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Stem cells are biological cells that can self-renew and can differentiate intomultiple cell lineages. Stem cell-based therapy is emerging
as a promising alternative therapeutic option for various disorders. Mesenchymal stem cells (MSCs) are multipotent adult stem
cells that are isolated from various tissues and can be used as an alternative to embryonic stem cells. Stem cells from the apical
papilla (SCAPs) are a novel population of MSCs residing in the apical papilla of immature permanent teeth. SCAPs present the
characteristics of expression of MSCs markers, self-renewal, proliferation, migration, differentiation, and immunosuppression,
which support the application of SCAPs in stem cell-based therapy, including the immunotherapy and the regeneration of dental
tissues, bone, neural, and vascular tissues. In view of these properties and therapeutic potential, SCAPs can be considered as
promising candidates for stem cell-based therapy. Thus the aim of our review was to summarize the current knowledge of SCAPs
considering isolation, characterization, andmultilineage differentiation.The prospects for their use in stem cell-based therapywere
also discussed.

1. Introduction

Stem cells are biological cells that can self-renew and can
differentiate into multiple cell lineages. Mesenchymal stem
cells (MSCs) are multipotent adult stem cells that are isolated
from various tissues. Recently, dental-tissue-derived MSC-
like populations have been isolated and characterized. Stem
cells from the apical papilla (SCAPs) residing in the apical
papilla of immature permanent teeth represent a novel
population of dental MSCs that possesses the properties
of high proliferative potential, the self-renewal ability, and
low immunogenicity [1]. Moreover, considerable evidence
indicates that SCAPs are capable of giving rise to various
lineages of cells, such as osteogenic, odontogenic, neurogenic,
adipogenic, chondrogenic, and hepatogenic cells, which
can be as a promising source for stem cell-based therapy
(Figure 1) [1–4]. With the discovery of stem cells and the
development of stem cell technology, stem cell-based therapy
is emerging and moving rapidly into clinical application,

which aims to replace or repair damaged cells and tissue in
numerous diseases.

The aim of our review was to summarize the basics of
biology of SCAPs, and the prospects for their use in stem cell-
based therapy were also discussed.

2. Isolation of SCAPs

Recently, a variety of dental MSCs have been isolated,
including dental pulp stem cells (DPSCs), stem cells from
the human exfoliated deciduous teeth, SCAPs, dental follicle
stem cells (DFSCs), and periodontal ligament stem cells
(PDLSCs). In 2006, SCAPs were first discovered and isolated
from the apical papilla tissue of incompletely developed tooth
by Sonoyama et al. [1]. The apical papilla refers to the soft
tissue that is loosely attached to the apices of immature
permanent teeth and can be easily detached with a pair
of tweezers [2]. There is a cell rich zone lying between
the apical papilla and the pulp, and the apical papilla is
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Figure 1: Sources, multilineage differentiation capacity, and potential applications of SCAPs.

different from the pulp in terms of containing less cellular and
vascular components than the pulp [2]. However, a previous
study has provided evidence that the apical papilla contains
a higher number of MSCs than mature dental pulp tissue
[1]. Currently, there are two common approaches to isolate
and culture SCAPs. The first method is enzyme digestion.
The apical papilla tissue is separated from the tip of the
root, minced into pieces, and then digested in a solution of
collagenase type I and dispase with gentle agitation. After
digestion, tissue clumps are collected and passed through
a cell strainer to obtain single cell suspension of SCAPs,
which is then seeded in culture dishes [2]. Another method
is explant culture, in which the apical papilla tissue is cut
into samples about 1 mm3 in size and then plated on culture
dishes [5]. Both methods can effectively isolate and culture
SCAPs, but the former ismore commonly used.Meanwhile, a
noteworthy fact is that SCAPs can only be isolated at a certain
stage of tooth development, because apical papilla evolves
into dental pulp during the formation of crown and root.
Since Ding et al. have confirmed that cryopreservation does
not affect the biological and immunological properties of
SCAPs [6]; SCAPs can be stored by cryopreservation to retain
their regenerative potential for future clinical applications.

3. Characterizations of SCAPs

There is a large volume of published studies describing
that SCAPs, like other MSCs, express the MSC-associated
markers and are capable of self-renewal, proliferation, and
multilineage differentiation [1]. Comparative analyses indi-
cate that SCAPs exhibit a higher proliferation rate than
DPSCs and PDLSCs [1, 2, 7, 8] but display a lower prolif-
eration rate than DFSCs [3]. When stimulated with human
platelet lysate, epiregulin, tumor necrosis factor 𝛼, or basic

Table 1: Marker expression in SCAPs.

Positive markers Negative markers
CD13, CD24, CD29, CD44, CD49, CD51, CD14, CD18,
CD56, CD61, CD73, CD90, CD105, CD34, CD45,
CD106, CD146, CD166, STRO-1, Oct3/4, CD117, CD150
Sox-2, Nanog, Notch 3, vimentin, survivin
Abbreviations: CD, Cluster of differentiation; Oct3/4, octamer binding
transcription factor-3/4; Sox-2, sex determining region Y-box 2; Nanog,
nanog homeobox.

fibroblast growth factor (bFGF), SCAPs show a significantly
increased proliferation rate [9–11]. In addition, compared
with DPSCs, SCAPs have greater migration ability assessed
by scratch assay [1]. Several studies have investigated that a
variety of chemotactic factors, including stromal cell-derived
factor 1, transforming growth factor 𝛽 1, platelet-derived
growth factor, granulocyte colony-stimulating factor, and
FGF 2, could promote the migration of SCAPs. Therefore,
these factors may be used clinically in cell homing-based
regenerative endodontic procedures in the future [12–15].

SCAPs are also characterized by the expression of surface
and intracellular molecules (Table 1). Similar to other MSCs,
SCAPs express STRO-1 and CD146 that are recognized
as early MSCs markers [1]. They also express pluripotent
markers such as octamer binding transcription factor-3/4, sex
determining region Y-box 2, and nanog homeobox [3, 16].
In addition, several authors have reported the expression
of a range of markers on SCAPs, including CD13, CD24,
CD29, CD44, CD49, CD51, CD56, CD61, CD73, CD90,
CD105, CD106, CD166, NOTCH3, and vimentin [1, 3, 16–20].
Meanwhile, SCAPs are found to be negative for the expression
of CD14, CD18, CD34, CD45, CD117, and CD150, indicating



BioMed Research International 3

that they are not of hematopoietic origin [1, 20]. Among these
molecular markers, CD24 may be used to distinguish SCAPs
from DPSCs and predict the differentiation of SCAPs, since
it is undetectable in DPSCs [1]. As for other markers, it seems
to be expressed in both SCAPs and other MSCs, so specific
markers need to be further developed.Moreover, SCAPs have
a higher expression of antiapoptotic protein survivin, longer
telomere length, and greater telomerase activity associated
with cellular lifespan and cell proliferation than DPSCs do
[1, 21].

Aside from these surface and intracellular molecules, the
secretome of SCAPs has also been extensively profiled. The
evidence indicates that a total of 2,046 proteins are released,
including chemokines, angiogenic, immunomodulatory, an-
tiapoptotic, neuroprotective factors, and extracellular matrix
proteins. Significantly, SCAPs secretemore chemokines, neu-
rotrophins and proteins involving inmetabolic processes and
transcription compared to bone marrow mesenchymal stem
cells (BMMSCs) [22].

SCAPs are a heterogeneous population of cells, which
contain subpopulations of cells with different phenotypes and
characteristics [2]. For example, the STRO-1 (pos)/CD146
(pos) subpopulation shows a higher proliferation rate and
an enhanced odontogenic differentiation potential than other
subpopulations [16]. However, the causes of cellular hetero-
geneity are still unknown, so further studies are required.

4. Multilineage Differentiation

Over the past 10 years, numerous studies have confirmed
that SCAPs possess the capacity to differentiate into multiple
cell types such as osteoblasts, odontoblasts, neural cells,
adipocytes, chondrocytes, and hepatocytes.

4.1. Osteo/Odontogenic Differentiation. Many studies have
demonstrated that SCAPs are capable of differentiating into
osteoblasts and odontoblasts [1, 2, 19, 20, 23]. After culture
in osteo/odontogenic medium containing L-ascorbate-2-
phosphate, dexamethasone, and 𝛽-glycerophosphate, SCAPs
are found to express specific markers of osteoblasts or
odontoblasts, such as alkaline phosphatase, runt-related tran-
scription factor 2, osteocalcin, dentin sialophosphoprotein,
bone sialoprotein, and dentin matrix protein 1 [3, 7, 16, 19,
20, 23–36]. They also form mineralized nodules which can
be identified by alizarin red staining for calcium deposits
[1–3, 23]. Furthermore, there are a large number of studies
investigating the influence of molecules on the directed
differentiation of SCAPs. The osteo/odontogenic differenti-
ation of SCAPs can be promoted by forkhead c2 [37], bone
morphogenetic protein 2 ( BMP2) [37–39], BMP9 [32, 40],
SH3 and multiple ankyrin repeat domains 2 [25], GATA
binding protein 4 [41], 17 𝛽-estradiol [28], nuclear factor I-C
[42, 43], secreted frizzled-related protein 2 (SFRP2) [44, 45],
WD repeat domain 63 [34], insulin-like growth factor-1 [30,
46], recombinant human plasminogen activator inhibitor-1
[26], Rac1 gene [31], early growth response gene 1 [47], sirtuin
1 [48], potassium phosphate monobasic [49], canonical NF-
kappaB signaling pathway [27], wnt/𝛽 -catenin signaling

[50], and some dentin-derived proteins [51]. By contrast,
microRNA hsa-let-7b [52] and sonic hedgehog signaling
[53] are able to inhibit this differentiation of SCAPs. In
addition, homeobox (HOX) genes play important roles in
the differentiation regulation of SCAPs. The results of inves-
tigations indicate that HOXB7 [35], distal-less homeobox 2
[54], and MEIS2 [55] promote osteogenic differentiation of
SCAPs, whereas HOXC10 [36] inhibits this differentiation in
vitro.

4.2. Neurogenic Differentiation. As neural crest-derived cells,
SCAPs demonstrate neurogenic differentiation capacity in
vitro after induction. Previous reports have provided evi-
dence that, upon stimulation with a neurogenic medium
containing B27 supplement, bFGF, and epidermal growth
factor (EGF), SCAPs express a variety of markers of neural
precursors, neuron, and glial cells, such as nestin, neurogenin
2, musashi 1, neuronal nuclei, neuron-specific enolase, 𝛽III
tubulin, microtubule associated protein 2, neurofilament,
glial fibrillary acidic protein, 2󸀠, 3󸀠-cyclic nucleotide-3󸀠 phos-
phodiesterase, glutamic acid decarboxylase, and neural cell
adhesion molecule [2, 16, 20, 56–60]. Moreover, several
studies investigate that fibrinogen 50-thrombin 50 and SFRP2
could promote neurogenic differentiation of SCAPs [61,
62].

4.3. Other Lineage Differentiations. The plasticity of SCAPs
enables them to differentiate into other cell lineages. For
example, after induction with adipogenic medium, SCAPs
can form characteristic oil red O-positive lipid-containing
adipocytes [1–4, 20, 60]. This phenotypic conversion is also
correlated with the expression of adipocyte-specific markers,
such as adipocyte fatty acid binding protein 2, peroxisome
proliferator-activated receptor-𝛾2 and lipoprotein lipase [3,
4]. The ability of SCAPs to differentiate into chondrocytes
in vitro has also been noted. Under appropriate culture
conditions, SCAPs can express chondrogenic differentiation
markers such as SRY-box 9 and collagen type II and form
cartilage as identified by alcian blue staining [3, 4, 20, 60].
In addition, SCAPs can be induced in vitro to differentiate
into hepatocytes, characterized by the production of urea and
the expression of hepatic-specificmarkers, such as hepatocyte
nuclear factor 1-𝛼, 𝛼-1 fetoprotein, alanine amino transferase,
and aspartate amino transferase [3, 63].

These results provide insight into the differentiation of
SCAPs. However, the mechanisms underlying the directed
differentiation remain unclear, which need to be further
investigated.

5. Therapeutic Potential of SCAPs

Stem cell-based therapy is an emerging field as a promising
medical treatment of multiple diseases [64]. SCAPs have the
ability to differentiate into various cell types and possess low
immunogenicity, which could contribute to the regeneration
and repair of tissues. Hence they can be considered as an
attractive alternative cell source for stem cell-based ther-
apy.
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5.1. Pulp-Dentin Regeneration. Irreversible pulpitis and peri-
apical periodontitis, usually caused by dental trauma and
caries, are common diseases in oral cavity. In recent years,
regenerative endodontics has been a promising treatment
for these diseases instead of apexification. SCAPs are char-
acterized by a high proliferation rate and odontogenic
differentiation potential, which makes them suitable for
stem cell-based regeneration and producing dentin-pulp
complex. After transplantation of SCAPs combined with
hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds
into immunocompromised mice, a layer of dentin tissue
is generated on the surface of the HA/TCP [1]. When
SCAPs are seeded onto synthetic scaffolds consisting of poly-
D, L-lactide/glycolide, inserted into tooth fragments and
transplanted into immunocompromised mice, a continuous
layer of dentin-like tissue is deposited on the dentin surface
and vascularized pulp-like tissue is formed in the root
canal [65]. Many researchers have invented novel scaffolds
for regenerative endodontics, including decellularized den-
tal pulp [66, 67] and injectable nanofibrous microspheres
[68]. Functionalized scaffolds can be used as a controlled-
release device for morphogenic factors to provide a con-
ductive microenvironment for odontogenic differentiation of
stem cells and pulp-dentin regeneration [51]. In addition,
scaffold-free stem cell sheet-derived pellet (CSDP) can be
used in pulp-dentin regeneration. The evidence indicates
that SCAPs-based CSDPs transplanted into immunocompro-
mised mice also yield pulp-dentin-like tissue [69]. Although
previous studies have demonstrated the potential of SCAPs
in pulp-dentin regeneration, more researches are needed in
order to achieve clinical application.

5.2. Bioroot Engineering. Tooth loss caused by a variety of
diseases such as trauma, caries, periodontal disease, and
genetic disorders can lower the quality of life. Currently,
dental implants are regarded as the best clinical method
for replacing missing tooth instead of fixed bridge and
removable denture. However, with the development of tissue
engineering and regenerative medicine, tooth regeneration
has become an ideal and promising method. Some case
reports show continued root development after conservative
treatment of immature permanent teeth with pulp necrosis
and periapical lesions. This clinical phenomenon suggests
that SCAPs may survive during the process of pulp necrosis
and play an important role in tooth root formation by
differentiating into odontoblasts [2, 70, 71]. Sonoyama et
al. have demonstrated that by using SCAPs along with the
PDLSCs to regenerate a bioroot with periodontal ligament
tissues. A minipig model is used, and the autologous SCAPs
and PDLSCs are then seeded into a root-shaped scaffold with
a postchannel in the middle, and implanted into a socket
of alveolar bone. Three months later, the bioroot is formed
and can support a porcelain crown to provide normal tooth
function. Compared with dental implants, the bioroot is
encircled with periodontal ligament tissue and has favorable
biomechanical properties [1]. However, there has only been
limited study of tooth root regeneration, so more researches
are required to reach the potential of SCAPs in bioroot
engineering.

5.3. Periodontal Tissue Regeneration. Periodontitis, one of
the most widespread chronic infectious diseases, results in
the destruction of tooth-supporting tissues and associates
with many systemic diseases. Conventional treatments for
periodontitis, including scaling, root planning, and peri-
odontal flap surgery, can only alleviate the inflammation of
periodontal tissues and form a long junctional epithelium
instead of periodontal attachment, so alternative regen-
eration methods are necessary to regenerate periodontal
tissues. Recently, stem cell-based therapy is considered highly
promising for periodontal tissue regeneration. 12 weeks after
injecting SCAPs into periodontitis animal model, clinical
assessments, CT scans, and histopathology results show that
SCAPs could significantly improve periodontal regeneration
[72]. This study supports the concept of using SCAPs as a
suitable alternative stem cell source for periodontal tissue
regeneration in the future.

5.4. Bone Regeneration. Recently, with the development of
biocompatible materials and the discovery of stem cell
sources, bone tissue engineering has become an alternative
approach for repairing large bone defects instead of bone
grafting. As mentioned earlier, ex vivo expanded SCAPs have
the capacity to differentiate into osteoblasts after culture
in osteogenic medium. To further investigate the potential
to form bone tissue, SCAPs combined with scaffolds are
implanted subcutaneously into immunocompromised mice.
After a period of time, ectopic bone-like tissue is generated,
which contains osteocyte-like cells and osteoblast-like cells
[1, 5, 19]. These results indicate the feasibility of SCAPs
transplantation in the treatment of bone defects, but extensive
work lies ahead in order to achieve clinical application.

5.5. Neural Regeneration and Repair. SCAPs derived from
the cranial neural crest have the capacity to differentiate into
neural cells under inductive conditions. Therefore they may
be a potential cell source for the treatment of nerve injuries.
To regenerate nerve tissue, researchers have attempted to
cultivate SCAPs in 3D organotypic culture, which eventually
generate 3D cell-based nerve-like tissue with axons and
myelin structures in vitro [56].Moreover, in a rat hemisection
model of spinal cord injury, transplantation of apical papilla
tissue into the lesion site can improve gait and reduce glial
reactivity [73]. Another study indicates that transplanted
SCAPs can protect spinal cord neurons and promote func-
tional recovery after spinal cord injury [74]. Additionally, in a
rat sciatic nerve injury model, SCAPs also exert neuroprotec-
tive effects on the dorsal root ganglia neurons and stimulate
axon regeneration [75]. Previous reports suggest that SCAPs
are able to secrete neurotrophic factors such as nerve growth
factor, brain derived neurotropic factor, neurotrophin-3, and
activin-A [76–78]. Taken together, these observations seem
to indicate that SCAPs are excellent candidates for stem cell-
based therapy in central and peripheral nerve injuries.

5.6. Angiogenesis. Ischemic disease is a major cause of
disability and death. Currently, stem cell-based therapeutic
angiogenesis is an alternative treatment for ischemic diseases.
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In recent years, the transdifferentiation capacity of SCAPs
into endothelial cells has been evaluated. After exposure
to angiogenic medium, SCAPs can undergo morphological
changes to endothelial cells, express higher levels of several
angiogenesis-related genes, and form capillary-like structures
in vitro [79]. Furthermore, a series of experiments have
shown that SCAPs possess the ability to promote angiogen-
esis. SCAPs can secrete several proangiogenic molecules that
are able to improve the angiogenic potential of endothelial
cells, such as angiogenin, VEGF, and insulin-like growth
factor binding protein 3 [79, 80]. A chorioallantoicmembrane
assay demonstrates that SCAPs also stimulate new blood
vessel formation in an in vivo setting [80]. Especially under
hypoxic conditions, the proangiogenic effect of SCAPs is
increased [81, 82]. These results indicate that, due to their
angiogenic potential, SCAPs are attractive options for stem
cell-based therapeutic angiogenesis.

5.7. Immunotherapy. In addition to multilineage differentia-
tion capacity, SCAPs possess immunomodulatory functions,
which indicate that they may be a potential immunother-
apeutic tool for treating autoimmune and inflammation-
related diseases. Previous research confirms that SCAPs
express low levels of immunological molecules, such as swine
leukocyte antigen (SLA) class I molecules and SLA class II
DR molecules in a minipig model. Moreover, SCAPs are
capable of inhibiting T cell proliferation in vitro through an
apoptosis-independent mechanism [83]. From these studies,
it is apparent that SCAPs have immunosuppressive proper-
ties, but the exact mechanisms remain unknown. So there
are still challenges to be solved before SCAPs can be applied
clinically.

6. Conclusions

In conclusion, the isolation of SCAPs fromdental tissue along
with discovery of their properties has provided a conceptual
framework of their nature and potential application. How-
ever, several aspects of SCAPs biology remain in question and
unsettled, which include the identity, nature, standardization
of isolation and culture protocols, cell banking procedures,
and in vivo use for therapy. More progress on stem cells made
in nondental tissues will help in adopting research strategies
used in SCAPs. Simultaneously, a better understanding of
the novel population of postnatal somatic stem cells could
facilitate the full utilization of stem cells in clinical prac-
tice.
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