
RESEARCH ARTICLE

Drainage-structuring of ancestral variation

and a common functional pathway shape

limited genomic convergence in natural high-

and low-predation guppies

James R. WhitingID
1*, Josephine R. ParisID

1, Mijke J. van der ZeeID
1, Paul J. ParsonsID

1,2,

Detlef WeigelID
3, Bonnie A. FraserID

1

1 Department of Biosciences, University of Exeter, Exeter, United Kingdom, 2 Department of Animal and

Plant Sciences, University of Sheffield, Sheffield, United Kingdom, 3 Department of Molecular Biology, Max

Planck Institute for Developmental Biology, Tübingen, Germany
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Abstract

Studies of convergence in wild populations have been instrumental in understanding adap-

tation by providing strong evidence for natural selection. At the genetic level, we are begin-

ning to appreciate that the re-use of the same genes in adaptation occurs through different

mechanisms and can be constrained by underlying trait architectures and demographic

characteristics of natural populations. Here, we explore these processes in naturally

adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia

reticulata. As a model for phenotypic change this system provided some of the earliest evi-

dence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to

be studied at the whole-genome level. We collected whole-genome sequencing data from

ten populations (176 individuals) representing five independent HP-LP river pairs across the

three main drainages in Northern Trinidad. We evaluate population structure, uncovering

several LP bottlenecks and variable between-river introgression that can lead to constraints

on the sharing of adaptive variation between populations. Consequently, we found limited

selection on common genes or loci across all drainages. Using a pathway type analysis,

however, we find evidence of repeated selection on different genes involved in cadherin sig-

naling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three

rivers from the same drainage. Taken together, despite limited sharing of adaptive variation

among rivers, we found evidence of convergent evolution associated with HP-LP environ-

ments in pathways across divergent drainages and at a previously unreported candidate

haplotype within a drainage.

Author summary

Convergent evolution is the process whereby similar phenotypes evolve in response to

common selection in independent lineages, providing strong evidence of adaptation in
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response to natural selection. This process can involve changes at the same regions of the

genome, known as genomic convergence. We explore this in the replicated evolution of

high- and low-predation Trinidadian guppies, an important model system for studies of

phenotypic evolution, but where little is known about the underlying genetics. Our find-

ings highlight that limitations on how genetic variation is distributed have restricted the

same mutations or genes being involved in the convergent evolution of high- and low-pre-

dation guppies, but different genes of similar function are likely involved. We also high-

light and examine a large candidate region associated with three rivers from the same

drainage. Our results demonstrate constraints on genomic convergence at certain levels,

but suggest there is some repeatability in the genetic basis of convergent phenotypic evolu-

tion in this important model system. Genomic convergence in the guppy system is there-

fore more limited than in other prominent study systems, suggesting the pervasiveness of

this process in nature is highly context-dependent.

Introduction

The process of adaptation in nature can be thought of as a complex interplay between random

happenstance and repeatable processes in independent lineages. The latter of these, often

termed convergent or parallel evolution [1,2], has provided a myriad of examples from which

general rules and principles of adaptation have been dissected under natural conditions.

Empirical evidence accumulated over the last decade has demonstrated that convergent phe-

notypes are often encoded by convergent changes at the genetic level across many taxa

(reviewed in [3–6]). We are now at the point where we can ask why genetic convergence

ranges from common in some systems to non-existent in others.

While, there are many definitions of genetic convergence (or parallelism) [2], here we use it

broadly to describe selection acting at any of three levels: on the same mutations (eg. [7–9]);

different mutations affecting the same genes (eg. [10–12]); or different genes in the same func-

tional pathways (eg. [13–16]). Further, variation among lineages may arise through one of

three modes: either de novo mutations (eg. [17,18]); as shared ancestral variation (eg. [19,20]);

or through introgression among lineages (eg. [21–24]). An emerging trend within systems is

that adaptation involving multiple traits can involve combinations of these levels and modes of

convergence. For example, stickleback adapting to freshwater experience selection on ancestral

eda haplotypes [25] and de novo mutation at the pitx1 gene [10] to repeatedly evolve freshwater

bony armour plate and pelvis phenotypes respectively. Similarly, Pease et al. [26] found all

three modes of convergence occurring across a clade of wild tomato accessions: adaptive intro-

gression of alleles associated with immunity to fungal pathogens, selection on an ancestral

allele conferring fruit colour, and repeated de novo mutation of alleles associated with season-

ality and heavy metal tolerance. Further, the same phenotype may arise in response to the

same selection through any of the above modes, as observed in glyphosate-resistance ama-

ranths across North America [27]. In this study, the authors found glyphosate-resistance

evolved in one location by introgression and selection on a pre-adapted allele, in another by

the fixation of a shared ancestral haplotype, and in a third location through selection on multi-

ple, derived haplotypes.

Given the differences in modes and levels of genetic convergence observed across empirical

studies, various contingent factors have emerged as important. These include the redundancy

in the mapping of genotype to phenotype [28,29], i.e. how many genetic routes exist to repli-

cate phenotypes? For example, simple one-to-one mapping is expected to result in reuse of the
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same genes or even mutations, while redundancy can lead to convergent phenotypes by selec-

tion on different genes in shared functional pathways. In addition, population structure dic-

tates the sharing of adaptive variation among lineages by which selection may act on [30].

Finally, two lineages may experience an aspect of their environment in a similar way, but in a

multidimensional sense environmental variation may limit genetic convergence through pleio-

tropic constraint [31]. This may result in the re-use of genes with minimal constraint and min-

imal effects on other aspects of fitness, as suggested for MC1R in pigmentation across

vertebrates [32]. Alternatively, similarity of environments within multivariate space can pre-

dict genetic convergence [33–35], whereby consistencies in the multidimensional fitness land-

scape channel adaptation along conserved paths. Conversely, inconsistencies may offer up

alternative routes to fitness peaks. This combination of pleiotropy and differences among fit-

ness landscapes may also explain why genetic convergence can vary for the same traits in the

same species in global comparisons, for example in comparisons of Pacific-derived vs Atlan-

tic-derived freshwater stickleback [35–37].

It is clear then to understand the complexity by which genetically convergent evolution

might emerge requires study systems for which we already have abundant research on interac-

tions between phenotype and environment. Here, we make use of a model of phenotypic con-

vergence, the Trinidadian Guppy (Poecilia reticulata), to evaluate genetic convergence in the

replicated adaptation of low-predation (LP) phenotypes from high-predation (HP) sources.

For approaching 50 years, this system has provided valuable insights into phenotypic evolution

in natural populations, including some of the first evidence of rapid phenotypic evolution in

vertebrates across ecological, rather than evolutionary, timescales [38,39]. The guppy has since

become a prominent model of phenotypic evolution in nature, but accompanying genomic

work has only recently begun to emerge.

The topography of Northern Trinidad creates rivers punctuated by waterfalls, which restrict

the movement of guppy predators upstream but not guppies themselves. This replicated down-

stream/HP and upstream/LP habitat has produced convergent HP-LP guppy phenotypes; LP

guppies produce fewer, larger, offspring per brood [40,41], differ in shoaling behaviour

[42,43], swimming performance [44] and predator evasion [45], and exhibit brighter sexual

ornamentation [46]. However, whilst LP guppies evolve brighter colouration, the repeatability

of specific colour patterns is limited and can be non-parallel [47,48]. Rearing second genera-

tion HP-LP guppies in a laboratory setting with controlled rearing conditions confirms that

observed differences in life history have a genetic basis [49], and additional work has further

demonstrated heritability for colour [50,51] and behaviour [52]. Alongside studies of natural

populations, the convergent and replicated nature of these phenotypes has been established

with experimental transplanting of HP populations into previously uninhabited LP environ-

ments, in which LP phenotypes evolve in only a few generations [38,53–55].

Here, we examine whole-genome sequencing of five replicated HP-LP population pairs

(S1 Table) across the main drainages of Northern Trinidad: Caroni (Tacarigua, Guanapo,

Aripo rivers), Northern (Madamas river) and Oropouche (Oropouche/Quare river). Impor-

tantly, none of the sites, including the Aripo, are introduction experiments. Previous work

looking at HP-LP convergence in natural HP-LP guppy populations using reduced representa-

tion RAD-sequencing found some evidence of molecular convergence [56]. This study how-

ever only included three natural populations pairs and inferences from RAD-sequencing can

be limited by reliance on linkage disequilibrium and an inability to pinpoint specific candidate

genes. To comprehensively explore genetic convergence in this system we first examine how

genetic variation is distributed across Northern Trinidad by quantifying population structure,

between-river introgression, and within-river demography. We then compare and contrast

selection scans between HP-LP pairs within each river to detect signals of convergent
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evolution. Finally, we examine a large candidate haplotype to explain the mode and mecha-

nisms by which convergence may have occurred at this genomic region.

Results

Population structure, admixture, and demographic history

Prior to assessing genomic convergence, it is important to contextualise neutral processes such

as population structure, introgression and past demography. In doing so, we establish expecta-

tions regarding how potentially adaptive genetic variation is distributed and shared among

populations; informing on the most likely mode by which genetic convergence may occur in

this system.

SNAPP (SNP and AFLP Package for Phylogenetic analysis; Figs 1B and S1) [57], and

fineSTRUCTURE (Fig 1C) [58] confirmed that each river’s HP-LP pair formed sister

Fig 1. Sampling sites, population structure and admixture across the five rivers. Map (A) highlights sampled rivers from the three drainages in Northern Trinidad.

Other major rivers are illustrated in light blue. Sampling rivers plotted alongside topography is available in S3 Fig. The coastline shapefile was sourced from

OpenStreetMap (openstreetmap.org; CC BY-SA 2.0), rivers were added manually and are available as shapefiles at Zenodo doi: 10.5281/zenodo.4740381. The dated

phylogeny (B) of sampling populations based on SNAPP, highlighting sister statuses of each HP-LP pair. Red regions around nodes denote 95% uncertainty around dates.

Nodes with<90% support are indicated with their posterior support. Heatmap (C) illustrates the length of painted recipient haplotypes based on donor haplotypes, used

by fineSTRUCTURE to infer coancestry (values are log10-transformed). PCA (D) with populations coloured according to river and shaped according to predation regime.

PC1 and PC3 are presented in the insert. In the main panel, ellipses denote river clusters at 95% confidence intervals. The right-hand column shows zoomed-in regions

around each river cluster on PC1 and PC2, with ellipses highlighting separation and 95% confidence intervals of predation clusters. Heat maps in (E) show projected two-

dimensional site frequency spectra (2dsfs) for each river pair highlighting the sharing of variants between LP and HP populations within each river. LP populations are on

the x-axis and HP populations are on the y-axis. In each sfs, the frequency of sites in each population is illustrated from 0 to 2 N, where N is the number of individuals in

each population. Each cell within these 2dsfs therefore shows the density (log-transformed) of SNPs with relevant allele counts in each population. Cells within the first

column and first row show private alleles that are absent in one population (allele count of 0). Grey cells are missing data, where no SNPs are found at allele counts of x

and y in LP and HP populations respectively.

https://doi.org/10.1371/journal.pgen.1009566.g001

PLOS GENETICS Genomic convergence in natural Trinidadian guppies

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009566 May 24, 2021 4 / 29

http://openstreetmap.org
https://doi.org/10.5281/zenodo.4740381
https://doi.org/10.1371/journal.pgen.1009566.g001
https://doi.org/10.1371/journal.pgen.1009566


populations and structure between pairs (as river units) was well-defined. The dated phylog-

eny, based on divergence with the outgroup P. wingei (3.41 mya)[59]), suggested that HP-LP

population splits were generally of the order of thousands of years old (S2 Table). Madamas

was estimated as the youngest (1999 years, 95% HPD interval 2–4617), whilst Tacarigua was

the oldest (29922 years, 95% HPD interval 13717–46331 years). These figures should be treated

cautiously however due to differing rates of contemporary migration between HP-LP popula-

tions (see below).

Expectedly, the strongest population structure separated rivers by drainage, with PC1

(33.5%) separating rivers from the Caroni drainage (Guanapo [GHP,GLP], Aripo [APHP,

APLP], Tacarigua [TACHP,TACLP]) from the Northern and Oropouche drainages (Madamas

[MADHP, MADLP] and Oropouche [OHP, OLP] rivers, respectively) (Fig 1D). This split was

dated at approximately 0.18 mya (S2 Table), which is considerably more recent than previous

estimates of the divergence between Caroni and Oropouche drainages based on mitochondrial

phylogenies [60]. PC2 (19.8%) separated out Caroni rivers, highlighting population structure

within this drainage is stronger than structure between Madamas and Oropouche, despite

these rivers being in separate drainages. The shared node of all Caroni rivers was dated at

approximately 0.34 mya (S2 Table). These PCA axes were robust to the removal of individual

rivers from the Caroni drainage, demonstrating the stronger population structure in the

Caroni drainage is not a sampling artefact (S2 Fig). In all cases (with the exception of Mada-

mas, where HP-LP cluster separation is minimal), LP populations were found to be further

from the global centroid in PCA space relative to their respective HP populations (Fig 1D).

This pattern demonstrates elevated drift from the common ancestral state, and is strongly sug-

gestive that LP populations are derived from HP sources.

Admixture proportions inferred by fineSTRUCTURE agreed with stronger structure within

the Caroni drainage, and were lower on average (based on shared haplotype lengths and num-

ber of chunk counts) between rivers within the Caroni drainage than between Oropouche and

Madamas (Fig 1C). We also detected signatures of introgression between APHP and the Oro-

pouche/Madamas lineage, categorised as elevated haplotype donor proportions of individuals

from these rivers into APHP recipients (Fig 1C).

To quantify genome-wide introgression, we calculated D and Fbranch (fb) statistics for all

trios with Dsuite (version 0.3; [61]) (Fig 2). Briefly, D statistics reveal ABBA-BABA imbalances

within trios and an outgroup (P. wingei in this case, see methods), which may be due to either

introgression between non-sisters, or incomplete lineage sorting. The fb statistic is a heuristic

approach to summarise f4-admixture ratios from across the whole tree topology to identify

introgression between specific nodes/tips. We observed statistically significant (bonferroni-

corrected p-value< 0.001) D-statistics across many trios, however these often exhibited mini-

mal f4-ratios. Conservatively, we focused then on trios where P1 and P2 were true sisters, i.e.

HP and LP populations from the same river (S3 Table), with significant D statistics and

f4-ratio > 0.05 and supporting evidence from the fb summary.

The strongest signal of introgression was observed between the upstream LP sites OLP and

MADLP (Fig 2; fb = 0.204, Z = 29.12), suggesting introgression has most likely occurred

between these populations (also producing signatures of introgression between OLP and

MADHP). Additional cross-drainage introgression was observed between APHP-OHP (fb =

0.058, Z = 14.85) and APHP-OLP (fb = 0.052, Z = 16.15). This indicates introgression has

taken place between downstream Aripo and a population from the neighbouring Oropouche

river, which are around 70m apart at the height of the wet season [62]. We also observed intro-

gression between upstream APLP and the other Caroni drainage populations (TACHP, GHP,

GLP), that was strongest between APLP and GHP (fb = 0.140, Z = 24.90). The fb summary also

highlighted excessive allele sharing among some lineages, namely between the Guanapo/Aripo
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lineage and the Madamas/Oropouche lineage, and between the Guanapo lineage and Tacari-

gua lineage.

To assess within river population demography (i.e. LP population bottlenecks, HP-LP

migration), we performed demographic modelling based on two-dimensional site frequency

spectra (2dSFS) using fastsimcoal2 [63](Fig 1E and Table 1). All demographic models per-

formed better with the addition of migration, which in every case was higher downstream

from LP to HP. For three rivers (Aripo, Madamas, Tacarigua) a historic LP bottleneck was

detected alongside stable current population size. Guanapo was better supported by a model

with no HP population growth, and Oropouche by a model that suggested HP population

Fig 2. Fbranch (fb) summary of introgression among the ten sampled populations. Rows represent nodes within the tree topology, and columns represent tips.

Each cell shows the fb statistic between a tree node (rows) and each tip (column). Grey cells are empty where comparisons cannot be made.

https://doi.org/10.1371/journal.pgen.1009566.g002
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growth. The particularly high estimates of Ne in APHP agree with the above analyses of intro-

gression into this population.

Altogether, these analyses illustrate how genetic variation is segregated across the five rivers

in our dataset. Primarily, ancestral variation is dictated by geography, with populations defined

within rivers, then within drainages. Particularly strong population structuring is observed in

the Caroni drainage (Tacarigua, Guanapo and Aripo rivers), with limited introgression having

occurred among these rivers within drainage. In contrast, we detect significant introgression

across drainages, particularly between the Madamas and Oropouche rivers, demonstrating the

potential for shared genetic variation among rivers. Gene flow among rivers, particularly

among upstream regions, is likely facilitated by flooding events, although we expect this to be

more difficult within the Caroni drainage due to steeper mountain topography between rivers

(S3 Fig). The modest introgression observed within the Caroni drainage may occur through

physical connectivity of the rivers (Fig 1A).

Within rivers, we see evidence of population bottlenecks in LP populations, potentially lim-

iting the amount of available adaptive variation. This is particularly apparent in Tacarigua and

Guanapo, within which LP populations have particularly low Ne estimates, an excess of mono-

morphic sites that are polymorphic in the HP founder, and only limited private polymorphic

sites (Fig 1E). In other words, the variation within these LP populations is a subset of that

found in the corresponding HP. For all river pairs, our demographic modelling agrees that

migration upstream from HP to LP is weaker than LP to HP, compounding the potential for

limited variation upstream. Some HP-LP populations are better connected by migration how-

ever, such as Oropouche and Madamas, where many polymorphic sites are shared between

upstream LP and downstream HP. Altogether, this amounts to predictable constraints and

limitations on the sharing of adaptive variation among LP populations, which is observed in

the pairwise 2dsfs among LP populations (S4 Fig), with the exception of OLP and MADLP due

to introgression.

Candidate HP-LP regions and assessing convergence

To evaluate regions associated with HP-LP adaptation, we scanned the genome using several

approaches: XtX [64], a Bayesian analogue of FST that includes a simulated distribution under

neutrality; AFD, absolute allele frequency difference, which scales linearly from 0–1 between

undifferentiated and fully differentiated [65]; and XP-EHH (extended haplotype homozygos-

ity) [66], which compares homozygosity between phased haplotypes between populations. To

identify selected regions, we calculated each measure in non-overlapping 10kb windows within

each river between HP and LP sites. Putatively selected windows were identified if they were

detected as outliers by at least two approaches (see methods for outlier criteria for individual

tests; S5 Fig). Using an intersect of all three may be over-conservative. For example, we would

miss instances where divergent selection within a river fixes alternate haplotypes, such that

both HP and LP populations have similarly low heterozygosity (i.e. no XP-EHH outlier but an

Table 1. Demographic parameters of each river, inferred by fastsimcoal2. Values in brackets represent confidence intervals of 95% after bootstrapping 100 SFS.

Drainage River Mean HP-LP FST HP Ne LP Ne HP > LP Migration LP > HP Migration Model

Caroni Tacarigua 0.243 3,549 (2864–4493) 474 (347–612) 4.78E-05 1.55E-04 LP Bottleneck

Caroni Guanapo 0.269 19,698 (19592–19698) 155 (135–183) 3.88E-06 8.34E-04 No population changes

Caroni Aripo 0.072 43,354 (33767–59439) 6,122 (4588–9008) 2.10E-04 3.27E-04 LP Bottleneck

Oropouche Oropouche 0.087 4,514 (4148–4910) 3,740 (3825–4411) 2.43E-04 1.21E-03 HP population growth

Northern Madamas 0.171 1,121 (922–1355) 2,480 (2337–2743) 8.68E-05 4.88E-04 LP Bottleneck

https://doi.org/10.1371/journal.pgen.1009566.t001
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outlier in XtX and AFD). Typically, windows were identified that had either high XtX and

high AFD, or high XP-EHH and high AFD (S4 Table), although reasonable overlap among all

three selection scans was also observed. Overlapping selection scan outlier windows contained

more SNPs on average than a genome-wide expectation (S6A Fig).

Comparing the intersecting list of candidates of XtX, AFD and XP-EHH within each river

revealed little overlap among rivers, with only a single 10kb window overlapping in more than

two rivers (Fig 3A; for genome-wide plots see S7 and S8 and S9 Figs). We then scanned the

genome further with 100kb sliding windows (50kb increments) to assess potential clustering

of outlier windows in larger regions, but this approach similarly revealed little overlap among

rivers. We then explored whether outlier regions (10kb windows overlapping in>1 selection

scans) were enriched for genes in common biological pathways between rivers using one-to-

one zebrafish orthologues, which may suggest repeated pathway modification through differ-

ent genes. Using the outlier regions defined above, no pathway was significantly overrepre-

sented in any river. We did however notice cases in which the same pathways exhibited fold-

enrichments >1 in multiple rivers (Fig 3B), albeit non-significant within rivers in each case.

Fig 3. Selection scan results and evidence of convergence. Upset plot (A) of overlap among outlier sets (evidence from two of AFD, XtX, XP-EHH) highlighting no

overlap beyond sets of three rivers. Coloured horizontal bars show the total set size (number of outlier windows) detected in each river. Vertical bars denote the size of the

overlap among sets, equivalent to an overlapping region within a Venn diagram. The overlapping region is described by filled points below vertical bars. Fold enrichment

of pathways (B) associated with zebrafish orthologs of genes in outlier regions within each river calculated from the Panther DB. Cadherin-signaling pathway was the only

pathway with fold-enrichment>1 in all rivers. Other presented pathways had fold-enrichment>1 in four rivers. Genome-wide BayPass scan results (C) scanning 10kb

windows for association with HP-LP classification. Points are coloured according to quantiles: 95% = yellow, 99% = orange, 99.9% = red. Dashed line represents the

median BF, and the solid red line denotes 99.9% quantile cut-off. Peaks on chromosomes 8 and 20 are also highlighted (D).

https://doi.org/10.1371/journal.pgen.1009566.g003
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We used permutations to explore the likelihood of observing fold-enrichment >1 in our five

independently-derived outlier sets. This analysis identified that Cadherin-signaling pathway

genes were overrepresented across all five rivers relative to by-chance expectations (p = 0.013)

(Fig 3B). In total, 20 genes from the Cadherin-signaling pathway were recovered from all five

river outlier sets, with some overlap between them (S5 Table). This analysis may be over-con-

servative, due to analysing only guppy genes with one-to-one zebrafish orthologues. Other

genes associated with cadherin-signaling were detected by our selection scans, including Cad-
herin-1 and B-Cadherin in a differentiated region on chromosome 15 (~ 5 Mb) in Oropouche

and Tacarigua, but these genes exhibited a many-to-many orthology with zebrafish genes so

were omitted. We also examined pathways with fold-enrichment >1 in any four rivers, but

these were not significant (p> 0.05) according to permutation tests (Fig 3B).

We next associated allele frequency changes with HP-LP status using BayPass’ auxiliary

covariate model. This latter approach has the advantage of using all populations together in a

single analysis, whilst controlling for genetic covariance. As above, BayPass outlier windows

contained more SNPs on average than a genome-wide expectation (S6B Fig). Scans for regions

associated with HP-LP classification identified two major clusters of associated 10kb windows

on chromosomes 8 and 20 (Fig 3C and 3D). In total, we highlighted 70 10kb windows corre-

sponding to 24 annotated genes (and a number of novel, uncharacterised genes) (S6 Table).

Intersecting these windows with within-river candidate regions highlighted that most HP-LP

associated candidates reflected within-river selection scan outliers in one to three rivers (S7

Table). Selection scans may overlook some of our association outlier windows because differ-

entiation at these loci may be moderate, but rather we are detecting consistent allele frequency

changes in the same direction between HP-LP comparisons. Many of the associated windows

mapped to a previously unplaced scaffold in the genome (000094F), but we were able to place

this at the start of chromosome 20 along with some local rearrangements (S10 Fig) using previ-

ously published HiC data [67]. From here on and in Fig 3C and 3D, we refer to this new

arrangement for chromosome 20 and scaffold 000094F as chromosome 20.

The clusters on chromosomes 8 and 20 exhibited multiple 10kb windows above the 99.9%

quantile of window-averaged BF scores (chr8 = seven windows, chr20 = 54 windows), suggest-

ing larger regions associated with HP-LP adaptation in multiple rivers (Fig 3D). In particular,

the region at the start of chromosome 20 spanned several megabases with two distinct peaks.

The entire chr20 region also exhibited some evidence of selection in four of the five rivers (all

but Madamas; S7 Table), whereas the chr8 region only had evidence of selection in Guanapo

and Aripo. Further, the larger of the chr20 peaks reflected the strongest region of differentia-

tion in the Aripo river (S11 Fig) (which was minimally differentiated genome-wide, S9 Fig).

Based on the substantially stronger evidence of convergence at the chr20 region, compared

with the second largest cluster of outliers on chr8, we explored the chr20 region further to eval-

uate: which rivers showed evidence of HP-LP differentiation within these regions; by what

mode of convergence these regions had evolved under; and their gene content and probable

candidates for HP-LP phenotypes. Gene content and selection scan overlap for the chr8

region, and other BayPass outliers, is available in S6 and S7 Tables.

Candidate region on chromosome 20

Visualisation of genotypes (Fig 4A) illustrated extended haplotype structures that were consis-

tent with haplotypes spanning the entire chromosome 20 candidate region (Fig 3D). Interest-

ingly, two of the three Caroni LP populations (GLP and TACLP) were fixed or nearly fixed for

homozygous ALT haplotypes across the region (Fig 4A). We will refer to this entire region

(~0–2.5 Mb) as the ‘CL haplotype’ (Caroni LP haplotype). The other haplotype we will refer to
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as the ‘REF haplotype’ due to its closer similarity to the reference genome. Moreover, a subset

of the candidate region was also nearly fixed in APLP (between black lines, between ~1.53–

2.13 Mb, referred to as the CL-AP (CL Aripo) region Fig 4A). This CL-AP region corresponds

to both the region of highest genome-wide divergence in Aripo (S11 Fig), and the largest peak

in our HP-LP association analysis (Fig 3D).

We then assessed whether ancestry of our candidate region (Fig 4B) deviated from the rest

of chromosome 20 using a local PCA. This approach is sensitive to inversions, changes in

Fig 4. Evidence of divergence along the CL haplotype (ALT alleles, chr20:1–2633448). Genotypes for each individual plotted according to hierarchical clustering of

PCA (A). Solid black lines denote the CL-AP region, corresponding to the strongest peak of HP-LP association in the dataset. (B) The CL haplotype region (shaded grey)

shows evidence of segregated local ancestry in comparison to the rest of chromosome 20, according to MDS scores derived from local PCA. The CL-AP region is again

shown between solid black lines. MDS1 = 0 is shown as a dotted line in each panel. A lack of signal on MDS1 for the CL region in Guanapo LP (GLP) and Tacarigua LP

(TACLP) reflects that this region is fixed. (C) Unrooted maximum-likelihood tree of homozygous individuals (haplogroups) across the CL-AP region, highlighting a

major phylogenetic branch separating Caroni LP individuals from both Caroni HP individuals (homozygous for the REF haplotype) and populations from outside the

Caroni drainage. (D-F) Branch length analysis of CL-AP region relative to the whole of chromosome 20. Density distributions (E) show mean branch lengths between

populations in 100kb windows across chromosome 20 (F), with the median highlighted in each. The mean branch length between the REF and CL haplotype at the

CL-AP region in Aripo is marked on all density distributions as a dashed line. Density distributions are ordered vertically according to increasing phylogenetic distance,

as summarised in the adjoining tree (D). The CL-AP region is highlighted in panel F as a grey rectangle.

https://doi.org/10.1371/journal.pgen.1009566.g004
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recombination and gene density [68], which may explain why such a large region appears as

HP-LP associated. This approach confirmed that the associated region exhibits distinct local

ancestry in relation to the rest of the chromosome in all five rivers (Fig 4B), albeit with some

idiosyncrasy. For example, MDS scaling along the major axis was broadly similar for GHP and

TACHP (LP populations were fixed and therefore showed minimal signal), with the entire

region segregated as a single block. Similar results were observed in Oropouche and Madamas.

In Aripo however, smaller blocks within the region were the major drivers of local ancestry.

Linkage analyses confirmed strong linkage across the several megabases spanning the HP-LP

associated region in most of the sampled populations (S12 Fig).

These patterns may be consistent with a large inversion, polymorphic in Caroni HP popula-

tions but fixed in Caroni LP populations. Further structural variation (SV) or a recombination

event between the CL haplotype and the REF haplotype may then have released the CL-AP

region from the larger CL haplotype in Aripo only. We therefore explored the potential for

inversions and SVs with our aligned read data using smoove [69] (v0.2.5) and Breakdancer

[70] (v1.4.5). We did not find evidence for an inversion or an alternative SV spanning either

the full CL haplotype (in Guanapo or Tacarigua) or around the diverged CL-AP region in

Aripo. Interestingly however, this analysis of SVs did highlight that the strongest peak of

HP-LP differentiation in the Oropouche river (chromosome 15 at approximately 5Mb,

S13 Fig), was associated with a detected 1.1 kb deletion within the B-cadherin gene, and exhib-

ited high HP-LP FST (0.66). The lack of an inversion underlying the CL haplotype would agree

with our local PCA results, where deviations were observed at the start of chromosome 20 in

Madamas and Oropouche, despite the CL haplotype being absent.

To understand the mode of convergence at the CL-AP region, we reconstructed the phylo-

genetic history of the haplotype at this region. To start, we performed PCA over the CL-AP

region, and found three clusters along a PC1 axis with large loading (PC1 = 57%, S14 Fig), con-

sistent with individuals tending to either be homozygotes for either haplotype or heterozy-

gotes. We used these clusters to define homozygous individuals and explored the phylogenetic

history of these homozygote haplotypes following phasing. A maximum-likelihood tree using

RAxML-NG (version 0.9.0) illustrated that the CL haplotype at the CL-AP region is phyloge-

netically distinct from the REF haplotype and separated by a long branch (Fig 4C). This clus-

tering of CL haplotypes and REF haplotypes contradicts the neutral expectation that

haplotypes should be predominantly structured within rivers. The clustering of Oropouche

and Madamas individuals with Caroni REF haplotypes was surprising, and in stark contrast to

the genome-wide structure that clearly separates rivers by drainage (Fig 1C).

To evaluate the relative age of these haplotypes, we compared the mean branch length

between CL-REF homozygotes in the Aripo river at the CL-AP region to the distribution of

mean branch lengths across chromosome 20 (Fig 4D, 4E and 4F) across the phylogeny. In

Aripo (APHP-APLP), the CL-AP region is clearly more diverged than the rest of chromosome

20 (Fig 4E), and the mean branch length between the REF and CL haplotype was generally

greater than the phylogenetic distance between APHP and all HP populations. This suggests

that the CL and REF haplotype separation most likely predates the common ancestor of all five

rivers. It is particularly interesting that given the CL haplotype may be reasonably old, it has

been broken down into smaller regions only in the Aripo river, whereas Tacarigua and Gua-

napo maintain the full haplotype.

Within the CL haplotype region there are 56 annotated genes (S8 Table), several of which

may have important roles in HP-LP phenotypes. Due to the elevated differentiation observed

across the haplotype, it is difficult to pinpoint specific candidates. However, the breakdown of

the haplotype in Aripo at the CL-AP region, corresponding to our association peak, provides a

unique opportunity to narrow down candidate genes, given it is the only part of the larger
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candidate region that is differentiated in all Caroni HP-LP comparisons. Interestingly, analyses

of coverage across the CL-AP region uncovered repeatable low coverage in all Caroni LP popu-

lations that corresponded with deletions of several kb (viewed in igv) in the LP populations

(S15 Fig). Five of these deletions overlapped with the plppr5 gene, including a deletion sub-

suming the final exon of the gene (S15B Fig). This gene also spanned the HP-LP associated

windows with the highest association scores (S6 Table). The adjacent plppr4 gene included the

individual SNP (000094F_0:556282) with the highest HP-LP association score of all SNPs in

the genome (S15A Fig). This particular SNP was observed in the intron between the second

and third exons of plppr4.

In summary, this region presents a fascinating example of genetic convergence of an ances-

trally-inherited large haplotype among rivers in the Caroni drainage. As such, subsequent

genetic divergence of HP-LP adaptation is observed in non-Caroni rivers due to the presumed

loss of the CL haplotype in the lineage ancestral to non-Caroni rivers. Additionally, Aripo

exhibits a unique signature of stronger HP-LP differentiation at a subregion of the haplotype

due to a potentially more recent recombination event between the larger, diverged haplotypes

themselves.

Discussion

Summary of results

Using a whole genome sequencing approach, we found a strong candidate haplotype for

HP-LP convergence within the Caroni drainage of Northern Trinidad (the only drainage

where we have multiple rivers sequenced). More generally, we found molecular convergence

at specific loci is limited among rivers from different drainages. Further, we find evidence that

convergence at the level of functional pathways among rivers may facilitate phenotypic conver-

gence across all rivers. Our convergent LP candidate region exhibited a strong signal of diver-

gent selection between HP-LP sites on chromosome 20. This region contains a large ancestral

haplotype fixed or nearly fixed in LP populations in all three Caroni rivers examined, and con-

tained promising candidate genes for LP phenotypes. Our analysis of population structure,

admixture, and demographic histories across Northern Trinidad suggest that the reduced re-

use of the same alleles among drainages may be due to strict structuring of genetic variation

between some rivers and recurrent bottlenecks during the founding of LP populations from

HP sources. Combined, these processes limit shared ancestral genetic variation from which

convergent genetic adaptation may occur. This is not true for all rivers however, with strong

evidence of gene flow taking place between rivers outside of the Caroni drainage.

Convergence at the CL haplotype

Our analyses highlighted the ‘CL’ haplotype on chromosome 20 as a clear outlier in terms of

association between allele frequencies and HP-LP classification. Within the CL haplotype, the

‘CL-AP’ region represented the strongest candidate for convergent HP-LP adaptation due to

its particularly strong HP-LP association peak and high within-river differentiation in Aripo.

Recent empirical work has demonstrated the importance of large haplotype regions con-

taining many genes in convergent evolution. In Littorina, large divergent haplotypes are main-

tained by inversions in crab vs wave ecotypes [71,72]. Similarly, sunflower species repeatedly

experience selection on large haplotypes [23], most, but not all, of which involve inversions.

This recent empirical evidence suggests a fundamental role of large haplotype blocks in adap-

tation by bringing together and maintaining clusters of adaptive alleles, although we cannot

rule out genetic draft occurring around a single functional locus within the CL haplotype. We

did not detect evidence of inversions within this region, but given that we detect deviations in
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local ancestry in all rivers (Fig 4B) relative to the rest of the chromosome, and the acrocentric

nature of guppy chromosomes [73], it is possible that recombination is reduced over the CL

haplotype due to proximity to the telomere. This mechanism could maintain this haplotype in

the absence of an inversion. We noted however that, whilst the CL haplotype was fixed (at the

CL-AP region) in Caroni LP populations, it was polymorphic in all Caroni HP populations.

Large haplotypes may bring together beneficial alleles but they can generate constraint if dif-

ferent loci within the haplotype experience contrasting selection. Breakdown of the haplotype,

potentially involving double crossover events in Aripo, may have reduced constraints associ-

ated with genetic background. Subsequently, this may be why we observe stronger HP-LP dif-

ferentiation at the CL-AP region uniquely in this river.

Within the CL-AP region we highlighted the plppr5 and plppr4 genes as strong candidates

for HP-LP adaptation. These genes correspond to the strongest signals of HP-LP association

within the CL-AP region, and in particular the plppr5 allele on the CL haplotype is associated

with an exon-subsuming deletion (S15B Fig). There is limited functional evidence for these

genes, but evidence suggests a possible role in growth and body size. Transcriptome analysis

has shown that PLPPR4 is among genes upregulated in slow-growth vs fast-growth Jinghai Yel-

low Chicken chicks [74], and transgenic mice studies have demonstrated phenotypic effects of

Plppr4 on body size and growth phenotypes [75]. In humans, PLPPR4 expression is limited to

the brain, but PLPPR5 expression occurs more broadly.

Across the CL haplotype region, HP populations were polymorphic, which is likely why we

fail to detect this region as within-river outliers in Guanapo and Tacarigua. Further, these riv-

ers have small LP populations and elevated signatures of genome-wide drift. That the CL hap-

lotype region is variable within HP populations suggests that there is selection on the CL

haplotype in LP populations but not against it in HP populations, or that downstream-biased

migration is strong enough to maintain the CL haplotype in downstream HP populations. At

the CL-AP region, we note that haplotypes derived from Oropouche and Madamas cluster

with REF haplotypes from Caroni (Fig 4C), despite genome-wide data suggesting the split

between Caroni and Northern/Oropouche drainage rivers is the deepest in our data (Fig 1C

and 1D; although not in Fig 1B). Such patterns can arise when diverged haplotypes are intro-

gressed from more ancient lineages, or even different species, as observed in flatfish [76], sun-

flowers [23], and Heliconius butterflies [24]. We found, however, that branch lengths between

the CL and REF haplotype clusters were in keeping with branch lengths within the phylogeny

(Fig 3D, 3E and 3F), suggesting it is unlikely that the CL haplotype evolved elsewhere in an

unknown lineage before more recently being introgressed into the Caroni drainage. This pat-

tern suggests the CL haplotype may have evolved prior to the splitting of Caroni, Northern,

and Oropouche drainage lineages, but is subsequently absent due to loss through drift or selec-

tion outside of the Caroni drainage. Alternatively, the CL and REF haplotypes could represent

the ancestral Caroni and Northern/Oropouche drainage haplotypes respectively, and the cur-

rent distribution may reflect introgression of the REF haplotype into the Caroni drainage and

subsequent gene flow among HP populations within the Caroni drainage. This would however

not explain the strong differentiation between APHP and APLP at the CL-AP region, and

seems unlikely based on limited HP-HP gene flow in the Caroni river.

Population structure and limitations on the sharing of adaptive variation

By using whole-genome data, we were able to explore in fine-detail how genetic variation is

structured and distributed across natural guppy populations across Northern Trinidad. Our

observations support previous work suggesting downstream-biased migration, strong drain-

age-based structuring, and variable gene flow among rivers [77,78]. Using within-river
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demographic analyses we also found downstream-biased migration in all rivers, but with vari-

able rates, and three LP populations experiencing bottlenecks; these bottlenecks likely repre-

sent historical founding bottlenecks as opposed to recent crashes [77]. Such demographic

processes, if strong enough, can obscure signals of genetic convergence, or even produce false-

positives by manipulating the relative efficacy of selection and neutral processes across the

genome [79].

A particularly interesting question within this system is whether LP populations are derived

from HP sources, or vice versa. Whilst neither contemporary HP and LP populations represent

the shared ancestral population, the extent to which HP and LP populations have drifted from

the common ancestral state is highly suggestive of which was most similar to the ancestral

state. Our data thus strongly support the direction of LP evolution from HP (or HP-like)

sources, as LP populations are observed at more extreme regions of PCA space (Fig 1D); indic-

ative of excessive drift. HP-LP population splits were estimated as several thousands of years

old, however caution should be taken when interpreting variation among rivers as greater

within-river migration will downwardly bias divergence estimates. However, the range

observed among rivers (1,999–29,922 years) provides a useful ballpark figure for the ages of

the HP-LP systems generally, and suggests HP-LP populations may be older than the estimate

by Endler [80] of less than 1000 years. The time interval estimated for splits within all rivers

here overlaps with the end of the last glacial maximum, when Trinidad experienced substantial

change due to flooding and separation from the South American mainland. In addition, our

estimates of cross-drainage divergence are considerably younger than the 0.6–1.2 mya esti-

mates presented by mitochondrial sequences [60], and provide little evidence for the sugges-

tion that Oropouche drainage populations are a separate species [81]. Estimates of divergence

times based on mitochondrial and nuclear markers can differ for many reasons [82], including

non-neutrality of the mitochondrial genome, different effective population sizes of the mito-

chondrial and nuclear genome, or sex-biased migration. Generally, as our divergence times

are based on SNPs located genome-wide as opposed to a single locus, our estimates may be

considered more robust.

In our introgression analyses, we observed evidence of introgression in the Aripo HP popu-

lation from the Oropouche and Madamas rivers. Aripo represents the most easterly river

within the Caroni drainage, whilst Oropouche/Quare is the most westerly river in the Oro-

pouche drainage (Fig 1A). Thus, admixture between these populations may be possible, and

indeed has been suggested elsewhere [54,78,83]; likely facilitated by flooding during the wet

season. The Aripo river may be particularly susceptible to contemporary human translocations

of guppies from across Trinidad, as it is heavily involved in active research including experi-

mental introductions. We also found strong introgression between OLP and (most likely)

MADLP. Introgression between upstream LP populations has been reported between the

Paria and the Marianne rivers in the Northern drainage [84], but is surprising here given these

rivers are in separate drainages. Despite this however, genetic convergence was not more per-

vasive between Oropouche and Madamas than other river comparisons (Fig 2A), suggesting

that other contingencies such as contrasting selection among rivers or genetic redundancy are

probably important in this system.

Contrasting demographic contexts can influence the genetic architecture of traits or the

regions of the genome where adaptive alleles reside, and may be important here given variable

connectivity of HP-LP pairs. Theory predicts that with increasing sympatry, if multiple genetic

routes to a phenotype exist then selection should favour simpler genetic architectures (e.g few

loci of larger effect) because they are less likely to be broken down by introgression than com-

plex genetic architectures (e.g. many loci with small effect) [85,86]. Empirical support from

cichlid species pairs suggests this is the case for male nuptial colour traits in sympatric vs
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allopatric pairs [87]. Given demographic histories vary between our HP-LP populations

(Table 1), these natural conditions may moderate the selective benefits of different genetic

routes to phenotypes.

Our population structure results have important implications for the likelihood of observ-

ing genetic convergence because they identify constraints on the sharing of ancestral genetic

variation through LP founding bottlenecks and limitations on adaptive variants being shared

among rivers [3]. These constraints are particularly obvious with the limited sharing of genetic

variation among LP population in their 2dsfs (S4 Fig). The exception here is OLP-MADLP,

where introgression, most likely into OLP, has led to limited private variation within MADLP.

Such structuring of genetic variation, typical of riverine populations, stands in contrast to

other prominent systems with abundant evidence of genomic convergence, such as stickle-

backs [88] and atlantic herring [89], where largely panmictic marine populations share much

adaptive variation. Standing genetic variation is a major contributor of adaptive variation [90–

92], and the sharing of this variation among lineages acts a significant contingency to genetic

convergence [93] in varied systems including fish [25,94] and insects [95].

Functional convergence of the cadherin-signaling pathway

Redundancy in the mapping of phenotype to genotype is expected for highly polygenic traits,

whereby many loci may be adapted to modify a phenotype, and in instances where phenotypes

are derived from complex functional pathways [28]. Indeed, convergence at the level of path-

ways has been described for human pygmy phenotypes [15] and hymenopteran caste systems

[14]. In our selection scans, we found a greater proportion of genes associated with cadherin-

signaling than expected across five replicated datasets, suggesting this pathway may be under

selection at different genes in all rivers. Cadherin genes cadherin-1 and B-cadherin have previ-

ously been detected as under selection in experimentally transplanted LP populations derived

from GHP [56], however these specific genes, whilst also detected here (S13 Fig), were omitted

from our pathway analysis due to many-to-many orthology with zebrafish genes. Genes in this

pathway have important roles in cell-cell adhesion, and are associated with tissue morphogen-

esis and homeostasis by mediating interfacial tension and orchestrating the mechanical cou-

pling of contact cells [96]. Cadherin signaling pathways interact with the signaling of various

growth hormones and are involved in differential growth phenotypes. For example, cadherin

signaling genes were differentially expressed between transgenic and wild-type coho salmon

with divergent muscle fibre phenotypes that affect growth and the energetic costs of mainte-

nance [97]. Cadherin genes are also expressed during oogenesis in Drosophila [98]. Assessing

the functional roles of the cadherin signaling genes identified in our study (S5 Table) is beyond

the scope of this work, but in identifying this pathway across rivers we provide evidence for a

potentially shared mechanism by which HP-LP phenotypes may similarly evolve across North-

ern Trinidad.

Concluding remarks

We have investigated whether convergent HP-LP phenotypes that have evolved repeatedly

within rivers across Northern Trinidad are underpinned by convergent genetic changes. We

found convergence of genetic pathways, not specific genes across drainages. This is in keeping

with recent work suggesting a predominant role of shared standing genetic variation in driving

convergent changes at the gene-level, a mechanism that is restricted in natural guppy popula-

tions by limited between-river gene flow and recurrent founding bottlenecks during LP coloni-

sations. Within our drainage with multiple rivers sampled, we did however find convergent

evolution of a large haplotype region nearly fixed in Caroni LP populations that is likely
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derived from shared ancestral variation between these populations. Additional sampling of

multiple rivers within the same drainage could identify comparable drainage-specific candi-

dates in the Northern and Oropouche drainages. These results provide a comprehensive,

whole-genome perspective of genetic convergence in the Trinidadian guppy, a model for phe-

notypic convergence.

Methods

Sampling, sequencing and SNP calling

Individuals were sampled from naturally-occurring downstream HP and upstream LP envi-

ronments in rivers from each of Northern Trinidad’s three drainages (Fig 1A and S1 Table)

between 2013 and 2017. Three of these rivers (Aripo, Guanapo, Tacarigua) share a drainage

(Caroni), whilst Oropouche (Oropouche) and Madamas (Northern) are found in separate

drainages. Numbers of individuals from each population were: TACHP = 12, TACLP = 14,

GHP = 19, GLP = 18, APHP = 19, APLP = 19, OHP = 19, OLP = 20, MADHP = 20, MADLP =

16. Samples were stored in 95% ethanol or RNeasy at 4˚ C prior to DNA extraction. Total

genomic DNA was extracted using the Qiagen DNeasy Blood and Tissue kit (QIAGEN; Hei-

delburg, Germany), following the manufacturer’s guidelines. DNA concentrations� 35ng/μl

were normalised to 500ng in 50μl and were prepared as Low Input Transposase Enabled

(LITE) DNA libraries at The Earlham Institute, Norwich UK. LITE libraries were sequenced

on an Illumina HiSeq4000 with a 150bp paired-end metric and a target insert size of 300bp,

and were pooled across several lanes so as to avoid technical bias with a sequencing coverage

target of�10x per sample. Data from the Guanapo and Oropouche rivers has been previously

published as part of Fraser et al. [67].

Paired-end reads were quality-controlled with fastQC (v0.11.7) and trimmed with trim_

galore (v0.4.5) before being aligned to the long-read, male guppy genome assembly [67] with

bwa mem (v0.7.17). Appropriate read groups were added followed by alignment indexing,

deduplication and merging to produce final bams. Merged, deduplicated alignments were

recalibrated using a truth-set of variants generated from high-coverage, PCR-free sequencing

data from 12 individuals [67]. GVCFs were produced using GATK’s (v4.0.5.1) HaplotypeCal-

ler and consolidated to chromosome/scaffold intervals with GenomicsDBImport prior to gen-

otyping with GenotypeGVCFs.

SNPs were filtered on the basis of QD< 2.0, FS > 60.0, MQ< 40.0, HaplotypeScore > 13.0

and MappingQualityRankSum < -12.5 according to GATK best practices. We retained only

biallelic sites with a depth� 5. SNPs were also removed if missing in > 50% of individuals

within a population, if they were not present in all ten populations, and had a minor allele

frequency< 0.05 (relative to all individuals). This produced a final dataset of 3,033,083 high-

quality SNPs.

Population structure and introgression

Principal Component Analysis (PCA) was performed over all ten populations using a linkage-

pruned (—indep-pairwise 50 5 0.2) set of SNPs (N = 217,954) using plink (v2.00).

Prior to further estimates of population structure, chromosomes and scaffolds were phased

individually with beagle (v5.0; [99]), which performs imputation and phasing, and then phased

again using shapeit (v2.r904; [100]) making use of phase-informative reads (PIR). This com-

bined method has been effective elsewhere [101]. Phased chromosomes were re-merged into a

single file for analysis with fineSTRUCTURE (v4.0.1; [58]). FineSTRUCTURE first makes use

of chromosome painting before assessing admixture based on recombinant haplotype sharing
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among all individuals. FineSTRUCTURE was run with a uniform recombination map and an

inferred c-value of 0.344942 with successful convergence.

For analyses of divergence times and introgression, we used previously published [102]

sequencing data from six P. wingei individuals (3 males, 3 females). We aligned these to the

male guppy genome using the protocol above. SNPs were called in a new cohort alongside

guppy individuals and filtered as above, with the exception that a 1% MAF filter was applied.

This produced a second VCF with a total of 4,829,912 SNPs.

For divergence estimates, we used SNAPP [57] and applied the workflow outlined by Stange

et al. [103] using scripts available at github.com/mmatschiner/tutorials/tree/master/

divergence_time_estimation_with_snp_data. This is an implementation of SNAPP that

includes a time-clock model that can be calibrated based on information within the phylogeny.

To calibrate our phylogeny, we rooted the divergence between P. reticulata and P. wingei at 3.41

mya and a standard deviation of 0.329 based on estimates from five studies collated by Time-

Tree [59]. TimeTree confidence intervals are normally distributed, so we used a normal distri-

bution with mean 3.41 and sd 0.329. For input, we included SNP data from 36 individuals: six

from the outgroup and three from each of the ten populations with the lowest % missing data.

We filtered for SNPs with no missing data among these 36 individuals and thinned SNPs to one

every 50kb with vcftools—thin 50000. Of these SNPs, we selected the top 1000 SNPs that were

informative for populations based on FST. This step was necessary in order to achieve conver-

gence in trees, given these populations are relatively young and there is a greater expectation for

gene flow compared with species-level phylogenetic inference. We performed three runs with

different starting seeds, each with 1,000,000 MCMC iterations. Convergence was achieved after

burn-ins of approximately 500,000, 200,000, and 100,000 iterations for the three runs respec-

tively based on Tracer (v1.7.1) [104] summaries. We removed these burn-ins and merged the

converged 500,000, 800,000 and 900,000 MCMC iterations for a total of 2,200,000 MCMC itera-

tions (sampled every 1000 iterations), which yielded ESS for all parameters >320. The maxi-

mum clade credibility (MCC) tree (Fig 1B) and statistics were calculated with FigTree (v1.4.4).

Node ages were taken as the mean height of nodes with 95% HPD intervals.

To assess introgression, we calculated D-statistics, f4-ratios and Fbranch statistics with

Dsuite [61]. We highlighted introgression candidates as trios with significant D values (Bon-

ferroni-corrected p-value < 0.001) and f4-ratios > 0.05 between populations from different

rivers i.e. we retained trios for which P1 and P2 were assigned to the same river by including

the tree structure to examine the possibility of introgression between rivers.

Demographic inference

We explicitly modelled the demographic history of each HP-LP population pair using fastsim-
coal2 [63]. Fastsimcoal2 uses a continuous-time sequential Markovian coalescent approxima-

tion to estimate demographic parameters from the site frequency spectrum (SFS). As the SFS

is sensitive to missing data, a —max-missing filter of 80% was applied to each population VCF

containing both monomorphic and polymorphic variants, and to remove LD, the VCF was

thinned at an interval of 20kb using vcftools [105]. For each HP-LP population pair, we gener-

ated a folded two-dimensional frequency spectrum (2dSFS) using the minor allele frequency,

which were generated via projections that maximised the number of segregating sites using

easySFS (https://github.com/isaacovercast/easySFS).

Five demographic models were used to explore the demographic history of the population

pairs, all of which contained a uniform distribution divergence of 1 to 6e7 and log uniform dis-

tribution Ne of 1 to 50000: Model A) HP-LP split with no population growth; Model B) HP-LP

split with no population growth and a post-founding bottleneck in the LP population; Model
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C) HP-LP split with historical population growth in HP; Model D) HP-LP split with historical

population growth in HP and a post-founding bottleneck in the LP population; Model E)

HP-LP split with bottlenecks in both LP and HP populations. All five models were also run

with the inclusion of a migration matrix between LP and HP with a log uniform distribution

of 1e-8 to 1e-2. Fastsimcoal2 was used to estimate the expected joint SFS generated from 100

independent runs, each consisting of 200,000 simulations per estimate (-n), generated by 100

ECM cycles (-L). Model choice was assessed by computing the log likelihood ratio distribu-

tions based on simulating 100 expected SFS from the run with the lowest delta (smallest differ-

ence between MaxEstLhood and MaxObsLhood) as per Bagley et al. [106]. The most likely

model was selected for each population pair and the run with the lowest delta likelihood was

used as input for bootstrapping by simulating 100 SFS. We report the median and 95% confi-

dence intervals for Ne and probabilities of migration as provided by bootstrapping.

Scans for selection

We used three approaches to scan the genome for signatures of selection between HP-LP pop-

ulations. We first estimated XtX (a Bayesian approximation of FST) within each river using

BayPass [64], which has the advantage of including a genetic covariance matrix to account for

some demographic variation. Genetic covariance matrices were estimated using LD-pruned

(plink—indep-pairwise 50 5 0.2) VCFs for each river, and averaged over 10 independent runs.

We determined a significance threshold within each river by simulating neutral XtX of a POD

sample of 10,000 SNPs with the simulate.baypass() function in R. We then marked 10kb win-

dows as outliers if their mean XtX value exceeded the 0.95 quantile of the neutrally simulated

distribution. Secondly, absolute allele frequency differences (AFD) were estimated by taking

allele counts from each population (vcftools —counts2) and estimating frequency changes per

SNP. To convert per SNP values to 10kb non-overlapping windows we removed invariants

within each river, calculated the median AFD, and filtered windows that contained fewer than

6 SNPs. We marked outliers as windows above the upper 0.95 quantile, or with an AFD> 0.5

if this quantile was > 0.5. The linear association with AFD and differentiation, compared to

the non-linear equivalent for FST makes this comparable measure of allele frequency change

more interpretable [65]. A cutoff of AFD = 0.5 therefore represents the minimum by which to

observe a change in the major allele between HP and LP. Finally, we estimated the extended

haplotype homozygosity score XP-EHH between each river with selscan (v1.2.0a; [107]) and

normalised in windows of 10kb. We limited this analysis to chromosomes and scaffolds> 1

Mb in size, due to extreme estimates on smaller scaffolds distorting normalisation. Outliers

were marked as those with normalised XP-EHH > 2.

Enrichment analyses were performed by extracting one-to-one zebrafish orthologs for

guppy genes in outlier windows using Ensembl’s BioMart (release 101; [108]). Orthologs were

then assessed for enrichment within rivers by comparing outlier genes against a background

set of all genome-wide guppy-zebrafish one-to-one orthologs using PantherDB [109]. Results

from all rivers were then compared in a single analysis to assess the above-expected enrich-

ment of functional groups across the entire dataset. We performed random permutations

(N = 10,000) to draw equivalently sized within-river sets of outliers with weightings based on

the number of genes within each functional pathway group within the guppy-zebrafish ortho-

log background gene set. Based on permuted random outlier sets, we then assessed the by-

chance likelihood of observing within-river enrichment >1 for all five or any four rivers for

each of the functional groups where this had been observed (groups plotted in Fig 3B).

For associated allele frequency changes with HP-LP classification, we also applied BayPass’s

auxillary covariate model, which associates allele frequencies with an environmental covariate
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whilst accounting for spatial dependency among SNPs with an Ising prior (-isingbeta 1.0). We

used a genetic covariance matrix including all 10 populations estimated as above. We split our

SNP data into 16 subsets, allocating alternate SNPs to each subset such that all subsets included

SNPs from all regions of the genome, and merged outputs as recommended in the manual.

We averaged per SNP BayesFactor scores within 10kb and marked as outliers those above the

0.999 quantile. We also explored alternative windowing strategies here, such as marking outlier

SNPs above the 0.999 quantile and determining window significance as windows with signifi-

cantly more outlier SNPs than a binomial (99.9%) expectation, however this made a minimal

impact on which windows were deemed outliers.

Reduced SNP counts within 10kb windows can increase variance and lead to spurious outlier

detection. To examine whether our focal windows were affected by this, the median number of

SNPs in windows that were called as overlapping selection scan outliers or BayPass outliers was

compared against a permuted distribution (10,000 permutations). Permutations randomly sam-

pled N 10kb windows from the whole genome, where N = the number of overlapping selection

scan outlier windows or BayPass outlier windows respectively. The median SNP count in each set

of outlier windows was compared against the permuted null distribution of median SNP counts.

Characterisation of structural variants

To assess whether candidate regions may contain structural variants, particularly inversions,

we first used local PCA within each population for each chromosome with the R package los-
truct (v0.0.0.9) [68]. This method explores phylogenetic relationships between individuals

using windows of N SNPs along a chromosome, and then uses multidimensional scaling

(MDS) to visualise chromosomal regions that deviate from the chromosomal consensus

among individuals. We filtered each population’s chromosome for invariants, prior to running

local PCA in windows of 100 SNPs. For each run, we retained the first two eigenvectors (k = 2)

and computed over the first two PCs (npc = 2).

We used two methods to call structural variants from our final bam files: smoove (v0.2.5;

[69]) (a framework utilising lumpy [110]) and Breakdancer (v1.4.5; [70]). For both methods

we called structural variants across all HP and LP individuals within a river. For smoove vari-

ants, we excluded repetitive regions of the genome prior to variant calling, and filtered the sub-

sequent VCF for SVs marked as imprecise; <1kb in size; less read pair support (SU) than the

per-river median; without both paired-end and split-read support (PE | SR = = 0). Breakdancer

was run per river, per chromosome, with results filtered for SVs <1kb in size; less support

than per river, per chromosome median support; quality < 99. We calculated FST using

smoove VCFs within each river to explore structural variants that may have diverged within

rivers. To validate SVs of interest, we plotted all bam files within a river using samplot [111]

and visualised regions in igv.

Phylogenetic relationships of haplotypes

To examine phylogenetic relationships of the CL haplotype, we calculated maximum likeli-

hood trees among homozygote haplogroups using RAxML-NG (v0.9.0; [112]). We limited this

analysis to the CL-AP region, which was subsumed within the larger CL haplotype in Guanapo

and Tacarigua and included the strongest region of HP-LP association (CL-AP region). Hap-

logroups were defined on the basis of PC1 clusters (S14 Fig). We retained a random haplotype

from homozygote individuals from all populations and constructed a tree using the GTR

+ Gamma model with bootstrap support added (500 trees) with a cut-off of 3%.

To estimate the relative age of the CL haplotype, we calculated the branch distance at the

CL-AP region between APHP and APLP, given these populations are strongly differentiated
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here. We then compared this APHP-APLP CL-AP branch distance to the distribution of branch

distances calculated along the entire chromosome 20. Branch distances were taken as the mean

distance between individuals from either population, and were calculated in 100kb windows.

Within each window, a bioNJ tree was produced with the poppr [113] function aboot() and

branch distance was estimated as Nei’s distance (nei.dist). We repeated this process at increas-

ing phylogenetic distances by comparing APHP with GHP, TACHP, OHP and MADHP.

Supporting information

S1 Fig. Bootstrapped density tree of all sampled MCMC iterations for the rooted phylog-

eny of the ten guppy populations and the outgroup P. wingei. Grid lines denote divergence

times in millions of years (mya). Black trees are those that share the most common topology.

Orange trees were the second most common topology, and blue the third. The consensus tree

is marked as a solid green tree. Trees plotted are based on merged post-burn-in trees sampled

every 1000 iterations from a total of 2,200,000 MCMC iterations.

(PDF)

S2 Fig. Repeated PCA, each of which involved the removal of individuals from a Caroni

river. These results demonstrate that our population structure results are unlikely to be driven

a sample size bias towards Caroni rivers. Each panel shows PC1 and PC2 with % variance

explained. Point colour and shape reflect river and predation environment respectively. Ellip-

ses show 95% confidence around river groups. In all cases, PC1 reflects the split between

Caroni and non-Caroni populations, and PC2 shows structure within the Caroni drainage.

(PDF)

S3 Fig. Map of sampling rivers in Northern Trinidad alongside topography. Sampling riv-

ers are coloured according to legend and other major rivers are coloured light blue. Topogra-

phy ranges from low altitude (dark fill) to high altitude (light fill). Upstream regions of rivers

in the western Caroni drainage (Tacarigua, Guanapo and Aripo) are flanked by mountain

ranges, likely preventing gene flow occurring between these rivers. The coastline shapefile was

sourced from OpenStreetMap (openstreetmap.org; CC BY-SA 2.0), rivers were added manu-

ally and are available as shapefiles at Zenodo doi: 10.5281/zenodo.4740381, and elevation ras-

ters were sourced from the US Geological Survey (earthexplorer.usgs.gov; SRTM; US Public

Domain).

(PDF)

S4 Fig. Two-dimensional site frequency spectra (2d-sfs) between all pairwise LP-LP com-

parisons. This figure demonstrates excesses of private variation as densities limited to the first

column or first row. Beyond these regions of the sfs, genetic variation is typically limited to

regions close to the first row or column, representing sites that are at low frequency in either

population. These signatures are emblematic of minimal shared genetic variation among these

populations. The exception to this pattern is MADLP-OLP, where the excess of OLP private

alleles in the first column suggests gene flow in direction of MADLP > OLP. In each sfs, the

frequency of sites in each population is illustrated from 0 to 2 N, where N is the number of

individuals in each population. Projections have been scaled so each LP population has the

same value of N (which distorts the shape of SFS across rows/columns. Each cell within these

2dsfs therefore shows the density (log-transformed) of SNPs with relevant allele counts in each

population. Cells within the first column and first row show private alleles that are absent in

one population (allele count of 0). Grey cells are missing data, where no SNPs are found at

allele counts of x and y in LP and HP populations respectively.

(PDF)
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S5 Fig. Distributions of selection scanning methods within each river and their associated out-

lier cut-offs for AFD (A), XP-EHH (B) and XtX (C).

(PDF)

S6 Fig. Comparison of SNP counts in outlier windows. SNP counts within all overlapping

selection scan outlier windows (A) (within-river outlier for two or more selection scans in >1

river) and BayPass outlier windows (B) (>99.9% quantile). The first row shows the distribu-

tion of observed SNP counts within outlier windows. The second row shows the permuted dis-

tribution of median SNP counts for 10,000 randomly drawn window sets from the total

genome set, each of which contains N windows, where N = the number of observed outlier

windows in the first row. The median SNP count of the observed outlier windows is shown in

each panel as a solid vertical line. Under a one-tailed hypothesis, respective permuted p-values

were 0.0172 (A) and 0.0176 (B).

(PDF)

S7 Fig. Genome-wide AFD results for 10kb windows. Panels represent the 23 chromo-

somes in the guppy genome. Each row represents the change in the absolute allele frequency

for 10kb windows between HP and LP populations in a different river. Chr20 has been

updated to include the unplaced scaffold 000094F. The horizontal line in each row denotes

river-specific outlier cutoffs.

(TIF)

S8 Fig. Genome-wide XP-EHH results for 10kb windows. Panels represent the 23 chromo-

somes in the guppy genome. Each row represents the normalised score for XP-EHH, which

compares extended haplotype homozygosity between HP and LP populations within rivers

(absolute-transformed). Chr20 has been updated to include the unplaced scaffold 000094F.

The horizontal line in each row denotes the outlier cutoff = 2, analogous to a Z-score> 2

reflecting approximately p = 0.05 following normalisation.

(TIF)

S9 Fig. Genome-wide XtX results for 10kb windows. Panels represent the 23 chromosomes

in the guppy genome. Each row represents the XtX score (a Bayesian analogue of FST,

describing relative genetic differentiation) for 10kb windows between HP and LP populations

in a different river. Chr20 has been updated to include the unplaced scaffold 000094F. The

horizontal line in each row denotes river-specific outlier cutoffs, calculated according to neu-

tral simulations of XtX within each river.

(TIF)

S10 Fig. HiC contact information used to place scaffold 000094F_0. Chromosome 20 co-

ordinates are displayed along the upper axis, and scaffold 000094F_0 co-ordinates along the

vertical axis. Scaffold 000094F_0 (total length = 1797025 bp) was reversed and inserted at posi-

tion 836423 on chromosome 20. The proceeding scaffold on chromosome 20 (836423–

3164071) was also inverted to reflect higher contact between the start of 000094F_0 and the

chr20 region around 3164071.

(PDF)

S11 Fig. XtX results for 10kb windows along chromosome 20 for each river. Each row rep-

resents the XtX score (a Bayesian analogue of FST, describing relative genetic differentiation)

for 10kb windows between HP and LP populations in a different river. Chr20 has been

updated to include the unplaced scaffold 000094F. This figure highlights the location of a peak
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of strong HP-LP differentiation int the Aripo river.

(PDF)

S12 Fig. Linkage plots across chromosome 20 (following merging of chromosome 20 and

scaffold 000094F_0). Dark regions highlight elevated linkage (R2), and light regions are low

linkage. These plots highlight elevated linkage disequilibrium among SNPs at the start of chro-

mosome 20 in several rivers.

(TIF)

S13 Fig. Structural variant (SV) FST and SNP XtX along chromosome 15 in the Oropouche

river. SVs were called between HP and LP populations, highlighting concordance between SV

and SNP peaks at ~5 Mb (A). These peaks corresponded with the B-cadherin gene (B) in this

region. The SV points at this peak correspond with the breakpoints of a 1,097 bp deletion

detected using the software smoove.

(PDF)

S14 Fig. PCA analysis across the CL-AP region for all individuals. PCA highlights three

clusters corresponding to homozygotes (REF and CL), and heterozygotes. Dashed lines denote

cut-offs used to define haplogroups. Point colour represents river, and shape represents preda-

tion.

(PDF)

S15 Fig. Association between CL-AP region and plppr4 and plppr5. Summary of CL-AP

region (A) and plppr5 gene region (B) according to differences in coverage between HP/LP

populations and HP/LP association scores per SNP (BF). Of particular note are a peak in

HP/LP coverage ratio in Tacarigua, Guanapo and Aripo at ~1.9 Mb (overlapping the plppr5
gene), and the SNP with the highest genome-wide HP/LP association score at ~2.06 Mb (over-

lapping the plppr4 gene). The peak in HP/LP coverage overlapped with the last exon of plppr5,

was driven by reduced coverage in LP populations, and was thus confirmed as a ~1kb deletion

in the CL haplotype in all Caroni LP populations by visualising bams in igv.

(PDF)

S1 Table. Sampling locations and evidence of HP-LP phenotypes from previous studies.

(XLSX)

S2 Table. Divergence time estimates between HP-LP populations within rivers, and among

rivers from SNAPP.

(XLSX)

S3 Table. Dsuite results for significant introgression from within-river trios (trios where

P1 and P2 are within-river HP-LP pairs).

(XLSX)

S4 Table. Counts and overlaps of outlier 10kb windows detected by each selection scan

method within each river.

(XLSX)

S5 Table. Genes identified with roles in the cadherin-signaling pathway (based on one-to-

one zebrafish orthologs).

(XLSX)

S6 Table. Genes associated with outlier windows based on HP-LP association analysis

(>99.9% quantile). Annotated genes without a common name are referred to as "Novel".

(XLSX)
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S7 Table. Intersection between BayPass HP/LP association outliers and outliers from selec-

tion scans. For each selection scan (final candidate = evidence from >1 scan), each entry

describes the rivers in which that genome window was highlighted as an outlier.

(XLSX)

S8 Table. Annotated genes in the CL region. Scaffold 000094F_0 is reversed to reflect its

placement in chr20. The CL-AP region is highlighted in bold.

(XLSX)
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