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MicroRNAs (miRNAs), ~22 nt single-stranded non-coding RNAs (ncRNAs) abundant in the 
human brain and retina, have emerged as significant post-transcriptional regulators of mes-
senger RNA (mRNA) abundance and complexity in the human central nervous system (CNS) 
in aging, health, and disease. Of the 2050 different miRNAs in the human body so far identified, 
only about 25–30 are abundant in either the brain or the retina, underscoring the high selection 
pressure carried by RNA sequences located within these select ncRNAs (1–7). It is notewor-
thy to point out that: (i) that brain neocortex and retina share a common neuroectodermal 
origin; (ii) that brain and retina share a subfamily of specific miRNA species; and (iii) that the 
multilayered assemblies of both neural and retinal cells are targeted by pathogenic processes 
that drive progressive pro-inflammatory neurodegeneration (5–9). Indeed, pathologically up-
regulated miRNAs common to both the prototypic age-related inflammatory degeneration of 
the brain in Alzheimer’s disease (AD) and of the retina in age-related macular degeneration 
(AMD) appear to be associated with deficits in the expression of messenger RNA (mRNA) and 
gene families involved in the innate-immune response, inflammation, neurotrophism, synap-
togenesis, and amyloidogenesis (Figure 1). In this “Opinion” paper for the Frontiers in Neurology 
Special Research Topic, we will highlight some of the most recent work in this research area, with 
emphasis on a family of five up-regulated pro-inflammatory miRNAs – miRNA-9, miRNA-34a, 
miRNA-125b, miRNA-146a, and miRNA-155 – that are emerging as key mechanistic contribu-
tors to the AD and AMD process.

Homeostatic levels of specific miRNAs are natural indicators of neurological health of both the 
brain and retina (2–10, 31). Recently, multiple independent neurological research laboratories have 
provided evidence for the up-regulation of a small group of five inducible miRNAs in age-related 
diseases involving a progressive inflammatory degeneration. That these five miRNAs – miRNA-9, 
miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155 – are up-regulated in both AD and AMD 
underscores the concept that the brain and retina share common pathological signaling of a pre-
existing subfamily of miRNAs that individually contribute to various aspects of neurodegenerative  

Abbreviations: AMD, age-related macular degeneration; AD, Alzheimer’s disease; CFH, complement factor H; miRNA, 
microRNA
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FiGURE 1 | (A) Color-coded cluster analysis of significantly up-regulated microRNAs (miRNAs) in the neocortex of AD (N = 5) versus age-matched controls (N = 5) 
and (B) in the whole retina of AMD (N = 5) versus age-matched controls (N = 5); this small family of “pro-inflammatory” miRNAs consisting of miRNA-9, miRNA-34a, 
miRNA-125b, miRNA-146a, and miRNA-155 are often found to be up-regulated approximately twofold or more over controls (small red arrows); interestingly these 
miRNAs are inducible and under transcriptional control by NF-kB [Figure 1 adapted from Ref. (10–13)]; the relative expression levels for two sequence-related 
microRNAs, miRNA-146a and miRNA-155 the brain neocortex and retina are shown in (C) relative to levels for an unchanging brain and retinal control miRNA-183, 
which was set to 1.0 and marked by a dashed horizontal line; another abundant control signal is 5SRNA with a relative signal strength of ~5.0 (shown at ~1/20th of 
its actual abundance in the brain and retina; see text) (12, 13). In these samples, all control and AD neocortical samples were obtained from the superior temporal 
neocortex (Brodmann area A22); control and AMD retinal samples were obtained from whole retina; all control, AD and AMD samples had post-mortem intervals 
(PMI; death to brain freezing interval) of 2 h or less (2, 9, 10). Controls were age-matched to moderate-to-late stages of AD or AMD; increases in specific miRNAs 
increased as disease stage advanced [Ref. (11, 12, 14–17); data not shown]; further details on the pathology of these samples have been recently published 
(11–20). There were no significant differences in age, PMI, or RNA yield or quality between either the brain or the retinal tissues. Of the 12 different homo sapien 
micro-RNAs (hsa-miRNAs) shown, miRNA-146a and miRNA-155 exhibited the most consistent up-regulation compared with age-matched controls (*p < 0.05; 
**p < 0.01, ANOVA); (D) the 3′UTR of the mRNA of complement factor H (CFH); a major regulator of the innate-immune and inflammatory response, see text; [(21, 
22)] is a prime example of brain and retinal gene expression regulation by multiple and common miRNAs – miRNA-146a and miRNA-155; (D) shows the 
complementarity map between miRNA-146a or miRNA-155 and part of the 232 nt CFH 3′UTR sequence. Overlapping miRNA-146a and miRNA-155 high-affinity 
binding sites in the CFH mRNA 3′UTR (each has an energy of association of less than −22 kcal/mol) that defines an exceptionally stable miRNA–mRNA interaction 
and a potentially common CFH mRNA 3′-UTR miRNA regulatory control region 5′-TTTAGTATTAA-3′ (overlaid in green; see text) (12, 13, 23); we cannot exclude the 
participation of other human brain- or retina-enriched miRNAs or other small ncRNAs which may additionally contribute to the neuropathological mechanisms of AD 
or AMD pathology; (E) taken together, these recent findings in part define a highly interactive network of NF-kB-sensitive, up-regulated miRNAs in diseased brain 
and retina that can explain much of the observed pathology associated with AD and AMD. The CNS-abundant, miRNA-125b is a central member of this up-
regulated miRNA group that may be in part responsible for driving deficits in phagocytosis (triggering receptor expressed in microglial cells; TREM2), innate-immune 
signaling and chronic inflammation (IkBKG, CFH), impairments in neurotransmitter packaging and release (synapsin-2; SYN-2), and neurotrophism (15-lipoxygenase, 
vitamin D receptor; 15-LOX, VDR). Other NF-kB-sensitive up-regulated miRNAs (such as miRNA-146a) appear to be responsible for the observed deficits in NF-kB 
regulation (IRAK-1, IRAK-2) and/or amyloidogenesis (tertraspanin 12; TSPAN12); these up-regulated miRNAs and down-regulated mRNAs form a highly integrated, 
self-perpetuating pathogenic miRNA-mRNA signaling network due to chronic re-activation of NF-kB stimulation perhaps through the involvement of deficits in IkBKG 
signaling (10–13). Inhibition of the NF-kB initiator or individual blocking of the pathogenic induction of these five miRNAs may provide novel therapeutic benefit for 
the clinical management of AD or AMD, however what NF-kB or miRNA inhibition strategies and/or protocols, or whether they can be utilized either alone or in 
combination, remain open to investigation (17, 19, 20, 24, 25). Extensive recent data in human brain cells in primary culture have indicated that these approaches 
may neutralize this chronic, inducible, progressive pathogenic gene expression program to re-establish brain and retinal cell homeostasis, and ultimately be of novel 
pharmacological use in the clinical management of AD and/or AMD (19, 20, 26–30).
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disease (5–12, 31–35). Accumulating evidence, including very 
recent research findings over the last 6  months indicate that 
each of these miRNAs share the following six features: (i) that 
they are basally expressed in control brain neocortex and retina 
(2–9); (ii) that in vitro they can be induced by a wide range of 
environmental- and inflammation-linked physiological stressors, 
including pro-inflammatory cytokines, amyloid beta (Aβ42) pep-
tides, neurotoxic metal sulfates, and neurotropic viruses such as 
herpes simplex virus-1 (HSV-1) (12, 16, 17, 32–35); (iii) that this 
group of five pro-inflammatory miRNAs are over-expressed at 
least twofold in stressed brain or retinal cells and in AD or AMD 
affected tissues (14, 15, 32); (iv) that together, via down-regulation 
of multiple mRNA targets (and hence deficits in the expression 
of genes encoded by those mRNAs) they regulate various patho-
physiological features characteristic of AD and AMD, including 
impairments in phagocytosis, synaptogenesis, neurotrophism, 
NF-kB signaling and stimulation of progressive inflammation 
and amyloidogenesis (Figure 1) (7, 12, 13, 23, 26–28, 36); (v) that 
all five of these pro-inflammatory miRNAs are under transcrip-
tional control by NF-kB (chiefly the heterotypic p50/p65 dimer) 
in human primary neuronal-glial co-cultures, AD and AMD 
tissues (7, 11–13, 23, 26–28, 36, 37); and (vi) that both NF-kB 
inhibitors and anti-microRNAs (anti-miRs) effectively knock 
down their expression in human brain and retinal cell culture 
experiments, and may ultimately be of use therapeutically in the 
clinical management of AD or AMD (17, 18, 26–29).

Much of the recent research work emphasizing this common-
ality of the same miRNAs in basic pathological processes involv-
ing brain and retinal degeneration, as exemplified by miRNA 
profiling in AD, AMD, and transgenic AD or AMD (TgAD, 
TgAMD) models, has been summarized in Figure 1 (5–10, 12, 
14, 17, 25, 31–35). First, when compared to the unchanging 
22 nt miRNA-183 and the 120 nt 5S ribosomal RNA (5S rRNA; 
5SRNA) control markers, the five member pro-inflammatory 
microRNAs miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, 
and miRNA-155 are found to be amongst the most consistently 
up-regulated miRNAs in both degenerating human brain neo-
cortex (Figure 1A) and retina (Figure 1B). Of this group of five 
pro-inflammatory microRNAs, miRNA-146a and miRNA-155 
are typically found to be increased ~2.5- to 3.3-fold over age-
matched controls (Figure 1C). To add another layer of genetic 
complexity for post-transcriptional regulation, both miRNA-
146a and miRNA-155 recognize an overlapping 3′ untranslated 
region (3′UTR) of the complement factor H (CFH) mRNA 
(highlighted in green; CFH loss-of-function mutations or CFH 
expression deficits are associated with both AD and AMD; see 
below; Figure 1D). Indeed, the up-regulation of these same five 
pro-inflammatory miRNAs (yellow ovals in Figure  1E) appear 
to form a highly interactive miRNA–mRNA network that can 
in part explain the down-regulation of specific brain and retinal 
genes (black rectangles) involved in phagocytosis, inflammation, 
synaptogenesis, neurotrophism, NF-kB signaling, and amyloido-
genesis (Figure 1E; see also the legend to Figure 1 wherein the 
details of this highly interactive network are further described).

Alterations in innate-immune signaling are a consistent 
feature of both AD and AMD (4, 5, 9, 15). The highly soluble, 
hydrophilic 155-kDa glycoprotein CFH is one very illustrative 

example of an innate-immune repressor and complement con-
trol protein whose abundance and/or activity is significantly 
down-regulated in both AD and AMD [(9, 15, 21, 22, 35); see 
Figure  1D]. CFH (chr 1q32; also known as AC3bINA, adre-
nomedullin binding protein-1, AM binding protein-1 factor H, 
β1H globulin, H factor, and H factor-1) is an important member of 
the regulator of complement activation (RCA) group of proteins 
encoded within the RCA gene cluster and normally performs a 
systemic sentinel function against unscheduled or spontaneous 
immune system activation (9, 15). CFH mRNA abundance is 
down-regulated in AD and/or AMD by a miRNA-146a- and/or 
miRNA-155–CFH–3′UTR-based complementarity mechanism 
and/or by a Y402H loss-of-function mutation (15, 21, 22). Hence 
an insufficiency in a homeostatic amount of functioning CFH 
(as down-regulated by miRNA-146a and miRNA-155) may have 
the same end result as the loss-of-function Y402H mutation in 
CFH (21, 22). It is important to note that CFH mRNA and hence 
CFH gene expression appears to be down-regulated by at least 
two different miRNAs – miRNA-146a and/or miRNA-155 – and 
their differential recognition of overlapping binding sites in 
the human CFH mRNA 3′UTR may be dependent on yet-to-
be-defined genetic factors and mechanisms characteristic of 
individual brain or retinal cells [Figure 1D; (9, 15, 21, 22, 35)].

In summary, it is our opinion that in miRNA research in 
human degenerative diseases including AD and AMD, several 
critical concerns have surfaced: (i) that brain and retinal 
miRNAs typically possess limited stabilities, however miRNA 
half-lives can be considerably extended via their sequestration 
into exosomes or the use of other protective strategies such as 
adsorption or tertiary folding into RNAse-resistant structures 
that may escape initial miRNA detection using traditional meth-
ods (17, 18, 23–25); (ii) that accurate quantification of miRNAs 
is technically feasible although it still remains challenging due to 
the small size of mature miRNA isoforms, adsorption to “inert” 
surfaces, high sequence homology amongst individual miRNAs, 
5′ and 3′ end polymorphisms, spatial-temporal expression pat-
terns and high dynamic range of miRNA expression (13, 17, 18, 
24); (iii) that miRNA profiling in different AD or AMD studies 
suffers from a poor consensus regarding their abundance and 
complexity; the latter a very recently acknowledged concern in 
the field (4–7, 14, 17); and (iv) discrepancies of miRNA abun-
dances in anatomical areas sampled, variations in patient drug 
history, the PMI of the AD and AMD patients and other factors. 
Together these constitute practical methodological challenges, 
especially in the realm of useful biomarkers and diagnostics for 
AD or AMD detection (3, 6, 17, 25, 34). Despite these recent 
concerns data has begun to filter through on the involvement of 
distinct miRNA families and miRNA–mRNA signaling networks 
linked to innate-immune system alterations, inflammatory, neu-
rotrophic, and amyloidogenic consequences in AD and AMD. 
These have steadily yielded a deeper appreciation into the onset 
and propagation of complex miRNA–mRNA-modulated bio-
logical networks that directly underlie the pathogenesis of AD 
and AMD. Lastly, miRNAs are highly soluble and mobile, and 
are able to transverse plasma membranes either freely, adsorbed 
to carrier molecules or contained within exosomes (17, 19, 23, 
25). That AD and AMD are both progressive “propagating” 
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disease entities suggest a potential “spreading factor” role for 
selective miRNAs in the cognitive and visual circuitry, an evolv-
ing research area in which specific combinations of miRNAs 
may be playing hitherto unrecognized pathogenic roles.
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