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Abstract: Group A Streptococcus (GAS) causes invasive human diseases with the cytokine storm.
Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis is known to drive TH2 response,
while its effect on GAS infection is unclear. We used an air pouch model to examine the effect of
the IL-33/ST2 axis on GAS-induced necrotizing fasciitis. GAS infection induced IL-33 expression
in wild-type (WT) C57BL/6 mice, whereas the IL-33- and ST2-knockout mice had higher mortality
rates, more severe skin lesions and higher bacterial loads in the air pouches than those of WT mice
after infection. Surveys of infiltrating cells in the air pouch of GAS-infected mice at the early stage
found that the number and cell viability of infiltrating cells in both gene knockout mice were lower
than those of WT mice. The predominant effector cells in GAS-infected air pouches were neutrophils.
Absence of the IL-33/ST2 axis enhanced the expression of inflammatory cytokines, but not TH1 or
TH2 cytokines, in the air pouch after infection. Using in vitro assays, we found that the IL-33/ST2
axis not only enhanced neutrophil migration but also strengthened the bactericidal activity of both
sera and neutrophils. These results suggest that the IL-33/ST2 axis provided the protective effect on
GAS infection through enhancing the innate immunity.

Keywords: interleukin-33 (IL-33); suppression of tumorigenicity 2 (ST2); Group A Streptococcus (GAS);
the innate immunity

1. Introduction

Group A Streptococcus (GAS; Streptococcus pyogenes) infection causes a wide range of
human diseases, extending from noninvasive pharyngitis, impetigo, and scarlet fever to
invasive cellulitis, necrotizing fasciitis, and streptococcal toxic shock syndrome. GAS also
induces non-purulent complications, including rheumatic fever and acute glomerulonephri-
tis. GAS produces several virulence factors to impede the host immune system-mediated
opsonophagocytosis and killing, and these virulent factors include M protein, fibronectin-
binding proteins, streptococcal pyrogenic exotoxin B (SPE B), immunoglobulin-degrading
enzymes, and leukocidal toxins [1]. Clinical observations have indicated that patients who
suffered with GAS invasive infections, such as necrotizing fasciitis, as well as streptococcal
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toxic shock syndrome, produce higher inflammatory cytokines than those patients with
non-invasive infections, such as scarlet fever; however, the high expression of inflammatory
cytokines is also associated with a high mortality rate [2–4].

Interleukin-33 (IL-33) belongs to the interleukin-1 (IL-1) family of cytokines, and plays
diverse roles in different infectious or inflammatory diseases [5–8]. IL-33 is expressed
by different cells, including epithelial cells, endothelial cells, fibroblasts, hepatocytes,
and pathogen-associated molecular pattern (PAMP) molecules, or inflammatory cytokine-
activated macrophages [8–11]. IL-33 is not only a cytokine but also a nuclear factor. If the
cells are quiescent, IL-33 resides within the nucleus as a transcription repressor through
binding with nuclear factor kappa B (NF-κB) to block gene expression [12,13]. When the
tissues are damaged, IL-33 is mostly first released by epithelial cells and endothelial cells.
Therefore, it is known as an alarmin during infectious and inflammatory diseases [5–8].
Unlike other IL-1 family cytokines, which become active through caspase cleavage, the
full-length IL-33, released by necrotic cells, has an active ability. However, IL-33 cleaved by
caspases becomes inactive [14,15]. Recent reports have indicated that enzymes, such as pro-
teinase 3, elastases and cathepsin G, released by neutrophils during inflammation, cleave
the full-length IL-33 into the short mature form (18–21 kDa) that possesses 10–30 times
the activity of the full-length one [16]. IL-33 binds to the suppression of tumorigenicity 2
(ST2), the orphan receptor of the IL-1 receptor family [5–8]. ST2 has two forms expressed
by the same gene, one being the transmembrane full-length form (ST2), and the other one
the soluble form (sST2) [17]. ST2 is expressed on various cell types, including natural killer
(NK) cells, NKT cells, mast cells, macrophages, dendritic cells, granulocytes, type 2 innate
lymphoid cells (ILC2 cells), and TH2 cells, but not TH1 cells [5–8,17,18]. Binding IL-33 to
ST2 can activate NF-κB, inhibitor of NF-κB-α (IκBα), extracellular-signal-regulated kinase
(ERK), p38 mitogen-activated protein kinases (p38), and Jun N-terminal kinase (JNK), and
this then induces the release of inflammatory cytokines, such as interleukin-1β (IL-1β),
interleukin-3 (IL-3), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-5
(IL-5), and interleukin-13 (IL-13) from cells [7]. The sST2, an IL-33 decoy receptor pre-
dominantly expressed by epithelial cells and fibroblasts, has a low expression in normal
individuals. However, there is increased expression in patients with autoimmune diseases,
myocardial infarction, and sepsis. Currently, the amount of sST2 in serum is regarded as
the indicator of severity of illness [6–8,17].

The IL-33/ST2 axis plays diverse roles in different infectious diseases, depending on
the presence of acute or chronic infection, non-invasive or invasive pathogens, and host
immune tendency (TH1/TH2). Most reports indicate that the IL-33/ST2 axis drives the
TH2 response. As the clearance of pathogens needs the TH1 response, the IL-33/ST2 axis
may play a detrimental role in this; on the contrary, the IL-33/ST2 axis may influence a
beneficial effect in controlling the strong TH1 response induced by pathogens [8]. IL-33
exerts protective effects in experimental sepsis-induction with cecal ligation and puncture
(CLP), and while its protective mechanism is TH2-independent, it acts through enhancing
the migration of neutrophils into the infected sites to clear bacteria [18]. GAS-induced
invasive infection is associated with the cytokine storm [2–4]. However, the effect of
the IL-33/ST2 axis on GAS infection is unclear. We used an air pouch infection model
to examine GAS-induced necrotizing fasciitis [19,20]. The results indicate that IL-33- or
ST2-knockout (KO) mice had higher mortality rates than those of wild-type (WT) mice.
Surveys of the exudates from the air pouches found that there were higher bacterial loads
and more dead cells in both KO mice than those of WT mice, while TH1 and TH2 cytokines
were not significantly enhanced. Moreover, the predominant effector cells within the air
pouches were neutrophils, while T cells, NK cells, and ILC2 cells were not involved in this
model. Using the in vitro assays, we found that IL-33/ST2 affected neutrophil migration
and the bactericidal activity of both the serum and neutrophils. These results suggest that
IL-33/ST2 plays a protective role in the GAS-induced air pouch infective model through
enhancing the innate immunity, but not by the induction of a type 2 response.
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2. Results
2.1. IL-33/ST2 Axis Played a Protective Effect on GAS Infection

Intra-air pouch infection of GAS caused invasive necrotizing fasciitis-like symptoms
in mice [19,20]. Surveys of both exudates of air pouches and sera from GAS-infected mice
found that the expression of IL-33 significantly increased after GAS infection (Supplemen-
tary Figure S1). However, the effect of the IL-33/ST2 axis on GAS infection is unclear. To
address this question, we used GAS to infect IL-33- or ST2-knockout (KO) mice via the
intra-air pouch route. As shown in Figure 1, GAS infection (3 × 108 CFU/mouse) resulted
in 83% (five out of six mice) survival in WT mice for 13-days observation post-infection.
However, GAS infection caused 33% (two out of six mice) and 0% (0 out of six mice)
survival in IL-33-KO mice and ST2-KO mice, respectively. In IL-33- and ST2-KO mice,
most mice died within 2 days after infection (Figure 1). From an examination of the skin
lesions, quantitated by an exudates-absorbed method, around the air pouches, we found
that all ST2-KO mice showed skin lesions within 2 days after infection and the lesion
areas were 85 ± 28 mm2 (n = 6); these lesion areas were larger than those of IL-33-KO
mice (58 ± 5 mm2; n = 6, p < 0.01) and WT mice (29 ± 15 mm2; n = 6, p < 0.01) after GAS
infection. The histological examination of skin lesions is shown in Figure 2. The skin
lesions of GAS-infected ST2-KO mice appeared to show the most severe damage among
the three groups, including the structure of the epidermis, dermis, and subcutaneous fat
on the skin around the air pouch, which were severely damaged in GAS-infected mice
(Figure 2d–f). These results indicate that the IL-33/ST2 axis provided a protective role in
the GAS-infected air pouch model.
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Figure 1. Increase in GAS-induced mortality in IL-33-KO and ST2-KO mice. Groups of six WT,
IL-33-KO and ST2-KO mice were inoculated via the intra-air pouch route with 3 × 108 S. pyogenes
NZ131 cells per mouse. The animals were observed every day for a total of 13 days. Intra-air pouch
injection of PBS would cause no mice death in WT, IL-33-KO and ST2-KO mice. Survival curves
were compared for significance using the logrank test on the GAS-infected ST2-KO group vs. the
GAS-infected B6 group (p = 0.0005, p < 0.01), and on the GAS-infected IL-33-KO group vs. the
GAS-infected B6 group (p = 0.0417, p < 0.05).
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Figure 2. Histological examination of the skin in GAS-infected WT, IL-33-KO and ST2-KO mice. Groups of six WT, IL-33-KO
and ST2-KO mice were inoculated via the intra-air pouch route with PBS or 3 × 108 S. pyogenes NZ131 cells per mouse.
The mice were sacrificed at 48 h post-infection, and then the skin sections were made and stained with H&E staining as
described in Materials and Methods. The representative results are shown. (a): WT mouse with PBS treatment (×100);
(b): IL-33-KO mouse with PBS treatment (×100); (c): ST2-KO mouse with PBS treatment (×100); (d): WT mouse with GAS
treatment (×100); (e): IL-33-KO mouse with GAS treatment (×100); (f): ST2-KO mouse with GAS treatment (×100).

2.2. IL-33/ST2 Axis Affected Bacterial Burdens, Cell Infiltration and Cell Viability in Air Pouches
of GAS-Infected Mice

To examine the inflammatory conditions within the air pouches among different mice,
we chose a lower infective dose (2 × 108 CFU/mouse) to treat mice. At 24 h post-infection,
the highest bacterial burdens were found within the air pouches of GAS-infected ST2-KO
mice, followed by in GAS-infected IL-33-KO mice, with the lowest burden being found
in the GAS-infected WT mice. The bacterial burdens in the group consisting of WT mice
with an intra-air pouch with sST2/Fc fusion proteins (sST2) added 30 min before the
infection, were similar to those of the GAS-infected ST2-KO mice. Applying recombinant
mouse IL-33 (rIL-33) 30 min before infection significantly decreased the bacterial burden in
GAS-infected IL-33-KO mice, when compared with GAS-infected IL-33-KO ones. Moreover,
the bacterial burdens in the air pouches at 48 h post-infection were significantly increased,
compared with 24 h post-infection, regardless of whether they were GAS-infected WT,
IL-33-KO, or ST2-KO mice, and the pattern of bacterial burdens among different groups
were similar to that of 24 h post-infection (Figure 3a).

To further examine the infiltrating cell numbers within the air pouches, we found that
the infiltrating cell numbers were significantly decreased in GAS-infected IL-33-KO, ST2-
KO mice and WT mice which were given sST2 proteins at 24 h post-infection. Providing
rIL-33 into the air pouches of IL-33-KO mice would restore infiltrating cell numbers at
24 h post-GAS infection (Figure 3b). This result indicates that infiltrating cells bearing ST2
receptors were the major effector cells at the early stage in the GAS-infected air pouch
model. At 48 h post-infection, there were no differences in infiltrating cell numbers among
different groups, possibly owing to the presence of different chemotactic molecules, other
than IL-33, which were released within the air pouch at the late stage, and worked together
in the recruitment of effector cells into the air pouches.
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Figure 3. The bacterial loads, the numbers, and the cell viability of infiltrating cells in the air pouches
of GAS-infected WT, IL-33-KO and ST2-KO mice. Groups of four WT, IL-33-KO and ST2-KO mice
were inoculated via the intra-air pouch route with 2 × 108 S. pyogenes NZ131 cells per mouse. In
one group, IL-33-KO mice were treated with rIL-33 (1 µg per mouse) via the intra-air pouch route at
30 min before GAS infection and 24 h post-GAS infection. In the other group, WT mice were treated
with sST2 fusion protein (1 µg per mouse) via the intra-air pouch route at 30 min before GAS infection
and 24 h post-GAS infection. At 24 h or 48 h post-infection, exudates of the air pouch were collected,
and bacterial numbers (a), the numbers (b) as well as the cell viability (c) of infiltrating cells were
counted, as described in Materials and Methods. The results are expressed as the mean ± standard
deviation. The infiltrating cells in the air pouches of WT, IL-33-KO and ST2-KO mice given PBS only,
without GAS infection, were approximately (1.5 ± 0.3) × 104 cells/mL. The infiltrating cells in the air
pouch of WT mice given sST2 were approximately (2.5 ± 0.4) × 104 cells/mL, while infiltrating cell
numbers of B6 mice given rIL-33 were approximately (1.5 ± 0.5) × 106 cells/mL. Treatment groups
were compared for significance using ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the
GAS-infected WT group.
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Besides bacterial burdens and infiltrating cell numbers, we also tested the cell viability
of infiltrating cells in the air pouches after GAS infection. We found that the cell viability of
infiltrating cells was significantly decreased in IL-33-KO mice, ST2-KO mice, and WT mice
given sST2 proteins post-GAS infection, when compared with that of GAS-infected WT
mice at 24 h post-infection. Adding rIL-33 into the air pouches of IL-33-KO mice would
restore the cell viability of infiltrating cells at 24 h post-GAS infection. As time went on, the
cell viability of infiltrating cells among different groups kept falling at 48 h post-infection
(Figure 3c). Based on the results mentioned above, we suggest that the absence of the
IL-33/ST2 axis worsens the GAS infection through decreasing infiltrating cells, as well as
their cell viability, at the early stage, and further enhancing bacterial burdens in the air
pouches after GAS infection.

2.3. Absence of IL-33/ST2 Axis Enhanced The Expression of Interleukin-6 and Interleukin-1β but
Did Not Affect the Balance of TH1 and TH2 Responses

Reports indicate that the IL-33/ST2 axis is associated with enhancing TH2 response
in different models [8]. We examined the expression of cytokines in the air pouches after
GAS infection. We tested the expression of proinflammatory cytokines, including TNF-α,
interleukin-17A (IL-17A), IL-6 and IL-1β, TH1 cytokines such as interleukin-12 (IL-12)
and interferon-γ (IFN-γ), TH2 cytokines such as interleukin-4 (IL-4) and IL-13, and anti-
inflammatory cytokine interleukin-10 (IL-10) [21,22]. As shown in Table 1, we found that
TH2 cytokines, both IL-4 and IL-13, in all groups were under the minimal detection limit
(5 pg/mL) using the cytometric bead array (CBA) kit. TH1 cytokines, IL-12 and IFN-γ,
and inflammatory cytokine IL-17A showed no obvious expression in the air pouch after
GAS infection. The expression of proinflammatory cytokine IL-6 and IL-1β, but not TNF-α,
was significantly enhanced in GAS-infected IL-33-KO mice, ST2-KO mice, and WT mice
given sST2/Fc fusion proteins. The expression of IL-10 was slightly decreased in IL-33- or
ST2-deficient mice, but there were no significant differences among different groups. These
results indicate that the IL-33/ST2 axis inhibited the local inflammatory response but did
not affect the balance of TH1 and TH2 in GAS-infected air pouches.

Table 1. Cytokine expression in exudates of mouse air pouches after GAS infection.

Treatment TNFα IL-17A IL-6 IL-1β IL-12 IFN-γ IL-10 (pg/mL)

WT-PBS <5 a <5 a <5 a <5 a <5 a <5 a <5 a

WT + rIL-33 6 ± 1 <5 a <5 a <5 a <5 a <5 a 7 ± 2

WT + sST2 6 ± 1 <5 a <5 a <5 a <5 a <5 a <5 a

WT-GAS 891 ± 86 <5 a 4601 ± 875 724 ± 98 7 ± 2 7 ± 2 66 ± 19

IL-33-KO-GAS 498 ± 95 * <5 a 6150 ± 345 * 1324 ± 297 * 9 ± 4 <5 a 53 ± 8

ST2-KO-GAS 501 ± 101 6 ± 1 7325 ± 215 * 1678 ± 112 * 8 ± 3 <5 a 28 ± 4

WT-GAS + sST2 489 ± 198 7 ± 2 7370 ± 550 * 1860 ± 276 * 9 ± 1 <5 a 21 ± 6

IL-33-KO-GAS + rIL-33 798 ± 120 <5 a 4150 ± 621 813 ± 113 8 ± 2 6 ± 2 68 ± 13

Groups of four B6, IL-33-KO mice and ST2-KO mice were inoculated via the intra-air pouch route with 2 × 108 S. pyogenes NZ131 cells per
mouse. In one group, IL-33-KO mice were given rIL-33 (1 µg per mouse) via the intra-air pouch route at 30 min before GAS infection. In the
other group, B6 mice were treated with recombinant sST2/Fc fusion protein (1 µg per mouse) via the intra-air pouch route at 30 min before
GAS infection. In control groups, B6 mice were given rIL-33 (1 µg per mouse) or sST2/Fc fusion protein (1 µg per mouse) only via the
intra-air pouch route. At 24 h post-infection, exudates of the air pouch were collected, and cytokine expressions were examined using a
cytometric bead array (CBA) kit. The results were expressed as the mean ± standard deviation. The statistical analysis was performed
using repeated-measures ANOVA. * p < 0.05 compared with results for GAS-infected WT mice. a The minimal detection concentration of
the cytokine using a CBA kit.

2.4. The Predominant Effector Cells in GAS-Infected Air Pouch Model Were Neutrophils

Previous results indicate that the absence of the IL-33/ST2 axis increased bacterial bur-
dens, decreased both the cell viability and the numbers of infiltrating cells, and worsened
the local inflammatory response in GAS-infected air pouches. We hypothesized that the
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infiltrating cells played an important role in controlling the local bacterial infection. The
cells bearing ST2 receptors are NK cells, NKT cells, mast cells, macrophages, dendritic cells,
neutrophils, eosinophils, basophils, ILC2 cells, TH2, and Treg [6–8,17,18,23]. To examine the
effector cells in the air pouches after GAS infection, we distinguished the populations of
infiltrating cells using the staining of specific cell markers by flow cytometry. As shown in
Table 2, the predominant infiltrating cells in the air pouches after GAS infection were Gr1+

or CD11b+ cells (88~96%), regardless of whether the mice were WT or KO, indicating that
the major effector cells were neutrophils or monocytes [24,25]. Moreover, the microscopic
observation of infiltrating cells confirmed that most effector cells were neutrophils (Supple-
mentary Figure S2). No obvious T cells (CD3+) and NK cells (NK1.1+) were recruited into
the air pouches after GAS infection. Although there were approximately 3~4% of B cells
(CD19+ cells) in the air pouches, no statistically significant differences were found among
different groups. However, the ILC2 cell (CD3−CD19−NK1.1−Gr1−CD11b−) [26] popu-
lation was less than 1% within the GAS-infected air pouch, and there were no statistical
differences among different groups. Based on the results mentioned above, we suggest that
neutrophils were the predominant effector cells in GAS-infected air pouches.

Table 2. Analysis of cell populations of infiltrating cells in the air pouches of mice after GAS infection.

Treatment CD3 CD19 NK1.1 Gr1 CD11b (%)

WT-GAS 0.38 ± 0.01 3.93 ± 0.3 0.24 ± 0.03 90 ± 5.2 95 ± 1.0

IL-33-KO-GAS 0.42 ± 0.03 3.71 ± 2.4 0.70 ± 0.10 89 ± 5.1 93 ± 2.8

ST2-KO-GAS 0.20 ± 0.03 3.10 ± 0.3 0.15 ± 0.02 90 ± 3.5 93 ± 4.2

WT-GAS + sST2 0.10 ± 0.05 2.94 ± 0.7 0.10 ± 0.10 88 ± 5.2 96 ± 2.1

IL-33-KO-GAS + rIL-33 0.28 ± 0.05 3.53 ± 0.4 0.33 ± 0.10 93 ± 3.4 96 ± 2.6

Groups of four B6, IL-33-KO mice and ST2-KO mice were inoculated via the intra-air pouch route with 2 × 108

S. pyogenes NZ131 cells per mouse. In one group, IL-33-KO mice were given rIL-33 (1 µg per mouse) via the intra-air
pouch route at 30 min before GAS infection. In the other group, B6 mice were treated with recombinant sST2/Fc
fusion protein (1 µg per mouse) via the intra-air pouch route at 30 min before GAS infection. In control groups, B6
mice were given rIL-33 (1 µg per mouse) or sST2/Fc fusion protein (1 µg per mouse) only via the intra-air pouch route.
At 24 h post-infection, exudates of the air pouch were collected, and the cell populations of infiltrating cells were
examined using the specific cell marker staining. The results were expressed as the mean ± standard deviation. The
infiltrating cells in control groups were counted and analyzed by the specific cell marker staining. The predominant
infiltrating cell populations in both control groups were also Gr1+ or CD11b+ cells.

2.5. IL-33/ST2 Axis Affected Neutrophil Migration in the In Vitro Model

To examine whether the IL-33/ST2 axis affected neutrophil migration, we collected
neutrophils from the bone marrow of WT, IL-33-KO, and ST2-KO mice, and then detected
them using the transwell assay. CXCL2 induced migration of neutrophils from WT mice,
but not from IL-33-KO or ST2-KO mice, owing to the absence of the IL-33/ST2 axis which
decreased CXCR2 expression on neutrophils [18]. Neutrophil migration induced by rIL-33
was more effective in WT neutrophils than in IL-33-KO neutrophils, although these findings
were not statistically significant. However, rIL-33 had no recruitment effect on neutrophils
from ST2-KO mice, indicating that the IL-33/ST2 axis clearly affected neutrophil migration
(Figure 4). Mimicking in vivo infection, we used GAS as a stimulant. We found GAS itself
was able to attract neutrophil migration regardless of whether the neutrophils were from
WT, IL-33-KO, or ST2-KO mice, even though there are differences in migration efficiency
among the three groups, indicating that there were other chemoattractants, distinct from
the IL-33/ST2 axis, which could attract ST2-deficient neutrophil migration during infection
(Figure 4).
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Figure 4. Effects of chemotaxis activities of neutrophils by different stimulants. The neutrophils of
WT, IL-33-KO and ST2-KO mice were collected from bone marrow as described in Materials and
Methods, and were stimulated by different stimulants using the transwell assay. The chemotaxis
activity was examined by migrated cell numbers per HPF. Five HPFs were selected and counted
in each group and the results are expressed as the mean ± standard deviation. Treatment groups
were compared for significance using ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the
relative groups as shown in the figure.

2.6. Absence of IL-33/ST2 Impaired the Bactericidal Activity of Sera and Neutrophils

The bactericidal activity of sera and neutrophils were also examined. The sera, col-
lected from different mice, were incubated with GAS for 2 h, and then the remnant bacteria
were counted. The sera, pretreated at 56 ◦C for 30 min, lost the bactericidal activity, re-
gardless of whether it was collected from WT, IL-33-KO, or ST2-KO mice. The bactericidal
activity of sera, pretreated at 4 ◦C for 30 min, was significantly impaired in IL-33-KO and
ST2-KO mice, compared with that of WT mice (Figure 5). To exclude the effect of the serum,
the neutrophils, collected from the bone marrow, were incubated with GAS, without being
sera-opsonized, and then the bactericidal activity of the neutrophils was examined. The
phagocytosis activity of neutrophils from different mice was first assessed by the short-
term infection of GAS. Neutrophils were infected with GAS at a multiplicity of infection
(MOI) of 0.01 for 30 min, and then extracellular bacteria were killed by RPMI medium
containing gentamicin. The remnant intracellular bacteria were counted and interpreted
as an indicator of the phagocytosis activity of neutrophils. As shown in Figure 6a, there
were no significant differences in phagocytosis among the three groups of neutrophils.
In addition, neutrophils collected from WT, IL-33-KO, and ST2-KO mice were infected
with GAS at a MOI of 0.01 for 4 h in an antibiotic-free RPMI medium, then the remnant
bacteria were counted, and the bactericidal activity of the neutrophils was examined. The
result indicated that the bactericidal activity of the neutrophils was significantly weakened
in IL-33-KO and ST2-KO mice (Figure 6b). Taken together, these results suggest that the
innate immunity, including that of the serum and neutrophil defense, was defective in
IL-33/ST2-deficient mice.
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Figure 5. Serum killing activity against GAS. Sera collected from WT, IL-33-KO and ST2-KO mice
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mice. Bone marrow neutrophils (1.5 × 106 cells) from WT, IL-33-KO, and ST2-KO mice were infected with GAS NZ131
cells at MOI of 0.01 for 30 min at 37 ◦C using a rotating mixer. After that, the extracellular bacteria were eliminated using
RPMI medium containing gentamicin at 37 ◦C for 30 min. (a) After several washes by RPMI medium, the cells were
lysed and intracellular viable bacteria were quantified by plating on THY agar. The bacterial numbers presented on this
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significance using ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the relative group as shown in the figure.

3. Discussion

The incidences of invasive GAS infection are approximately 2 to 4 per 100,000 people
in developed countries and 12 to 83 per 100,000 people in developing countries. The
mortality rate of streptococcal toxic shock syndrome may exceed 50%, despite antibiotic
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administration and aggressive treatment [27]. Even though GAS vaccines based on the
GAS’s virulence factor, M protein, have been developed [28,29], the safety issue due to
autoreactive rheumatic heart disease by repeat immunization with recombinant M protein
needs to be reassessed [30]. Hence, the therapeutic strategy of GAS invasive infection needs
to be explored. Based on the clinical observations, GAS invasive infection with a high
mortality is associated with the cytokine storm [2–4]. In this study, we examined the TH2
cytokine, IL-33, on a GAS-induced necrotizing fasciitis model. Our results indicate that the
IL-33/ST2 axis provided a protective effect on the GAS-induced air pouch infection model,
and its mechanism was through enhancing the innate immunity, including increasing
the bactericidal activity of sera as well as neutrophils (Figures 5 and 6b), and enhancing
neutrophil migration into the infected sites (Figure 3b). Within the air pouches, we found
that inflammatory cytokines, instead of TH1 or TH2 cytokines, were significantly influenced
by the IL-33/ST2 axis (Table 1), indicating that the protective effect of the IL-33/ST2 axis
in our model was independent of a type 2 response. This observation is similar to the
experimental sepsis using the CLP model, inducing acute polymicrobial abdominal sepsis,
in which IL-33 reduces mortality and improves bacterial clearance by mechanisms involved
in functions of neutrophils, γδ T, and NK cells, but not TH2 cytokines [18,31–33]. However,
the local environments and the virulence, as well as dosages of pathogens, seems to influ-
ence the outcomes caused by the IL-33/ST2 axis. ST2 deficiency improves the outcome of
Staphylococcus aureus-induced septic arthritis using the intraarticular infection model [34];
in a systemic infection model induced by a lethal intravenous dose of S. aureus, IL-33 ad-
ministration protects against lethality via ILC2-dependent type 2 cytokine production [35];
in post-influenza S. aureus pneumonia, IL-33 diminishes bacterial loads and mortality
by an effect that does not require ILC2 cells [36]. Furthermore, IL-33 increases bacterial
loads and lethality through induction of type 2 cytokines in Legionella pneumophila-induced
pneumonia [37], while IL-33 improves local immunity during Klebsiella pneumoniae-induced
pneumonia by a combined effect on neutrophils and inflammatory monocytes but not on
B, T, NK and ILC2 cells [38].

In our air pouch infection model, we found that the local bacterial loads at the early
stage played an important role in deciding the outcome. The IL-33/ST2 axis not only
enhanced the number of infiltrating cells (Figure 3b), but also prolonged the survival of
infiltrating cells (Figure 3c) at the early infective stage, and then accelerated the bacterial
clearance (Figure 3a) and further decreased the mortality (Figure 1). Comparing IL-33-
KO mice with ST2-KO mice after GAS infection, we found that ST2-KO mice had fewer
infiltrating cells and lower cell viability of infiltrating cells than those of IL-33-KO mice
(Figure 3b,c), indicating that ST2 receptors expressed on cells played a decisive role in
influencing the survival of infiltrating cells and cell migration at the beginning of infection.
Based on cell marker staining by flow cytometry (Table 2) and microscopic observation of
infiltrating cells (Supplementary Figure S2), we found that neutrophils, but not T, B, NK,
ILC2 cells, were the predominant effector cells within the GAS-infected air pouches. Using
the transwell assay, we found that the migration of neutrophils induced by rIL-33 seemed
more effective in WT neutrophils than in IL-33-KO neutrophils, although differences were
not statistically significant. However, rIL-33 had no recruitment effect on neutrophils of
ST2-KO mice, indicating that the IL-33/ST2 axis clearly affected neutrophil migration
(Figure 4). However, we could not rule out that there may be other unidentified molecules,
other than IL-33, that could bind to ST2 receptors to induce neutrophil migration dur-
ing the early phase of infection. The directed neutrophil recruitment is orchestrated by
chemoattractants, such as lipids, N-formylated peptides, complement molecules, anaphy-
lotoxins and chemokines, produced during bacterial infection [39]. We found GAS itself
was able to attract neutrophil migration using the transwell assay, regardless of whether
the neutrophils were collected from WT, IL-33-KO, or ST2-KO mice, even though there are
differences in migration efficiency among the three groups (Figure 4). This indicates that
there were other chemoattractants released by GAS which could attract ST2-deficient neu-
trophil migration during infection. This finding explains why the numbers of infiltrating
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cells within the air pouches showed no differences among WT, IL-33-KO, and ST2-KO mice
at 48 h post-infection (Figure 3b).

In addition to neutrophil recruitment, we found that bacterial clearance in the infected
areas was also significantly affected by the IL-33/ST2 axis (Figure 3a). The first defense
at the beginning of the bacterial infection is dependent on the complement system and
phagocytes. To examine the effect of the complement system, we collected sera from
different strains of mice, and the bactericidal activity in vitro was further examined. The
results showed that sera from IL-33-KO and ST2-KO mice had weaker bactericidal activity
than those of WT mice, and the remnant bacterial numbers of the KO group was five times
greater than in the WT group after in vitro infection (Figure 5). Pretreatment of sera at
56 ◦C for 30 min destroyed the bactericidal activity of sera, regardless of whether from
the WT, IL-33-KO, or ST2-KO group (Figure 5), indicating that the bactericidal activity of
sera was complement-dependent. No literature indicates that the IL-33/ST2 axis affects
the production of complement molecules. Hepatocytes can produce IL-33, and they also
express ST2 receptors [40]. Whether the IL-33/ST2 axis affects complement production
from hepatocytes needs further investigation. Reports have indicated that the virulence
factors of GAS interfere with the bactericidal activity of complements [41–44]. As the
production of complements was impaired in IL-33-KO and ST2 KO mice, GAS may defeat
the innate immunity and rapidly replicate in KO mice. Bypassing the complement effect, the
bactericidal activity of neutrophils was also examined in this study. The result indicates that
the bactericidal activity of neutrophils collected from KO mice was weakened, especially
in those from ST2-KO mice (Figure 6b). A previous report indicates that the phagocytosis
and production of reactive oxygen species (ROS) of phagocytes are diminished in ST2-
deficient mice [45]. However, our results showed that there were no statistical differences in
phagocytosis activity of neutrophils among WT and KO mice (Figure 6a). As for identifying
which of the bactericidal weapons of neutrophils were affected by the IL-33/ST2 axis, this
needs further examination.

In this study, we first demonstrated that the IL-33/ST2 axis was involved in protecting
the mice from GAS-induced air pouch infection. Its protective mechanism was through
enhancing neutrophil migration and the bactericidal activity of sera and neutrophils at
the early stage of infection. These effects accelerated the bacterial clearance, following a
decrease in the local inflammation, and further decreased the mortality of mice. In our
air pouch infection model, no B, T, NK, or ILC2 cells were involved, and the IL-33/ST2
axis distinctly influenced the innate immunity to clear GAS infection. Based on our results
shown in Figure 3, adding rIL-33 into the air pouch of IL-33-KO mice before infection
significantly enhanced the bacterial clearance. The local treatment with rIL-33 provided a
new therapeutic strategy on GAS invasive infection.

4. Materials and Methods
4.1. Bacterial Strain

The GAS strain NZ131 (type M49, T14) was a gift from Dr. D. R. Martin, New Zealand
Communicable Disease Center, Porirua. The GAS was grown in Todd-Hewitt medium
supplemented with 0.2% yeast extract (THY) (Difco Laboratories) for 12 h at 37 ◦C and
then subcultured into fresh broth (1:50 [vol/vol]) for another 5 h to produce the log-phase
bacteria. The bacterial concentration was determined with a spectrophotometer (Beckman
Instruments) by measuring the optical density at 600 nm. For quantitating the exact
bacterial concentration, the bacterial suspension was serially diluted with sterile phosphate-
buffered saline (PBS), then 0.1 mL was poured on THY agar plates, and incubated at 37 ◦C
overnight [46].

4.2. Mice

C57BL/6 (B6; WT) mice were purchased from the National Laboratory Animal Center
in Taiwan. IL-33-KO and ST2-KO mice [47] were donated by Dr. Wei-Yu Chen, Kaohsiung
Chang Gung Memorial Hospital, Taiwan, and were bred in the animal center at I-Shou
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University. All animals were maintained on standard laboratory chow and water ad
libitum in the animal center at I-Shou University. The animals were raised and cared for
in accordance with guidelines established by the Ministry of Science and Technology in
Taiwan. All procedures, care and handling of the animals were reviewed and approved by
the Institutional Animal Care and Use Committee at I-Shou University (ISU107026). The
mice used in the experiments were 7 to 8-weeks-old (body weight 23 ± 1.0 g per mouse).

4.3. Air Pouch Model of GAS Infection and Evaluation of Skin Lesion

Groups of six WT, IL-33-KO, and ST2-KO mice were anesthetized by isoflurane inhala-
tion and then injected subcutaneously with 1 mL of air to form an air pouch one day before
the infection. One day later, 0.1 mL of bacterial suspension containing 3 × 108 S. pyogenes
NZ131 cells was inoculated into the air pouch [48]. The animals were observed every
day for a total of 13 days. Survival curves were then determined. At 48 h post-infection,
the degrees of skin lesion were quantitated by an exudates-absorbed method, which is
based on the premise that the more severe the skin damage, the more that the exudates
will effuse. A Kimwipes (Kimberly-Clark Global Sales, Inc., Roswell, GA, USA) paper was
attached to the air pouch area, and the wet area of the paper was then gauged [49]. The
average lesion area in each group was generated by examination of skin lesions from six
mice. After that, the skin lesion tissue around the air pouch was excised, fixed in 3.7%
formaldehyde, and embedded in paraffin. The 5-µm-thick tissues were sliced and stained
with hematoxylin and eosin. In some experiments, 0.1 mL of mouse rIL-33 (R&D Systems)
(1 µg per mouse) and sST2 protein (R&D Systems) (1 µg per mouse) were injected into the
air pouches of IL-33-KO mice and WT mice, respectively, at 30 min before GAS infection or
24 h post-infection.

4.4. Examination of the Inflammation and the Populations of Infiltrating Cells within the Air Pouches

Groups of four WT, IL-33-KO, and ST2-KO mice were inoculated with 0.1 mL of
bacterial suspension containing 3 × 108 S. pyogenes NZ131 cells into the air pouch. At 48 h
post-infection, the mice were anesthetized by isoflurane inhalation, then the blood was
collected by the cardiac puncture, and the exudates of the air pouch were collected by
injecting 1 mL of sterile PBS into the air pouch and aspirating the exudates by syringe with
an 18-gauge needle. The blood and exudates were examined by a capture IL-33 enzyme-
linked immunoassay (ELISA) kit (R&D Systems). For evaluation of the inflammation after
GAS infection in the groups of four WT, IL-33-KO, and ST2-KO mice, WT mice given
sST2 proteins, and IL-33-KO mice given rIL-33, were inoculated with 0.1 mL of bacterial
suspension containing 2 × 108 S. pyogenes NZ131 cells into the air pouch. At different times
after infection, the exudates of the air pouch were collected. For quantitation of bacterial
numbers within the air pouch, 10 µL of the exudates were lifted, underwent serial dilution,
poured (0.1 mL) in THY agar plates, and incubated at 37 ◦C overnight. The number of CFU
of S. pyogenes was then quantitated and expressed as the mean ± standard deviation. The
remnant exudates were then centrifuged for 10 min at 1200 rpm. The sediment containing
the infiltrating cells was collected, and the number and viability of the infiltrating cells were
further determined by an eosin Y exclusion assay [49]. The number and the cell viability of
infiltrating cells were then quantitated and expressed as the mean ± standard deviation.
In addition, infiltrating cells were further stained by antibodies of different cell markers,
including CD3ε monoclonal antibody (145-2C11) conjugated with APC (eBioscience 17-
0031-83), CD19 monoclonal antibody (eBio1D3) conjugated with PE (eBioscience 12-0193-
82), NK1.1 monoclonal antibody (PK136) conjugated with PE (eBioscience 12-5941-81), Gr1
(Ly-6G/Ly-6C) monoclonal antibody (RB6-8C5) conjugated with FITC (eBioscience 11-5931-
85), CD11b monoclonal antibody (M1/70) conjugated with PerCP-Cy™5.5 (BD Pharmingen
550993). The percentages of the cell marker staining were expressed as the mean ± standard
deviation. Moreover, the infiltrating cells were further assessed by the cytospin and Liu
stain, and were then observed by microscope. The expression of cytokines, containing TNF-
α, IL-17A, IL-6, IL-1β, IL-12, IFN-γ, IL-4, IL-13 and IL-10, in the supernatants of exudates
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was also examined using a cytometric bead array kit (BD Biosciences). In this detection
kit, the limit of cytokine detection was 5 pg/mL. The concentrations of cytokines in the air
pouches of mice were quantitated and expressed as the mean ± standard deviation.

4.5. Chemotaxis Assay of Mouse Neutrophils Isolated from Bone Marrow

WT, IL-33-KO, and ST2-KO mice were sacrificed, and femur and tibia from both
hind legs were removed and cleared of remaining soft tissue attachments. After that,
the extreme distal tip of each extremity was cut off and the bones flushed with HBSS
medium (with calcium, magnesium, Gibco) containing 0.5% bovine serum albumin and 1%
glucose (SigmaAldrich) and 20 mM HEPES (Merck-SigmaAldrich) at a pH of 7.2, using
a 25G needle. After, the bone marrow was flushed on ice, then centrifuged at 1300 rpm
for 10 min, and the sediment containing the cells was treated with the RBC lysing buffer
(Sigma) to eliminate RBCs. The remaining cells were suspended in 2 mL of HBSS medium
and treated on a three-layer Percoll (GE Heathcare) density gradient, 72%, 63%, and 50%,
respectively, diluted in HBSS, and centrifuged for 25 min at 3000 rpm at 4 ◦C. Neutrophils
were harvested from the 63%/72% interface after carefully removing the cells from the
upper phases [50]. The cell preparations contained >90% neutrophils as determined by
visual counting. The neutrophil populations with viability over 95%, as assessed by trypan
blue exclusion, were used to conduct the chemotaxis assay. The hanging cell insert with
8-µm membrane (Millipore) was hung in a 24-well culture plate (Nunc) to examine the
chemotaxis of neutrophils [18]. Neutrophils (1 × 106 cells/mL) were added in the hanging
cell insert, and different stimulants, such as PBS, CXCL2 (100 ng/mL), mouse rIL-33
(50 ng/mL), or GAS NZ131 cells (2 × 106 CFU/mL), were added to the 24-well culture
plate. After a 1 h culture, the hanging cell insert was removed, and the membrane was cut,
fixed, and stained with 0.05% crystal violet (Sigma). The bottom layer of the membrane
was examined by microscope, and the number of cells on each high-power field (HPF) was
counted, and then cells of 5 HPFs from each group were quantitated and expressed as the
mean ± standard deviation.

4.6. Serum Bactericidal Assay

The sera from WT, IL-33-KO, and ST2-KO mice were collected. The sera, diluted
2-fold with PBS, were incubated at 56 ◦C for 30 min to inactivate the complement system.
GAS NZ131 cells (1.5 × 104 CFU in 100 µL PBS) were incubated with 5 µL of diluted sera,
pretreated for 30 min at either 4 ◦C or 56 ◦C, and at 37 ◦C for 2 h using a rotating mixer.
After that, the remaining viable bacteria were diluted with PBS, and then quantified by
plating on THY agar plates. One of three experiments was represented, and the results
were expressed as the mean ± standard deviation.

4.7. Phagocytosis and Bactericidal Assay of Neutrophils

Neutrophils from the bone marrow were separated using a Percoll (GE Heathcare)
density gradient, as described previously. Neutrophils (1.5 × 106 cells in 0.2 mL RPMI
medium, Gibco) from WT, IL-33-KO, and ST2-KO mice were infected with GAS (50 µL)
at a MOI of 0.01 for 30 min at 37 ◦C using a rotating mixer. After that, cell suspensions
were centrifuged at 6000 rpm for 10 min at 4 ◦C. The supernatants were discarded, and
the sediment cells were cultured with RPMI medium containing gentamicin (50 µg/mL)
at 37 ◦C for 30 min to kill extracellular bacteria. After several washes by RPMI medium,
the cells were lysed, and intracellular viable bacteria were then quantified by plating on
THY agar plates as described previously [48]. The bacterial numbers presented on this
timepoint represent the phagocytosis of neutrophils.

Neutrophils (1.5 × 106 cells in 0.2 mL RPMI medium, Gibco) from WT, IL-33-KO,
and ST2-KO mice were infected with GAS (50 µL) at a MOI of 0.01 for 4 h at 37 ◦C. After
that, cell suspensions were centrifuged, the supernatants were collected, the sediment
cells were lysed. The intracellular viable bacteria and remaining viable bacteria in the
supernatants were further quantified by plating on THY agar plates as described previ-
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ously [48]. The bacterial numbers presented on this timepoint represent the bactericidal
activity of neutrophils.

4.8. Statistics

The statistical analysis was conducted using Prism 5.0 software (GraphPad Software,
San Diego, CA, USA). In Figure S1, treatment groups were compared for significance
using the t-test. For the mouse survival in Figure 1, survival curves were compared for
significance using the logrank test. The data shown in Figures 3–6 and the tables were
compared for significance using ANOVA. Statistical significance was set at * p < 0.05,
** p < 0.01, ***p < 0.001.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ijms221910566/s1, Figure S1: The IL-33 expression in GAS-infected B6 mice, Figure S2: The
morphology of the infiltrating cells in the air pouches.
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