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The data presented in this article are related to the research article
entitled “The effects of gallic/ferulic/caffeic acids on colour intensifica-
tion and anthocyanin stability” (Qian et al, 2017) [1]. This paper
described preparation and isolation of anthocyanins from purple sweet
potatoes (PSP) and the time-course of anthocyanin profiles treated with
gallic, ferulic, or caffeic acids at 95 °C. The color appearance of PSPan-
thocyanins alone, or with gallic, ferulic, or caffeic acids was described
after the 15 h of thermal treatment. The high resolution mass spectro-
graphs of PSP anthocyanins were determined using UPLC-ESI-HRMS.
The spatial interaction of peonidin 3-O-(2-O-3-D-glucopyranocyl-f3-D-
glucopyranoide)-5-O-3-D-glucopyranoside ~ and  gallic/ferulic/caffeic
acids was illustrated by molecular dynamic simulation.
© 2017 Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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How data was HPLC, mass spectroscopy, computer simulation
acquired
Data format Raw data collection and analysis
Experimental Thermal treatment
factors
Experimental Experimental and theoretical studies. 3 replicates were used in the experiment
features as complete randomized design. Computationally analyzed.
Data source Shanghai, China
location

Data accessibility ~ The data is with this article.

Value of the data

® Data of anthocyanin profiles during thermal treatment can be valuable to further study for stability
of individual anthocyanin complexes with gallic, ferulic, or caffeic acids.

e The data provide a theoretically understanding the interaction of peonidin 3-0-(2-0-f-D-gluco-
pyranocyl-B-D-glucopyranoide)-5-0-p-D-glucopyranoside with gallic, ferulic, or caffeic acids.

e Identification of the interaction of anthocyanins and other potential copigments serve as the
paradigm for the researcher in further studies for pigments and food colorants.

1. Data

Anthocyanins in complexes with gallic/ferulic/caffeic acids were evaluated using an acceler-
ated stability test at 95 °C, and sampled at regular intervals (0, 0.5, 1, 2, 5, 10, and 15 h). Fig. 1.1
shows the color appearance of anthocyanin complexes collected at 15 h. Fig. 1.2 shows the
dynamic variation in anthocyanins added with gallic/ferulic/caffeic acids by HPLC profiles. Fig. 1.2
shows the remaining anthocyanins during thermal treatment at 95 °C. Fig. 1.2b-d shows the
remaining anthocyanins with gallic, ferulic, or caffeic acids during thermal treatment at 95 °C.
Anthocyanins in PSPs were identified via a high-resolution mass spectrometer in Figs. 1.3-1.18.
Additionally, Fig. 1.19 shows molecular dynamics simulation for analysis of the copigmentation
behavior of gallic (Fig. 1.19a), ferulic (Fig. 1.19b), and caffeic (Fig. 1.19c) acids over peonidin 3-0-(2-
O-p-D-glucopyranocyl-p-D-glucopyranoide)-5-0-p-D-glucopyranoside, which was predominant
in PSPs.

PSPs PSP+Gallic PSPs+Ferulic  PSPs+Caffeic

Fig.1.1. Samples of complexes of PSP anthocyanins with gallic, ferulic, or caffeic acids at 95 °C for 15 h.
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Fig. 1.2. HPLC profiles of PSP anthocyanins enhanced by three phenolic acids at 95 °C. (a) PSP anthocyanins; (b) PSP antho-
cyanins with ferulic acids; (c) PSP anthocyanins with gallic acids; (d) PSP anthocyanins with caffeic acids.
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Fig. 1.3. MS spectra of cyanidin-3-p-hydroxybenzoyl sophoroside-5-glucoside.
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Fig. 1.4. MS spectra of cyanidin-3-(6"-caffeoyl sophoroside)-5-glucoside.
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Fig. 1.5. MS spectra of peonidin-3-p-hydroxybenzoyl sophoroside-5-glucoside.
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Fig. 1.6. MS spectra of peonidin-3-caffeoyl sophoroside-5-glucoside.
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Fig. 1.7. MS spectra of cyanidin-3-(6"-feruloyl sophoroside)-5-glucoside.
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Fig. 1.8. MS spectra of cyanidin-3-caffeoyl glucoside-5-glucoside.
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Fig. 1.10. MS spectra of peonidin-3-caffeoyl sophoroside-5-glucoside isomer (M;), cyanidin 3-(6”, 6”’-dicaffeoyl sophoroside)-
5-glucoside (M), and cyanidin-3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside (Ms).
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Fig. 1.11. MS spectra of cyanidin-3-(6"-caffeoyl-6""-feruloyl sophoroside)-5-glucoside.

2. Experimental design, materials and methods

2.1. Extraction and purification of anthocyanins

Extraction and purification of PSP anthocyanins were executed following the previous study [2].
Fresh PSPs (5kg) were crushed into puree, followed by being immersed in 10 L of methanol
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Fig. 1.12. MS spectra of peonidin-3-(6", 6”-dicaffeoyl sophoroside)-5-glucoside.

[M-Glu-Caf-pHB-Glu-Glu]*

[H-Glu-C?f—pHB—Glu] *

463124

64, 133

[M—G}u] *
907.237
pos. 242

bog. 247
919.250

=11.273

[1] ¢

1069. 292

fro71. 303

1111310

1500

T T T T

500 600 700 800
w/z (Da)

T T
900 1000

T T
1100 1200 1300 1400

Fig. 1.13. MS spectra of peonidin-3-caffeoyl p-hydroxybenzoyl-sophoroside-5-glucoside.

1500



B.-]. Qian et al. / Data in Brief 12 (2017) 499-512 507

19000
soiiiad [M-Glu-Caf-Fr-Glu-Glu]*
=12.358
17000+ 301. 058
16000
15000
14000 M]*
18000:} [M—G‘]_u] + 125,321
12000 963, 262
11000
10000
9000 [M-Glu-Caf-Fr-Glu]*
80004 163. 118
1126. 321
7000
6000 oL 25
5000
B02. 076
4000
3000 L127, 326
61, 133 es. 20
2000
303. 050 2
1000+ i 128, 324
ol LI | il L
T T T T T T T T T T T T T T T
100 200 300 100 500 600 700 800 900 1000 1100 1200 1300 1400 1500

n/z (Da)

Fig. 1.14. MS spectra of peonidin-3-(6"-caffeoyl-6"'-feruloyl sophoroside)-5-glucoside.

containing 0.01% HCl and extracted for 2 h. The raw extracts were applied to a 600 cm x 50 cm
Amberlite XAD-7HP column (Huideyi, Beijing, China) and washed with 0.01% aqueous HCI to remove
water-soluble compounds. The anthocyanin fraction was eluted with 0.01% ethanolic HCl and applied
to a 100 cm x 2.5 cm Sephadex LH-20 column and separated by 50% aqueous ethanol containing
0.01% HCI. Monomeric anthocyanin isolation was achieved in an Agilent preparative HPLC system.
Mobile phases were (A) water containing 0.1% formic acid (v/v) and (B) methanol containing 0.1%
formic acid (v/v). Separation was achieved with the following gradient program: 30% B, 0-3 min; 50%
B, 3-10 min; 70% B, 10-12 min. An injection volume of 10 mL with a 5 mL/min flow rate was used. The
peak fraction was collected and dried with a nitrogen-blow evaporator. Purity of the anthocyanins
obtained was more than 30% (w/w).

2.2. Thermal stability of copigmentation

The pigment stability of PSP anthocyanins was evaluated using an accelerated stability test at 95 °C
[1]. The pH 3.2 buffer (0.06 mol/L sodium acetate and 0.02 mol/L phosphoric acid) was used to pre-
pare pigment solutions, which contained 22.46 mg monomeric anthocyanins/L of PSP anthocyanin
extract alone or with additional gallic acid (851 mg), ferulic acid (971 mg), or caffeic acid (901 mg) to
satisfy the 1:100 M ratio of cyanidin-3-glucoside and phenolic acid. Ten microliter of each solution
were added into test tubes which were then closed with screw caps. All tubes covered with aluminum
foil were then immersed in a water bath at 95 °C. Twelve tubes were prepared and sampled at regular
intervals (0, 0.5, 1, 2, 5, 10, and 15 h) and rapidly cooled to room temperature for analysis. Triplicates
were performed for the thermal treatment.
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Fig. 1.15. MS spectra of cyanidin 3-(6”, 6”’-diferuloyl sophoroside)-5-glucoside.
2.3. Quantitative analysis of individual PSP anthocyanins

The monomeric anthocyanins in PSPs during thermal treatment was identified using a LC-2030C
HPLC system (Shimadzu, Japan), which was equipped with a binary solvent delivery system, an online
vacuum degasser, an automatic sampler, a thermostatically controlled column compartment and a
diode array detection (PDA) system. Separation was executed on an InertSustain C;g column (5 pm,
250 mm x 4.6 mm i.d.) by a reverse phase elution at a flow rate of 1 mL/min. The injection volume
was 20 pL. Formic acid (1%, v/v) in water or acetonitrile was used as the mobile phases A or B,
respectively. The gradient program was as follows: 0-5 min, 10% B; 5-20 min, 10-15% B; 20-30 min,
15-20% B; 30-40 min, 20-25%B; 40-45 min, 25-40% B; 45-50 min, 40-60% B. Spectral information
was collected over the wavelength range from 200 nm to 800 nm, where the total absorbance of
anthocyanins was recorded at 530 nm. The total absorbance of anthocyanins was analyzed using a
linear regression analysis. Samples from each thermal treatment were analyzed in triplicate.

2.4. UPLC-ESI-HRMS analysis of PSP anthocyanins

Separation of the anthocyanins were finished using an ACQUITY UPLC system (Waters, MA, USA)
equipped with an Acquity BEH Cyg column (1.7 pm, 100 mm x 2.1 mm i.d., Waters, MA, USA). Mobile
phase A was 0.1% formic acid in water (v/v), and mobile phase B was acetonitrile. The anthocyanins
were eluted with a linear gradient of mobile phase B in A going from 5% to 20% over 15 min, from 20%
to 40% over 5 min and from 40% to 85% over 2 min at a flow rate of 0.4 mL/min. Spectral information
was collected over the wavelength range from 200 to 800 nm.

The Waters Micromass Q-TOF Premier mass spectrometer equipped with an electrospray interface
(Waters, MA, USA) was used to detect anthocyanins. The positive ionization mode was applied with
the electrospray/ion optics parameters set as follows: capillary voltage, 3.0 kV; sampling cone, 35V;



B.-]. Qian et al. / Data in Brief 12 (2017) 499-512 509

1700 [M-Glu-Caf-Fr-Glu-Glu]*

t=13.092

301. 069

1400+
(M*
13004
1125.319
12001
1100+

10004

[M-Glu-Caf-Fr-Glu]* [M-Glu]*

700+ i 11126, 322
963. 263 =
463.124

1155. 337

993. 281

ot o8y 1113:3%

el ulbidd ijl

T T T T T T T T T T T
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
w/z (Da)

Fig. 1.16. MS spectra of penodin-3-caffeoyl feruloyl sophoroside-5-glucoside isomer.

collision energy, 4 eV; source temperature, 115 °C; desolvation temperature, 250 °C; desolvation gas
flow, 300 L/h. The scan time was 0.5 s over an m/z range from 50 to 1500 au.

2.5. Molecular dynamics simulation

The initial geometries of peonidin 3-0-(2-0O-p-D-glucopyranocyl-f3-p-glucopyranoide)-5-0-3-p-
glucopyranoside (P3GG5G) and the phenolic acids (caffeic, ferulic, and gallic acids) were built using
the SYBYL X-1.3 software on a Windows operating system. The Powell method was applied to
minimize energy of each structure using the Tripos force field, and the maximum iterations were set
to 1000 steps and other default parameters was set according to our previous work [3]. The lzowell

conjugate gradient algorithm was terminated until the convergence criterion of 0.005 kal/(mol é) was
satisfied. The partial atomic charges were calculated using the Gasteiger-Hiicke method. Molecular
docking was performed by the Surflex-dock model, where the lowest-energy conformations of
peonidin-3-sophoroside-5-glucoside as the receptor and the phenolic acid as the ligand were used.
The molecules of water and bound ligands were removed from the receptor prior to docking analysis.
All parameters were default, and CScore calculation was off. All the putative docking models were
analyzed and selected after docking completion based on the MolDock score and hydrogen bonding
interactions. And then the best docked complexes were further analyzed by molecular dynamics (MD)
simulations. MD simulations in periodic boundary conditions were performed using the Tripos force
field with the silverware algorithm for solvation. The positive charge of each studied system was
neutralized with one counterion (Cl~). Each complex was minimized in two stages: the complexes
were fixed, and only the water and position of the counterion were minimized; the full system was
minimized. Subsequently, the whole system was equilibrated by 100 ps MD, followed by a 10 ns MD
simulation using a fixed pressure P, temperature T, and number of atoms N (constant-NPT ensemble)
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a Gallic acid

Ferulic acid

Fig.1.19. Complexes of peonidin 3-0-(2-0-p-D-glucopyranocyl-p-D-glucopyranoide)-5-0--D-glucopyranoside with gallic acid
(a), ferulic acid (b), and caffeic acid (c) with closest geometries to the average structures after molecular dynamics simulations
at 368 K. (a) Gallic acid, (b) ferulic acid, and (c) caffeic acid.

at 368 K with 50 fs of integration time and a cut-off of 10 angstroms for long-range interactions. A

31 é x 31 é x 31 ébox around the water was applied to simulate the periodic boundary conditions.
The final modeled system contained 1393 P3GG5G, phenolic acid, and water together. The stabilized
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structure was applied to determine the possibility to form hydrogen bonds (H bonding ability), which
were also visualized with the sites and number of direct and intermediate hydrogen bonds [4].

2.6. Statistical analysis

A completely randomized design (CRD) was used to design the accelerated stability test with three
replicates for each treatment.

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant no. 31371756)
and Science and technology plan projects in Sichuan province (No. 2015]Y0112).

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2017.04.036.

References

[1] BJ. Qian, et al., The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability, Food Chem. 228
(2017) 525-532.

[2] P. Jing, et al., Quantitative studies on structure-ORAC relationships of anthocyanins from eggplant and radish using 3D-
QSAR, Food Chem. 145 (2014) 365-371.

[3] P.Jing, et al., Antioxidant properties and phytochemical composition of China-grown pomegranate seeds, Food Chem. 132
(2012) 1457-1464.

[4] S. Kunsagi-Mate, et al., Determination of the thermodynamic parameters of the complex formation between malvidin-3-O-
glucoside and polyphenols. Copigmentation effect in red wines, ]. Biochem. Biophys. Methods 69 (1-2) (2006) 113-119.


http://dx.doi.org/10.1016/j.dib.2017.04.036
http://dx.doi.org/10.1016/j.dib.2017.04.036
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref1
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref1
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref1
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref2
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref2
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref2
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref3
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref3
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref3
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref4
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref4
http://refhub.elsevier.com/S2352-3409(17)30168-3/sbref4

	Interactive effects of gallic/ferulic/caffeic acids and anthocyanins on pigment thermal stabilities
	Data
	Experimental design, materials and methods
	Extraction and purification of anthocyanins
	Thermal stability of copigmentation
	Quantitative analysis of individual PSP anthocyanins
	UPLC-ESI-HRMS analysis of PSP anthocyanins
	Molecular dynamics simulation
	Statistical analysis

	Acknowledgements
	Supplementary material
	References




