathway | | | 2.2-10-!

Phosphorus Sulfur both Phosphorus | Sulfur

transcriptional control 0.13 0.017 | 4.3-108
RNA processing 0.86 0.32 I 1.5-10¢
rRNA processing 0.5 0.83 | 3.3:10¢

The combinatorial effects 'carbon source acetate OR ethanol' and 'Limiting element phosphorus OR sulfur' are specifically associated to the listed
MIPS functional categories. P-values of the enrichment of genes within these categories that are affected by the combinatorial effect are given in the
rightmost column. Also, enrichment p-values of genes affected by each and by both of the single effects that constitute this combinatorial effect are

given.
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ing in these differential combinatorial controls. Such dif-
ferential controls operating within a pathway are likely to
be involved in intricate flux balancing mechanisms.

Surprisingly, for many of the genes in the pathway under
investigation expression levels under zinc limitation are
almost as high as under sulfur limitation, especially under
aerobic conditions. Moreover, the genes of the transsulfu-
ration pathway are highly expressed under zinc and sulfur
limitation, yet lower expressed under the other nutrient
limitations. Also here, STR2 responds reciprocally and is
lower expressed under zinc limitation. Although tran-
script levels per se cannot be used as flux indicators, this
expression behavior is consistent with an upregulation of
the flux towards cysteine under zinc limitation via the
increased synthesis of the corresponding enzymes. (See
the graph structure of the pathway near cysteine in Figure
6.) The exact nature of this response is not immediately
apparent. However, it provides an interesting hypothesis
on the oxidative stress response of S. cerevisiae under zinc
limitation. As previously described [20], a "first line of
defense" in oxidative stress response is formed by the
superoxide dismutase genes SOD1 and SOD2, which are
induced under aerobic conditions. See Figure 7. The
dithiol glutaredoxin genes GRX1 and GRX2 [21], and the
monothiol glutaredoxin genes GRX3 -GRX5 [22], which
also participate in the response against oxidative stress,
exhibit highly differential transcriptional profiles.

This may provide new insight into the specific roles for
each of the varying combinations of glutaredoxins under
different growth conditions. Surprisingly, under zinc lim-
itation not only the Cu, Zn-dependent SODI1 gene is
lower expressed; also the SOD2 gene, encoding the mito-
chondrial superoxide dismutase, which is dependent on
Mn and not on Zn, is much less induced. A boost in glu-
tathione synthesis apparently takes over the main defense,
since the glutathione synthase genes GSH1 and GSH2 are
clearly induced, especially under zinc-limited aerobic con-
ditions. This can be seen from the magenta ellipses in Fig-
ure 7. This fits with the fact that significantly many genes
in the sulfur scavenging pathway are upregulated under
zinc-limited aerobic growth, presumably leading to an
induced cysteine pool, cysteine being one of the three
components of the tripeptide glutathione.

Functional characterization of uncharacterized and
dubious genes using the chemostat compendium

In a recent review [23] it was pointed out that many (>
1000) genes in the yeast genome are still uncharacterized.
Possible reasons for this include genetic redundancy, lack
of strong growth phenotype and the possibility that not
all of them are real genes. Additionally, genes may be
involved in environmental and metabolic responses,
which are normally not queried in the lab. Concerning the
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"characterized" genes, it can be noted that the function of
many annotated genes is derived from large-scale studies,
and hence, in-depth detailed analysis is lacking for these
genes.

We conjecture that the visualization of the expression
behavior of a gene over the conditions of the compen-
dium, together with the identification of the significant
cultivation parameters to which the gene responds, pro-
vides valuable information regarding gene function. With
this information, one can design directed biological
experiments or assays that probe a specific pathway or
activity in order to advance towards the functional charac-
terization of a gene. We mapped our regression results to
SGD's genome snapshot, upon which the division of Sac-
charomyces cerevisiae ORF's into verified ORF's, uncharac-
terized ORF'S and dubious ORF's in [23] was based. For
1350 genes the regression model lead to a good recon-
struction of the observed expression pattern (explained
variance including replicate variance > 70%). According
to SGD, 1009 of these genes were verified ORF's; 286 were
uncharacterized and 54 were classified as dubious genes.
Amongst the uncharacterized genes, many genes were
found to be expressed under conditions which have not
been extensively studied before. For example, amongst the
286 uncharacterized genes, five genes are most signifi-
cantly influenced by zinc limitation, i.e. zinc limitation
was the first condition selected by the regression model.
One of these, YOR387C, is only expressed under zinc lim-
itation. These results immediately link the function of a
gene to a particular cultivation parameter or a specific bio-
logical process related to this cultivation parameter. The
expression pattern of these five zinc responsive genes as
well as the other genes to be discussed in this section are
visualized in Figure 8. Also, amongst the 54 dubious
genes, there are many genes that are highly expressed
under one or a few cultivation parameters, while having a
constant expression over the remaining conditions. For
example, YJL119C is only highly expressed under phos-
phorus limitation. YBLO70C also responds to phosphorus
limitation, yet particularly when the yeast is grown aero-
bically. The expression of YBR292C is influenced by aero-
bic sulfur-limited growth and YBLOG65W is only expressed
when grown at a low temperature (12°C). 35 of the 54
dubious genes were affected by the aeration effect or the
interaction effect between carbon limitation and aeration.
These genes were screened against a recent proteomics
study, where expression data of yeast grown in aerobic
and anaerobic carbon-limited chemostats was measured
[24]. We found that for three genes unique peptides were
quantified. This establishes the existence of the proteins
encoded by these "dubious" genes. See Additional File 5
for a list of the 54 dubious genes and details on the pep-
tide identification. Notably, 51 of the 54 dubious genes
are no longer present on YG 2.0, the successor of the
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Superpathway of sulfur amino acid biosynthesis. Near each enzyme (gene product) is a bar representing the regression
weights of the six significant cultivation parameters. These parameters are stated in the legend in the upper-left corner of this
figure. A blank box indicates that the cultivation parameter is not selected by the regression model. Red and green boxes indi-
cate positive (upregulation) and negative (downregulation) regression weights, respectively. Darker colors indicate larger
regression weights.

Affymetrix YG S98 GeneChip, after comparative genomics
[25] and phylogentic footprinting [26] approaches identi-
fied these as false ORF's. However, our analysis reveals a
clear-cut influence of environmental conditions on the
expression levels of many of these genes, implying that
these genes do have a functional role, at least in the Saccha-
romyces cereviside strain that was used in this study.

Analysis of shake-flask experiments with the chemostat
compendium

Changes in the extracellular environment or perturba-
tions on genetic level do not only affect (signaling) path-
ways in which the change or perturbation has direct
involvement, but can also impact the cell's viability,
metabolism or other processes in the cell. For example,
there are many experimental conditions and genetic per-
turbations that will impact the growth rate of the cell. For
shake flask cultivations it is not possible to distinguish
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normalized expression level
o

Ammonium sulfate

Normalized gene expression patterns of the genes that are part of the superpathway of sulfur amino acid bio-
synthesis and additional genes discussed in the text. The expression values of each gene are linearly scaled to range
from -1 to |. Here, -1 represents the lowest expression value and | indicates a gene's highest expression value. These normal-
ized expression patterns are projected on the green-black-red colormap to derive the heatmap visualization. Separate
branches of the pathway are indicated by the grey horizontal lines. For the group denoted as "Additional genes", the grey hor-
izontal lines split the genes in functionally related groups. The magenta boxes and arrows indicate the cultivation parameters,
where methionine is used as nitrogen or sulfur source. The magenta ellipses and arrows highlight the expression levels of the

SOD and GSH genes under zinc limitation.

between the direct and indirect effects, since cultivation
parameters like growth rate and nutrient availability can-
not be controlled. This also confounds the analysis of
gene expression data from shake flask experiments [11].
By screening a group of genes, which were grouped
together on the basis of shake flask experiments, against
the compendium, some of the confounding effects can be
resolved. The group can be subdivided into clusters of
genes that respond to particular environmental parame-
ters within the compendium and thereby identify the cul-
tivation parameters or biological processes that could
have played a role in the original shake flask experiment,
even when these have not been measured.

To this end, we apply the following strategy: First, we
select the (combinatorial) cultivation parameters that are
significant for the group under investigation. These are the
cultivation parameters that are significantly often selected

by the regression model to explain the expression pattern
of the genes in the group when compared to the complete
genome. Next, the genes are clustered based on the nor-
malized regression coefficients under these cultivation
parameters. Finally, these newly obtained clusters are con-
sulted for enrichment of annotation categories. See Meth-
ods section for details. As an example, Figure 9 depicts the
results of this analysis for the groups of genes, which were
found to be induced or repressed in a dig1 4, dig2 A mutant
strain grown in a shake-flask [27]. To make the induced
and the repressed gene groups, we consulted the gene
expression data of this study (i.e. the Hughes et al. yeast
mutant microarray compendium [27]). The induced
group is formed by all genes that are upregulated by one
fold-change or more in the digi4, dig2A mutant strain
compared to the wild-type strain. The repressed group is
formed in a similar fashion by identifying the genes that
are downregulated by one fold-change or more.
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The results show a clear difference between direct and
indirect effects. On the one hand, the enrichment analysis
on the TF binding data tells us that the genes in Clusters
3, 4 and 5 form a significantly large part of Digl's regulon,
i.e. the direct targets of TF Digl. The known role of Digl
and Dig?2 in regulating mating-specific and pheromone-
responsive genes is confirmed by the enrichment of these
functional categories in Cluster 3. Also, binding sites of
TFs Tec1 and Stel12, which together with Digl form a reg-
ulatory complex involved in mating and filamentation
[28], are enriched for Cluster 5 and Clusters 3 and 5,
respectively. Interestingly, the genes within Clusters 3, 4
and 5 were clustered together based on their response to
the addition of organic acids propionate, benzoate and
sorbate. (The clusters are characterized by the shared tran-
scriptional response of their genes to these acids.) On the
other hand, a large set of genes that is induced after the
knockout of DIGI and functionally redundant DIG2, is
affected by growth rate in the chemostat microarray com-
pendium. See Clusters 1, 6 and 10. The genes of Cluster 1
show high enrichment for metabolism and energy func-
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tional categories as well as for general stress response TF
Msn2. From this observation we conclude that besides the
genes that are directly affected, the double knockout also
has a large impact on the metabolism and energy house-
hold of the cell when grown in a shake-flask.

Conclusion

The compendium of chemostat-based transcriptome data
is a valuable resource for yeast systems biology that can be
queried on-line. Additional File 6 contains the complete
dataset (expression data and description of the cultivation
conditions). Additional File 7 is an interactive tool to vis-
ualize the gene expression across all conditions in the
compendium; this file can be downloaded from the
author's website. Using a forward step-wise regression
strategy, we were able to quantify the influence of (combi-
natorial) cultivation parameters on the expression of
genes and (using enrichment tests) groups of functionally
related genes. The regression results demonstrate the large
extent to which regulation of individual genes results
from the integration of multiple external signals. In fact,

normalized expression level
=)

Ammonium sulfate

Ace Benz CO

B0 OBRN END DO0D

Normalized gene expression patterns for twelve uncharacterized or dubious genes. The expression values of each
gene are linearly scaled to range from - to |. Here, -| represents the lowest expression value and | indicates a gene's highest
expression value. These normalized expression patterns are projected on the green-black-red colormap to derive the heatmap
visualization. The magenta boxes and lines highlight the cultivation parameters that influence the expression of the genes.
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the analysis yielded only few "signature transcripts", i.e.
transcripts whose level showed a unique up- or downreg-
ulation under a single condition in the compendium rel-
ative to all other conditions. This observation has
important implications for the applicability of so-called
signature transcripts to diagnose cellular status (e.g. star-
vation for a nutrient, stress or, in higher organisms, dis-
ease). Our results indicate that the "signature" status of a
gene with respect to an individual environmental param-
eter can depend strongly on other ("background") envi-
ronmental signals to which the cell is exposed. In this
respect, it should be stressed that the current compen-
dium of chemostat-based data represents only a minute
fraction of the infinite range of combinatorial conditions
to which yeast cells can be exposed in nature, in industry
and in the laboratory.

The relevance of the proposed approach for functional
analysis of genes and pathways is exemplified by the
observed combinatorial effects of zinc and sulfur availa-
bility in the pathway of sulfur amino acid biosynthesis.
Furthermore, the compendium approach has provided
clear indications that 54 S. cerevisiae genes that had previ-
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ously been labeled as 'dubious’ and have even been
removed from some commercial DNA microarrays, exhib-
ited a specific and reproducible transcriptional response
to some of the investigated culture conditions. These
examples illustrate the potential for enabling more
focused functional analysis studies through a correlation
of a wide range of cultivation conditions and gene expres-
sion data. The results provide a strong incentive for further
extending the range of cultivation conditions included in
the compendium.

The systematic dissection of the impact of (combinations
of) individual culture parameters on transcriptional regu-
lation enabled by chemostat-based microarray analysis
can be applied to interpret transcriptome data generated
in less extensively controlled, but highly relevant cultiva-
tion conditions in industry and in the laboratory. This is
exemplified by the additional interpretation of previously
published data from shake-flask-based transcriptome
analysis of a digl 4, dig2A mutant (Figure 9).

In view of the excellent reproducibility of chemostat-
based microarray analysis [29], it should be possible to
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Induced in the dig1A,dig2A strain
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Extra compound — Benzoate | Sorbate
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C-compound and carbohydrate metabolism
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C-compound, carbohydrate catabolism
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Analysis of two groups: The genes upregulated in a digl A, dig2A strain and the genes downregulated in this
strain. Middle: Normalized regression weights for the significant cultivation parameters across the gene groups. Top: The
genes were clustered based on these regression weights. Bottom: Schematic representation of the enrichment p-values and
related false discovery rates (g-values) for each of the uncovered clusters when related to TF binding data and MIPS functional

categories.

Page 14 of 20

(page number not for citation purposes)



BMC Genomics 2009, 10:53

extend the compendium with data from other research
groups, provided that yeast strain, cultivation procedures
and procedures for microarray analysis are rigorously
standardized. The effect of a change in the mRNA process-
ing protocol, as identified in the regression strategy, pro-
vides a clear caveat on the possible impact of even small
differences in experimental procedures.

One promising avenue to be explored is the use of the
compendium in deriving transcriptional regulation net-
works. Given that changes in gene expression can be
ascribed to changes in the activity of TFs and chromatin
remodeling proteins, the compendium dataset provides
the means to investigate how cultivation parameters influ-
ence the activity of the proteins that control transcription.
Since the cultivation parameters, such as the employed
carbon source, are closely linked to the actual molecular
signals that are detected by the cell, it may be possible to
also relate transporters and signaling cascades to the
observed expression under different environmental con-
ditions. This allows for a genome-wide analysis of the
complete chain of regulatory relationships that cause
changes in the extracellular environment to lead to
changes in gene expression.

In the employed regression model, the (combinatorial)
cultivation parameters are assumed to have an additive
effect on gene expression. In previous work [6] the aera-
tion type was modeled as a linear effect with both additive
and multiplicative components. This approach was not
possible for the cultivation parameters within the current
framework. Furthermore, a more complex modeling or
incorporation of higher-order effects results in a highly
under-determined system and possible computational
complexity issues. Given the high-degree of non-linearity
in biological systems, the application of logic (Boolean)
functions might provide a sensible alternative to the com-
monly used linear modeling. Irrespective of the structure
of the models, incorporating combinatorial effects in
models for (transcriptional) regulation is crucial. Only in
this way, the goal of systems biology to investigate and
understand the interactions between different compo-
nents and/or levels in biological systems can be comple-
mented by an equally integrative approach towards the
complex environmental context in which cells grow and
survive.

Methods

Chemostat cultivation and microarray data

Prototrophic Saccharomyces cerevisiae strain CEN.PK113-
7D (MATa) [30] was grown at 30°C (or at 12°C) in 2-liter
chemostats (Applikon) with a working volume of 1.0 liter
as described in van den Berg et al. [31]. Cultures were fed
with a defined mineral medium that limited growth by
either carbon, nitrogen, phosphorus, sulfur, zinc or iron
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with all other growth requirements in excess and at a con-
stant residual concentration. The dilution rate ranged
from 0.03 to 0.2 h-l. The pH was measured online and
kept constant at 5.0 (or 3.5 and 6.5) by the automatic
addition of 2 M KOH using an Applikon ADI 1030 bio
controller. Stirrer speed was 800 rpm, and the airflow was
500 ml min-!. Dissolved oxygen tension was measured
online with an Ingold model 34-100-3002 probe and was
above 50% of air saturation. The off-gas was cooled by a
condenser connected to a cryostat set at 2°C, and oxygen
and carbon dioxide were measured offline with an ADC
7000 gas analyzer. When required, anaerobic conditions
were maintained by sparging the medium reservoir and
the fermentor with pure nitrogen gas (500 ml min-1). Fur-
thermore, Norprene tubing and butyl septa were used to
minimize oxygen diffusion into the anaerobic cultures
[32].

Steady-state samples were taken after ~10-14 volume
changes to avoid strain adaptation due to long term culti-
vation [33]. Dry weight, metabolite, dissolved oxygen and
gas profiles had to be constant over at least 3 volume
changes before sampling for RNA extraction. The detailed
culture media recipes, used in the 55 different conditions
presented in this study, can be retrieved from the individ-
ual GEO [34] array reports. The GEO accession numbers
can be found in Additional File 6.

In this study, two different sample preparation protocols
were employed: Protocol A (for 36 of the 55 conditions)
and Protocol B (for 19 of the 55). For Protocol A, sam-
pling of the chemostat cultures, probe preparation and
hybridization to the single-channel Affymetrix GeneChip
YG S98 microarrays is described in Piper et al. [29]. Proto-
col B has the following modifications with respect to Pro-
tocol A: In stead of harvesting ~700 g of total RNA and
applying a Poly-A mRNA isolation step before cDNA syn-
thesis (Protocol A), ~15 ug of total RNA is harvested and
the purification step is omitted (Protocol B). Thus, in Pro-
tocol B cDNA synthesis is performed on total RNA, while
in Protocol A the synthesis is performed on Poly-A puri-
fied mRNA. Additional File 3 provides the complete
details on both protocols and references to the used
AffyMetrix manuals.

Across the 55 conditions, ten different varying cultivation
parameters can be identified. A cultivation parameter, e.g.
the carbon source, is described as a categorical variable
and contains two or more settings, e.g. the used carbon
source can be either acetate, ethanol, galactose, glucose or
maltose. Fach condition is characterized by a configura-
tion of these settings across the ten cultivation parameters.
See Figure 1, Table 1 and Additional File 6 for an overview
of the relevant settings within the environmental parame-
ters per condition. In total, 180 microarray measurements

Page 15 of 20

(page number not for citation purposes)



BMC Genomics 2009, 10:53

were performed. There is a variable number of independ-
ent biological replicates per condition, however for most
(39) conditions three replicates were performed. Chip
quality control, condensing probe intensities to gene
expression levels and normalization was performed using
GeneData Refiner Array [35]. 170 high quality chips, i.e.
gradient severity < 0.165, defective area < 0.5% and outlier
area < 0.59%, were retained. Ten chips, which did not
meet these criteria were dismissed. The RMA algorithm
was used to derive the log scale measure of the expression
levels [36]. Quantile normalization was applied to nor-
malize between arrays [37]. The normalized expression
data is given in Additional File 6. The raw array data used
in this study can be retrieved at Genome Expression
Omnibus [34] with series number GSE11452.

Detecting differential expression

A gene was called differentially expressed when 1) the
gene was present in at least one of the arrays (present call
p-value < 0.05) and 2) the gene showed significant differ-
ential expression in at least one condition (one-way
ANOVA with 55 classes, p-value < 0.05/9335). 9335 is the
total number of transcripts on the array.

Inferring the influence of cultivation parameters on gene
expression using regression

A designmatrix was created, containing both main (or sin-
gle) effects and interaction (or combinatorial) effects:
Each setting within each cultivation parameter is repre-
sented by a binary indicator column with 170 entries.
These columns represent the main effects, which indicate
for each array whether the yeast was grown under the rel-
evant setting of a particular cultivation parameter. Two
types of combinatorial effects were included in the model,
i.,e. "AND" and "OR" effects. The AND interaction effect
columns were obtained by applying the logical AND func-
tion to all possible pair-wise combinations of main effect
columns. The OR interaction effect columns were obtain-
ing by applying the logical OR function to all possible
pair-wise combinations of main effect columns that are
associated with the same cultivation parameter. Thus,
only OR effects that are constituted of two settings within
the same cultivation parameter were modeled. Redundant
columns and columns with all zeros were removed. This
resulted in the binary [170 x 227] designmatrix D, which
includes 38 single effects, 101 AND effects and 88 OR
effects. A visualization of this matrix is found in Addi-
tional File 8.

A forward step-wise ordinary least squares regression strat-
egy was applied to each gene individually:

y=Xf+¢

http://www.biomedcentral.com/1471-2164/10/53

Here, y; denotes the measured gene expression level of a
particular gene for array i, withi=1, ..., 170; X is the pre-
dictor matrix, £ represents the regression coefficients and
¢ the error, which is assumed to be independent zero-
mean normally distributed. Initially, X contains only the
intercept, i.e. a column of 170 ones. In an iterative fash-
ion, columns from D are added to X. For this we applied
a leave-one-out cross validation (loocv) scheme, where a
single sample is used for testing, while the remaining
(169) samples are used for training the regression model.
This was repeated such that each sample is used once as
the test data. The column from D, with the smallest root-
mean-squared (rms) loocv error and absolute regression
coefficient larger than 0.3, was selected and added. The
iterative process of adding columns is discontinued when
the p-value, as output by a t-test that determines whether
the regression coefficient significantly differs from zero,
exceeds 0.05/227. To prevent the inclusion of spurious
AND effects, the following strategy is applied: When an
AND effect column is selected, we check whether the addi-
tion in explained variance is larger than the addition is
explained variance when adding the two main effect col-
umns that constitute the combinatorial effect. Only in this
case, we add the AND effect column, otherwise the two
main effect columns are added, provided that they satisfy
the p-value threshold and their absolute regression coeffi-
cients are larger than 0.3.

Note that only coefficients larger than 0.3 or smaller than
-0.3 were allowed. This was done to focus on large
changes in gene expression. Inclusion of absolute weights
smaller than 0.3 did not increase enrichment scores of
functional categories (see next section). Although small
regression coefficients might be biologically relevant, this
indicates that there are also many spurious results
amongst the small regression weights.

The choice for a step-wise regression approach is substan-
tiated in Additional File 9.

Enrichment analysis

For each main or interaction effect, i.e. a column from D,
we group all genes, for which that effect turned out to be
a significant predictor with a positive regression coeffi-
cient (or regression weight). This procedure was also car-
ried out to group genes with negative weights for the
significant predictors, and to group genes irrespective of
the sign of the weight. The latter grouping is basically a
union of the genes with positive weights and the genes
with the negative weights. In addition, for the cultivation
parameters that can assume more than two settings, we
group all the genes that respond to at least one of the set-
tings of that cultivation parameter as a main effect. Basi-
cally, we select all main effect columns from D that
represent a setting of one particular cultivation parameter
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and group the genes, for which at least one of these set-
tings is a significant predictor. (Note that the cultivation
parameters that can only assume two settings, i.e. Aera-
tion type, S-source, Temperature and Protocol, only have
one main effect column in D, since the two settings are
mutually redundant and only one of them is included in
D.) Also here, we make the distinction between positive
and negative regression coefficients and the union of
these. The hypergeometric test is employed to assess the
significance of the overlap between all these groups and
gene sets from GO [38], MIPS [39], KEGG [40] and TF
binding data [41,42]. Additional File 1 provides an over-
view of the significant results (p < 10°, g < 8.5-104).
Here, for each triplet of p-values, associated with the pos-
itive weights, the negative weights or all weights, the most
significant (smallest p-value) is selected and color coded
accordingly. See page 1 of Additional File 10 for a flow-
chart describing the steps of this analysis.

Functional categories specifically influenced by a
combinatorial effect

To find a combinatorial effect that is specific for a func-
tional category we group all the genes for which this effect
was selected as a significant predictor by the regression
model (irrespective of the sign of the weight). Also, for
this effect, we make three other gene sets by grouping the
genes which are influenced by 1) one of the single effects
that constitute the combinatorial effect 2) the other single
effect and 3) by both these single effects. (If a gene is influ-
enced by both the combinatorial effect and a single effect,
we only consider the effect that was selected first and then
add this gene to the appropriate group.) Functional cate-
gories, which are overrepresented in the first group (p <
10-%) and not overrepresented in the three other groups (p
> 102) are called "specifically influenced by the combina-
torial effect". See page 2 of Additional File 10 for a flow-
chart describing the steps of this analysis.

Clustering of genes based on regression coefficients

Given a group of genes, the hypergeometric test is
employed to select those (interaction) effects, i.e. columns
from D, which are significantly often selected by the
regression model for the genes in this group when com-
pared to all genes in the genome. Columns with p < 10
are kept. Next, we create matrix R, which contains the nor-
malized regression weights for the selected columns of all
genes in the group under investigation. The normalized
weights of a gene are obtained by dividing the original
regression weights by the variance of the gene. A consen-
sus clustering algorithm [43] is applied to cluster the
genes based on the normalized regression weights in R:
The data is clustered using a Bayes mixture of Gaussians
EM algorithm. The number of clusters is varied from 2 to
20 (or the number of genes in the group if this is smaller
than 20) and repeated 50 times for each number of clus-

http://www.biomedcentral.com/1471-2164/10/53

ters. The total of all clusterings is used to build a co-
occurence matrix, which indicates how many times a pair
of genes was found in the same cluster amongst all clus-
terings. This co-occurence matrix is transformed into a dis-
tance matrix. The distance matrix is zero, when a pair of
genes was clustered together in all attempts; the matrix is
one, when a pair never clustered together. We apply hier-
archical clustering with complete linkage on this distance
matrix and cut the dendrogram at 0.9 to create the final
clusters. These clusters are consulted for enrichment of
annotation categories using the hypergeometric test as
explained before. See page 3 of Additional File 10 for a
flowchart describing the steps of this analysis to create
matrix R.
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Additional material

Additional file 1

Functional enrichment of genes influenced by the cultivation param-
eters. This files gives, for each of the ten cultivation parameters, the func-
tional enrichment of genes manipulated by one of the settings of a
particular cultivation parameter, either as a single effect or as part of an
interaction effect. Here, the first columns of the tables related to the cul-
tivation parameters that can assume more than two settings, form an
exception; these columns represent the enrichment of the genes that are
manipulated by at least one of the settings of a particular cultivation
parameter as a single effect. The genes in such a column are the union of
the genes related to other single effect columns in the table. The (uncor-
rected) P-values and Q-values (FDRs) are represented by shades of red,
green and blue. Here, red, green and blue refer to the enrichment of genes
with only positive regression weights, only negative regression weights, or
with all regression weights (independent of the sign), respectively. The
consulted annotation data consists of GO biological processes (BP), cellu-
lar components (CC) and molecular function (MF), MIPS functional cat-
egories, KEGG pathways and TF binding data. Note that for GO we
consider two types of data: One indicates whether a gene is assigned to a
particular leaf in the GO annotation tree (annotated with appendix leaf).
The other associates a gene located in a certain leaf not only with that par-
ticular leaf but also with all nodes between the leaf node and the root of
the GO tree (annotated with appendix comp). Numbers next to the verti-
cal axis indicate the group size of the functional catergories. Numbers
beneath the horizontal axis indicate the number of genes in a gene group,
i.e. the number of genes manipulated by a particular main or interaction
effect of cultivation parameters. Numbers in the boxes indicate the overlap
between these two groups. See Methods section — Enrichment analysis for
details on how the gene groups, which respond to the cultivation parame-
ters, were created.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-

2164-10-53-S1.pdf]
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Additional file 2

Comparison between regression analysis including and excluding
combinatorial effects. This file describes the comparison between the
regression analysis including and excluding combinatorial effects by ana-
lyzing the explained variance and functional enrichment of clustered
genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-82.pdf]

Additional file 3

Details of the different protocols. This file states the details of the differ-
ent protocols to prepare samples for hybridization to the microarray. Ref-
erences to the corresponding manuals are given. Also, advantages and
disadvantages of both protocols are given.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-53.pdf]

Additional file 4

MIPS functional categories that are specifically influenced by combi-
natorial effects. The significant category-effect-pairs are depicted by the
dark boxes. The grey value of a box indicates the enrichment p-value and
associated false discovery rate (q-value). On the right of the figure are the
names of the significant MIPS categories; on the left is the hierarchy
within these categories; the combinatorial effects are listed above the fig-
ure. The two cases that are discussed in the text are indicated by the
magenta boxes. The corresponding MIPS categories and cultivation
parameters are printed in bold and magenta.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-54.pdf]

Additional file 5

Peptide quantification and BLAST results for dubious genes. This file
provides information on the peptide quantification and BLAST results for
three dubious genes. Also, it states which of the 54 dubious genes are not
found on YG 2.0, the successor of the Affymetrix YG S98 GeneChip.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-S5.pdf]

Additional file 6

Cultivation parameters across the compendium. This file states the set-
tings of the ten cultivation parameters for each of the 170 cultivations and
subsequent microarray analysis. For each array, GEO sample and series
numbers are given. For arrays that have been published along with previ-
ous studies the Pubmed IDs are given. The file also contains the normal-
ized expression levels across the 170 microarrays for all genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-S6.zip|

Additional file 7

Interactive gene expression visualization tool. This file contains the
download link of a self extractable executable that contains an application
that allows one to visualize the expression patterns of genes across the com-
pendium. The conditions within the compendium can be sorted on two of
the ten cultivation parameters. It is possible to analyze the significant cul-
tivation parameters selected by the regression model to reconstruct the
gene expression patterns. The Matlab code for this visualization tool can
be obtained via the corresponding author.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-S7.pdf]

Additional file 8

Visualization of designmatrix D. This file is a visualization of the [170
x 227] binary designmatrix D. This matrix indicates for each of the 170
arrays/cultivations under which of the 227 (combinatorial) cultivation
parameters the yeast was grown. These are marked by the non-white ele-
ments, which represent the 1's of D. (White elements represent the 0's.)
For visibility, the transpose of the matrix is displayed. The x-axis contains
the 170 array 1Ds; the y-axis displays the descriptions of the 227 predictors
(which include 38 single effects (in red), 101 AND effects (in green) and
88 OR effects (in blue)).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-S8.pdf]

Additional file 9

Choice of the regression strategy. The choice for a step-wise regression
approach is substantiated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-89.pdf]

Additional file 10

Flowcharts of enrichment analysis. Page 1 — Flowchart of Methods —
Enrichment analysis. All significant regression weights are stored in a
large matrix. This matrix has 6005 rows, which represent all differentially
expressed genes for which the regression analysis was performed, and 227
columns, which represent the (combinatorial) cultivation parameters,
which were used as predictors in the regression model. An element of this
matrix indicates the assigned regression weight of a cultivation parameter
to explain the expression pattern of a gene. A zero indicates that the cul-
tivation parameter was not selected as a significant predictor for a gene.
For each column of this matrix, we group the genes that were upregulated
(positive weights), downregulated (negative weights) or either up- or
downregulated (non-zero weights) by the cultivation parameter related to
that column. These groups are analyzed for significant overlap with gene
groups derived from functional annotation databases and TF binding
information using the hypergeometric test. The enrichment results are vis-
ually represented in Additional File 1. Page 2 — Flowchart of Methods —
Functional categories specifically influenced by a combinatorial effect
Gene groups are derived based on the large matrix with regression weights.
In this case, for each combinatorial effect we create four gene groups: 1)
We group the genes that respond to the combinatorial effect (non-zero
weights). 2) We group the genes that respond to one of the single effects
that constitute the combinatorial effect. 3) We group the genes that
respond to the other single effect. 4) We group genes that respond to both
single effects. Again, the hypergeometric test is employed to analyze these
gene groups for significant overlap with gene groups derived from func-
tional categories. Page 3 — Flowchart of Methods — Clustering of genes
based on regression coefficients Firstly, genes that respond (non-zero
weights) to a particular (combinatorial) cultivation parameter are
grouped. (These groups are identical to the blue groups generated in the
enrichment analysis flowchart on Page 1 of this document.) These groups
are analyzed for significant overlap with the gene group derived from the
shake-flask experiment. The significant cultivation parameters are
selected. (These are the cultivation parameters to which significantly
many of the genes in the shake-flask gene group respond.) A new matrix
is derived. This matrix contains the regression weights of the genes of the
shake-flask gene group for the signficant cultivation parameters. Bascially,
this matrix is a submatrix of the original regression weight matrix. By nor-
malizing these regression weights, we arrive at matrix R, which is used in
the subsequent cluster analysis.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-53-S10.pdf]
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