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Abstract: Azobenzene derivatives have become one of the most famous photoresponsive chro-
mophores in the past few decades for their reversible molecular switches upon the irradiation of ac-
tinic light. To meet the ever-increasing requirements for applications in materials science, biomedicine,
and light-driven devices, it is usually necessary to adjust their photochemical property from the
molecular level by changing the substituents on the benzene rings of azobenzene groups. Among the
diverse azobenzene derivatives, azopyridine combines the photoresponsive feature of azobenzene
groups and the supramolecular function of pyridyl moieties in one molecule. This unique feature
provides pH-responsiveness and hydrogen/halogen/coordination binding sites in the same chro-
mophore, paving a new way to prepare multi-functional responsive materials through non-covalent
interactions and reversible chemical reactions. This review summarizes the photochemical and pho-
tophysical properties of azopyridine derivatives in supramolecular states (e.g., hydrogen/halogen
bonding, coordination interactions, and quaternization reactions) and illustrates their applications
from photoresponsive liquid crystals to light-driven devices. We hope this review can highlight
azopyridine as one more versatile candidate molecule for designing novel photoresponsive materials
towards light-driven applications.

Keywords: azopyridine-based materials; supramolecular assembly; photoresponsive material;
liquid crystal

1. Introduction

Light is absolutely charming, as it is an abundant and clean energy that has been
widely utilized to manipulate photoresponsive materials remotely, precisely, and instantly.
In the past few decades, the development of photoresponsive materials has attracted ex-
tensive attention in view of their wide-ranging applications, including nanotechnology,
light-driven actuators [1,2], drug delivery systems [3], controlled biological systems [4,5],
and many more [6–9]. In general, the photoresponsive materials are designed to acquire
the reversibly/irreversibly changed molecular properties (such as polarity, size, and in-
terior tension) in organic systems, causing the transformation of self-assembly structures
and deformation of bulk materials. These photosensitive moieties in block copolymer
systems and multiresponsive polymer systems have already been reviewed by Zhao [10]
and Theato [11]. Among them, azobenzene derivatives are some of the most typical pho-
toresponsive chromophores, existing in either the trans or cis conformations. The trans-form
is the predominant conformation in dark conditions, for it is thermodynamically more
stable than the cis-form. Trans-to-cis isomerization often occurs reversibly by applying a
particular wavelength of light in their absorption bands, UV or blue light, respectively [12].
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Typically, azobenzenes have been classified into three categories according to their
substituent groups, which are classical “azobenzene” with no substituent groups, showing
a relatively long lifetime of the cis-isomer [13]; “amino-azobenzene” with one electron-
donating group, exhibiting a shorter cis-isomer lifetime; and “pseudo-stilbenes”, azoben-
zenes that possess an electron push–pull feature. This push–pull effect often leads to strong
bathochromic shifting of the absorbance of chromophores and a shortening of its half-life
of thermal reconversion to trans from cis [14].

Among all types of azobenzenes, one “good” chromophore for future applications
should exhibit several characteristics. First, a rapid response is needed upon irradiation
of actinic light with a specific wavelength so that the corresponding property change can
be verified instantly [8,15]. Second, the reversible processes should be indispensable for
most photo-actuated devices [16]. As mentioned above, the cis-to-trans thermal recovery of
azobenzenes can only be tuned by introducing substituents on the aryls. The timescale of
the lifetimes (τ) of cis-isomers vary from a few picoseconds to several days, depending on
their substituents [13,17]. Third, the chromophore should have enough structural stability,
as negligible decomposition occurs, even after prolonged light irradiation. Moreover, under
high-intensity photoirradiation (>100 mW/cm2) [18], thermal energy is often produced
from azobenzene-containing materials due to the so-called photothermal effect. Although
the photothermal effect can be used in light-controlled devices [19,20], the chemical stability
of chromophores should be emphasized.

Azobenzene-containing polymers in bulk and solution have already been systemically
reviewed elsewhere [10,14,21,22]. The photoisomerization property of heteroaryl azo dyes
was summarized recently by König and co-workers [23]. However, little attention has been
paid to a class of a more versatile multiresponsive chromophores: azopyridine (AzPy).
The structure of AzPy contains a pyridyl ring instead of a phenyl ring of azobenzenes
(see Figure 1). Since the lone electron pair of the N atom in the pyridyl ring has no
contribution of a π-electron conjugate, the N atom can act as an electron-withdrawing
group of the conjugate system. In addition, the ionization of the pyridyl ring under acid
conditions offers pH-responsive solubility and spectroscopic changes [24]. It is also worth
mentioning that the N atom in the pyridyl ring is a powerful hydrogen/halogen bond
acceptor and coordination ligand, a property employed extensively in the construction of
supramolecular assemblies.
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In this review, we emphasize the recent progress of AzPy-containing supramolecules
with various interactions and versatile performances. We focus on the examples of cur-
rent uses of AzPy as a building block in soft matter and materials science. We believe
that the multifaceted AzPy chromophore can be an important and useful member of the
photoresponsive family, enlarging the scope of multiresponsive materials.

2. Hydrogen-Bond Supramolecular Assembles

The lone-pair electron in AzPy enables it to interact with various hydrogen bond (H-bond)
donors easily, acting as a building block for supramolecular assembly via H-bonding. The
strength of a H-bond is around 2–160 kJ/mol based on its length and geometry [25]. The
shorter the length and the closer the B-H···A angle to 180◦, the stronger the H-bond, and vice
versa [26,27]. The most widely investigated H-bond donors are carboxylic acid derivatives,
and the equilibrium constant (Ka) of the pyridyl/carboxylic acid complex was estimated to
be five times stronger than that of the carboxylic acid dimer [28]. Because of their strength
and directionality, H-bonds usually act as a powerful tool to guide supramolecular assembly
in nature (e.g., proteins and DNA). In addition, a significant number of assemblies, such
as liquid crystals (LCs), fibers, films, and gels, have been extensively studied. As shown
below, we summarize the recent progress of AzPy-based supramolecules and the structures
self-assembled via H-bonds.

2.1. Liquid Crystals

The mesogenic formation is the result of self-organization due to a proper combi-
nation of molecular shape and intermolecular function in a certain direction, which is
generally regulated by molecular rigidness, the dipole–dipole interaction, and the steric
hindrance effect as well as polar substituents [22]. A H-bond is much stronger than the
dipole–dipole interaction, which provides an interestingly supramolecular interaction be-
tween the different components. The carboxylic acid and the pyridyl group have been
generally used as H-bond donors and acceptors for the fabrication of supramolecular
liquid crystals. The earliest example can be traced back to 1989 by Kato and Fréchet [29].
During the slow evaporation of the mixed solution of 4-butoxybenzoic acid and one four-
substituent pyridine derivative, a new and extended mesogen was unexpectedly obtained
through intermolecular H-bonding, with the molecular geometry directed along the long
axis of the individual rod-like molecules. Other AzPy-carboxylic acid liquid–crystalline
systems with small molecules were subsequently reported [30–33]. For example, Song
and co-workers obtained a supramolecular liquid–crystalline complex from binary mix-
tures of 4-(alkoxyphenylazo) pyridines and 4-octyloxylbenzoic acid, where none of the
pyridine-based derivatives were mesomorphic, but the H-bonded complexes were [34].
The structure–property relationship between the liquid–crystal parameters (e.g., the type
of phase and the phase-transition temperature) was then systematically investigated by
several groups [30,34,35].

In addition to the AzPy/carboxylic acid H-bond system, Pfletscher and Giese in-
vestigated the structural influence of phenol derivatives as H-bond donor moieties on
the liquid–crystalline behavior of the AzPy-based supramolecular complex, as shown in
Figure 2a [36]. After carefully analyzing the mesomorphic properties of 49 new H-bonded
assemblies, they concluded that the linearly supramolecular architecture tended to form
crystalline or smectic phases, while a V-shape structure had a high preorganization order
of aromatics (blue) and aliphatic groups (red) bearing nematic phases. (Figure 2b) In
their following works, hierarchical supramolecular liquid crystals were obtained by self-
assembling different core units through H-bonding interactions. In these structures, AzPy
derivatives act as H-bond acceptors, and aromatic polyols or polyphenols act as H-bond
donors. For example, phloroglucinol [37], resveratrol [38], oxyresveratrol, butein, isoliquir-
itigenin, piceatannol [39], polycatenars [40], and other ortho-substituted phloroglucinols
(e.g., 2-fluoro [41,42], cyan, and nitro [43]). The relationship between the core structure and
the light-responsive liquid–crystal properties was systematically investigated. Combined
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with a detailed computational analysis with temperature-dependent FTIR results, they
revealed an entropy-driven unfolding mechanism of the assembly [44]. Several H-bond
liquid crystals exhibit rapid photoresponses and the broad-range blue phase, showing
potential applications in organic optoelectronics as sensors or optical gates.
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Figure 2. (a) Systematic study of hydrogen-bonded assemblies schematically drawn for 1:1 (A),
2:1 (B), and 3:1 (C) complexes. The used core units (red) phenol (PH), hydroquinone (HQ), resorcinol
(RE), catechol (CA), pyrogallol (PYG), hydroxyhydroquinone (HHQ), and phloroglucinol (PHG) were
mixed with azopyridine (blue) to form the HBAs. (b) Representative views of the intermolecular
packing of HQ, RE, CA, and PHG assemblies (A–D, upper images), as observed with respect to the
solid-state structures. The observations under cross-polarized microscope (lower images) show the
correlation between the structural morphology and thermal behavior of the investigated hydrogen-
bonded assemblies. Reprinted with permission from Reference [36]. Copyright 2017, American
Chemical Society.

Very recently, several new types of AzPy-containing supramolecular liquid crys-
tals with different geometries were reported, e.g., rod-like shape [33,45,46], chair/V-
shape [47,48], and taper-shape [49] as well as bent-shape [49,50]. It was suggested that
the chair-shaped conformers were more stable than the V-shaped isomeric complexes [47].
In addition, the rod-like conformation exhibited only an enantiotropic nematic phase
over a broad range of temperatures, regardless of the terminal alkyl chain lengths at
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the pyridine-based component or the length of the flexible spacer on the benzoic acid
derivatives (Figure 3) [33]. The molecular conformation and the thermal parameters of the
complexes were also confirmed by theoretical calculations via density functional theory
(DFT). Ahipa and co-workers reviewed the recent progress of heterodimeric H-bonded
mesogens containing the pyridyl moiety [51].
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Figure 3. (a) Synthetic route to the hydrogen-bonded complex An/Cm; (b) Optical micrographs
observed for the nematic phase of the supramolecular complex A8/C5 in homeotropic cell: nematic
droplets at the transition from the isotropic liquid at T = 191 ◦C; (c) schlieren texture of the nematic
phase showing four-brush defects at T = 150 ◦C. Reprinted with permission from Reference [33].
Copyright 2019, Taylor & Francis.

In addition to the low-molecular-weight supramolecular system, researchers also took
advantage of AzPy moieties in the light-controllable polymer to adjust the phase transitions
of liquid crystals. For example, Zhao and co-workers developed an efficient strategy
to fabricate photoactive liquid–crystalline materials through the self-assembly of AzPy
side-chain polymers [52]. The AzPy-containing polymer (PAzPy) is totally amorphous
upon thermal analysis. By contrast, when mixing with the aliphatic carboxylic acids,
acetic (1COOH), hexanoic (5COOH) and decanoic acid (9COOH), the formation of the
liquid–crystalline phase of the polymer was detected in all cases (Figure 4). Since then,
polymer-based H-bond liquid crystals have been reported by many groups [53–57].

Yu and co-workers developed a supramolecular liquid–crystalline polymer micropar-
ticle (a diameter of 2~5 µm) with one AzPy-containing polymer (PM6AzPy) and a series
of dicarboxylic acid (DA) compounds through H-bonding (Figure 5) [58]. The length of
the diacid used can adjust the surface morphology of the obtained microparticles. Those
diacids with long soft alkylene chains (9DA and 10DA) provide a wrinkled surface mor-
phology for their relatively larger free volume during aggregation, while those diacids with
shorter alkylene chains (1DA, 4DA, and 6DA) show smooth surfaces of the microparticles.
The supramolecularly self-assembled microparticles showed mesogenic phases, and then
the photoinduced liquid—crystal-to-isotropic phase transition was clearly observed upon
UV irradiation, resulting in a deformed shape (Figure 5b).
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azobenzene polymer counterpart. (b) Polarizing optical micrographs for PAzPy complexed with
(a) acetic acid (1COOH), annealed at 63 ◦C. Reprinted with permission from Reference [52]. Copy-
right 2004, American Chemical Society.
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(b) Photoresponse of the PM6AzPy−10DA film, top: POM image, bottom: FTIR spectra. Adapted
with permission from [58]. Copyright 2011, American Chemical Society.

2.2. Fibers and Gels

In 1999, Aoki and co-workers reported self-assembled fibers showing a uniform diame-
ter of 200 nm derived from the pure compound of AzPy-containing carboxylic acid through
the head-to-tail H-bonding in an alkaline solution [59]. The chemical structure of the assem-
bly unit possesses both a carboxyl acid group as a H-bond donor and an AzPy moiety as a
H-bond acceptor at each molecular terminus, as shown in Figure 6a. The intermolecular
head-to-tail H-bonding and the inhibition of the π-π stacking of the substituent are the criti-
cal factors for the self-organization to form fibrous materials with high length-to-diameter
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ratios. The H-bonds between AzPy and carboxylic acid may offer the axial forces, while
π-π stacking and dipole–dipole interactions provide the lateral intermolecular interaction
forces (Figure 6b). Interestingly, UV irradiation of alkaline solutions of the AzPy-containing
carboxylic acid (Figure 6a) resulted in a modification of the morphology from a fibrous
structure to a needle-like structure, probably because the cis-isomer affected the nucleation
process in the formation of the supramolecular fiber [60]. Then, AzPy derivatives with
different spacer lengths, the substituent, and the solvent polarity were studied in detail,
revealing that the morphological properties of these macroscopic self-assemblages can be
controlled by the internal molecular structure and external stimuli, including heat, pH
changes, light irradiation, and solvent polarity [61,62]. The weak interaction between the
fiber formation as well as the possible molecular orientation is given in Figure 6b. These
AzPy-based supramolecular fibers were then deployed as the template for fabricating
metallic tubular materials where the inner diameter and the tubular morphology of the
fibrous aggregates can be controlled by simply varying the amphoteric AzPy-containing
carboxylic acids [63].
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Figure 6. (a) Head-to-tail coupled and hydrogen-bonded azopyridine derivatives. (b) Schematic
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permission from [60]. Copyright 2011, American Chemical Society.

Different from mono (pyridyl) derivatives, supramolecular assemblies with bis(pyridyl)
derivatives often result in relatively less mobile aggregations (e.g., fibers [64], gels [65], and
crystalline materials [66]) for acting as the physical crosslinking points in aggregations.
Naumov and co-workers reported an interesting example of a 4,4′-azopyridine-assembled
crystalline material. The fibrillar crystal was obtained by a 2:1 co-crystal of probenecid and
4,4′-azopyridine (Figure 7), showing responses to multiple external stimuli, including heat,
UV light, and mechanical pressure [66]. The crystal has excellent mechanical properties
and can endure twisting, bending, and elastic deformation. Besides, the AzPy-containing
crystal is capable of self-healing on heating and cooling upon UV irradiation because of
the reversible trans–cis isomerization of the AzPy unit and the crystal-to-crystal phase
transition (Figure 7c). This work presents a fantastic example of supramolecular co-crystals
to overcome the main setbacks of molecular crystals, which may provide future applications
as crystal actuators.
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Figure 7. (a) Molecular structures of probenecid and 4,4′-azopyridine; (b) Optical microscopic image
showing the crystal habits of the two polymorphs of the co-crystal, form 1 (acicular crystals) and
form 3 (blocky crystals); (c) Thermal microscopy images showing the progression of the habit plane
(phase front) during the reversible phase transition from form 1 to form 2 and during the irreversible
phase transition from form 2 to form 3. Reprinted with permission from [66]. Copyright 2018, John
Wiley & Sons.

Recently, Zhao and co-workers successfully synthesized a chiral fiber by the co-
assembly of phenylalanine-based enantiomers and an achiral AzPy through cooperative
H-bonding interactions (Figure 8a) [64]. The obtained fibers have handedness inversion as
well as controllable pitch and diameter. The helix inversion was achieved by the transition
between the J-aggregation and the H-aggregation of bis(pyridyl) derivatives. Interestingly,
the helical co-assemblies with opposite handedness could be obtained not only from the
enantiomeric building blocks but also from the chiral monomers with the same configura-
tional chirality by exchanging achiral additives, as shown in Figure 8c. Wei and coworkers
designed a 2:1 co-crystal of (E)-4-((4-(propyloxy)phenyl)diazenyl)pyridine (APO3C) and
tetrafluoroterephthalic acid (TFTA), and the resulting co-crystal exhibited photoinduced
rotation under UV light. With the help of molecular simulation, the crystal habits and
intermolecular interactions within these two assemblies were clarified. The pointer-like
photomechanical rotation can be attributed to the opposing forces between the rotations of
crystals caused by the trans–cis isomerization of APO3C molecules and the limited action
of the diagonal arrangement [67].

On the aspect of the multiresponsive properties of AzPy-containing supramolecular
assemblies, Feng and co-workers prepared a hydrogel co-assembled from a phenylalanine-
based amphiphile (LPF2) and a bis(pyridyl) derivative (AP) through intermolecular H-
bonds between amide/pyridine moieties and carbonyl groups [65]. The co-assembled
hydrogel exhibited a macroscopic gel–sol transition in response to four distinct input
stimuli: temperature, acid, base, and light (Figure 9). Based on these multiresponsive
properties, a logic gate was created, which may promote the possibility of developing smart
materials, such as gel-based tools.
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Figure 8. (a) Schematic presentation of the helical inversion triggered by H-aggregation of DPDS
and J-aggregation of EDPAz in the co-assembly process with (left) LCHF or (right) DCHF. M rep-
resents left-handed helical nanofibers, and P represents right-handed helical nanofibers; (b) SEM
images of (1) LCHF + DPDS with P-helical nanofibers, (2) DCHF + DPDS with M-helical nanofibers,
(3) LCHF + EDPAz with M-helical nanofibers, and (4) LCHF + EDPAz with P-helical nanofibers;
(c) Schematic representation for loose J-type packing of LCHF + EDPAz-induced left-handed co-
assembly (top) and compact H-type stacking of LCHF + DPDS-induced right-handed co-assembly
(bottom). Reprinted with permission from [64]. Copyright 2018, American Chemical Society.
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Figure 9. (a) Chemical structures of the gelator LPF2 and azobenzene derivative AP; SEM images
of (b) LPF2-AP gel and (c) LPF2 gel. (Inset) Photographs of (b) LPF2-AP hydrogel and (c) LPF2
hydrogel. Reprinted with permission from [65]. Copyright 2015, American Chemical Society.

Very recently, a supramolecular liquid–crystalline organogel was elegantly fabricated
from an AzPy-containing polymer (PM11AzPy) and a large amount of oleic acid by Yu
and co-workers through AzPy-carboxylic acid H-bonding (Figure 10a). Here, the oleic
acid played the roles of both the solution and the gelator with H-bonded PM11AzPy. The
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PM11AzPy-based liquid–crystalline supramolecule exhibited a smectic C liquid–crystal
phase from 38 to 58 ◦C (Figure 10b,c). In addition, the obtained organogel exhibited a
multiresponsive gel−sol transition from external triggers, including temperature, UV light
irradiation, and organic metal ions (Figure 10d). Based on such multiresponsive features,
the organogel was successfully explored for recording holographic gratings, and the grating
structures can be switched by manipulating the three external stimuli, indicating their
potential applications as detectors or sensors [68].
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Figure 10. (a) Chemical structures of the azopyridine-containing polymer (PM11AzPy) and oleic acid
(OA); (b) DSC curves (second cooling scan) of OA, PM11AzPy, and PM11AzPy−OA (1:1); (c) One
POM image of the compound PM11AzPy−OA (1:1) annealed at 46 ◦C, scale bar: 10 µm; (d) Photos of
the organogel in response to heating, UV light, and adding Ag+ (inset SEM image: PM11AzPy−OA
(1:20) xerogel and precipitates from the organogel after adding Ag+). Reprinted with permission
from [68]. Copyright 2019, American Chemical Society.

2.3. H-Bonded Supramolecules in Solution

Aside from the delicate control of the phase and assembly structure via AzPy in
the condensed state, AzPy chromophores can also be utilized in morphological reg-
ulation in solution. Han and co-workers reported the first example of an AzPy ad-
justable morphology transition from an amphiphilic block copolymer almost a decade
ago [69]. In a water/tetrahydrofuran (H2O/THF) mixture solvent, amphiphilic poly (N-
isopropylacrylamide)-b-poly{6-[4-(4-pyridyazo)phenoxy]hexylmethacrylate} (PNIPAM-b-
PAzPy) self-assembled into giant micro-vesicles. Upon alternating irradiation of UV and
visible light, reversible swelling and shrinking of the vesicles were clearly discovered under
observation with an optical microscope. The maximum percentage increase in volume
caused by UV light reached 17% (Figure 11). This change was explained by the reversible
photoisomerization of the AzPy group inside the vesicle membrane, and the swelling
degree could be adjusted by changing the light intensity. A similar photo-controllable
transition behavior of vesical morphology was reported later by Lin and co-workers. The
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hydrophilic block copolymer composed of a hydrophilic poly (ethylene oxide) block and a
hydrophobic polymethacrylate with photochromic AzPy moieties in the side groups was
synthesized by atom transfer radical polymerization (ATRP) [70]. The copolymeric vesicles
showed a photoinduced circular process including fusion, damage and defect formation,
disruption, disintegration, and rearrangement in H2O/THF upon irradiation with UV
light. Further studies on the same structure reflected that the trans–cis photoisomerization
of AzPy in the vesicles was influenced by the water content in the mixture and the light
intensity [71].
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Figure 11. (a) Absorption spectra of the copolymer in THF solution (solid line) and in the mixture of
THF and H2O as vesicles (dashed line). The inset shows (1) the chemical structure of the deblock
copolymer; (2) images were obtained using the optical microscope and (3) laser scanning confocal mi-
croscopy, respectively; (b) Schematic representation of UV-induced swelling and shrinking behaviors
from block copolymer vesicles. Reprinted with permission from [69]. Copyright 2008, WILEY.

Yuan and co-workers synthesized one amphiphilic block copolymer containing N,N-
dimethylaminoethyl and AzPy groups (PDMAEMA-b-PAzPy) that self-assembled into
micelles with hydrophobic trans-AzPy cores and hydrophilic PDMAEMA shells, as shown
in Figure 12 [72]. The micellar size exhibited triple tunable responses to temperature, pH,
and light. Then, the light-responsive property of the polymer solution was investigated
by fluorescence measurements of the micelles encapsulated with Nile red. The increase in
fluorescence intensity after irradiation implies that the core of the micelle containing AzPy
groups became more hydrophobic, which is totally different from the previous reports
stating that the azobenzenes become more hydrophilic after UV irradiation [72]. The
photochemical properties of AzPy chromophores in the copolymer micelle solution under
different pHs were also investigated. In the acidic condition (pH = 2), the UV-Vis absorption
spectrum hardly changed because of the quaternization of the AzPy moieties.
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365 nm for different times (concentration: 0.15 mg mL−1). Reprinted with permission from [72].
Copyright 2013, Royal Society of Chemistry.

2.4. Photoisomerization and Relaxation of H-Bonded Supramolecules

As mentioned above, AzPy-containing H-bond supramolecular complexes have been
extensively studied, from their aggregation morphology to their liquid–crystal properties.
In this section, we will focus on the isomerization mechanism and its application of H-
bonded supramolecules. It is well-known that the thermal relaxation of cis-azobenzene can
be modulated by adjusting the electron delocalization via substituent groups at the benzene
rings [12,13]. Specifically, electron-withdrawing groups with a push–pull effect would
shorten the thermal relaxation time, while the electron-donating group prolongs it [13,73].
In AzPy, the lone electron pair of the N atom is not involved in the π-electron conjugate,
which can act as an electron-withdrawing atom in the conjugate system, shortening the
relaxation time. The delocalization of electrons intensively increases when the pyridine ring
is in an ionized or quaternized state, resulting in an obvious decrease in the half-life of the
cis-isomer (see detail in Section 5) [24]. In addition, the delocalization of the electrons also
happens when the pyridine ring forms H-bonds with carboxylic acids or phenol derivatives.
Recently, Gelbart and co-workers reported that the AzPy chromophore undergoes a very
fast cis-to-trans thermal relaxation when the pyridine nitrogen is bound to a benzoic acid
derivate. This fast recovery and decrease in half-life can be attributed to the enhanced
push–pull effect of AzPy moieties under the supramolecular H-bonding state [15]. Such
an exciting property can be brought into service for fabricating photo-driven devices with
quick responsive deformation and fast recovery. For example, the AzPy-carboxylic acid H-
bonded complex can produce supramolecular liquid–crystalline networks, which may act
as a photoresponsive component in a liquid–crystalline polymer film containing diacrylate
azobenzene monomer as the crosslinker. The films showed continuous wave motions upon
photoirradiation, owing to the fast cis-to-trans thermal relaxation of the H-bonded AzPy
complex. Thus, continuous, directional, macroscopic mechanical wave deformation can
be achieved under constant light illumination. In addition, because of the photothermal
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effect of the liquid–crystalline film, the increased local temperature can also reduce the
thermal relaxation time, promising applications in light-driven devices and self-cleaning
surfaces [15].

In solution, the cis-to-trans relaxation of AzPy chromophores highly depends on
the solvent property and the self-assembly structure. For example, Ren and co-workers
recently demonstrated an exceptionally fast cis-to-trans thermal relaxation of the AzPy
chromophore in an aqueous solution from a set of α-azopyridine-ω-dodecyl poly (N-
isopropylacrylamide) homopolymers (C12-PN-AzPy) [24]. Figure 13 depicts the UV-Vis
absorption spectra of the polymer under UV light irradiation in various conditions. The
polymer self-assembles into flower-like micelles with closely packed n-dodecyl end groups
as the core surrounded by hydrated PNIPAM chains as the shell. Upon UV irradiation of
the solution (pH = 7), the cis-to-trans isomerization of the AzPy chromophore is greatly
accelerated, with a half-life of cis-form of τ = 0.96 s, because of the formation of H-bonds
between the AzPy moieties and N-H groups in the polymer micelles, where the existence of
a strong push–pull effect by H-bonds greatly promotes the delocalization of the π electrons
and accelerates the thermal relaxation of cis-AzPy. This fast relaxation of AzPy-terminated
PNIPAM also helps to have a better understanding the micelle morphology [24]. In 2011,
Tsuyoshi and co-workers observed the fast cis-to-trans relaxation in an AzPy-containing
PNIPAM copolymer system in water but unfortunately overlooked it [74]. Changing the
pH value of a solution will also change the state of the pyridine ring, which is in protonated
state at pH = 3 with a very fast half-life of the cis-form (τ = 2.3 ms). By contrast, when
the solution is modulated to pH = 10, the cis-to-trans relaxation of AzPy takes over 2 h,
indicating that the AzPy groups are in a free state since the additional hydroxyl anions may
replace the H-bond between AzPy and the amide hydrogen of the PNIPAM repeat unit.
Such a H-bond-caused fast relaxation in solution was recently reviewed [75].
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Figure 13. Schematic representation of C12-PN-AzPy nanoparticles dispersed in water of pH 3, 7,
and 10 based on data from LS, FTIR, and 1H NMR measurements and on the kinetics of the cis-to-trans
thermal relaxation of azopyridine. Reprinted with permission from [24]. Copyright 2019, American
Chemical Society.

Benefitting from the controllable ionization and H-bonding formation/deformation in
micelles, the cis-to-trans recovery rate can be easily modulated from hrs to ms by changing
the solution pH. This pH- and photoresponsive chromophore was pressed into service as
the modulator of multiresponsive polymers. A typical example is to actuate the solution
property of PNIPAM, which undergoes a reversible phase transition upon heating over
∼32 ◦C, corresponding to the coil-to-globule collapse of the polymer chains. Thus, the
macroscopic transition temperature is regarded as the cloud point (Tcp) [76–78]. For
example, an AzPy-terminated PNIPAM undergoes temperature-, pH-, and UV-light-driven
phase transitions in aqueous media, as shown in Figure 14 [79]. When AzPy terminal
groups are in the H-bonded state in polymer micelles under neutral solutions, the turbid
polymer solutions at 20 ◦C (above the Tcp with the trans-form AzPy end group) become
transparent upon a short irradiation of UV light since light converts trans-AzPy into a
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highly polar cis-AzPy isomer. In the dark, solutions of pH 7 become turbid again within
a few seconds, as shown in Figure 14 (pH = 7). The above process can be repeated many
times without obvious fatigue, showing good reversible characteristics. In addition, UV
light irradiation does not influence the turbidity of the solutions at pH = 3 since the trans
and cis isomers undergo an extremely fast exchange. While in solution (pH = 10), the
photoinduced increase in the cloud point does not exhibit a quick recovery because of the
long-lived cis-AzPy moieties.
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Figure 14. pH− and UV−induced thermoresponsive properties of C12−PN−AzPy (the temperatures
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after irradiation). Reprinted with permission from [75,79]. Copyright 2019 and 2020, Royal Society
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In addition to experimental achievements, theoretical calculations have been regarded
as a powerful tool for the design of liquid crystals and supramolecular materials. For
example, Jimmy and coworkers recently predicted the dynamic photoreaction pathways
of azobenzene with the help of first-principles simulations of nonadiabatic dynamics fol-
lowing excitation to both the π-π* and the n-π* states. They indicated two distinct S1
decay pathways, the reactive twisting and the unreactive planar pathway. Moreover, the
unreactive pathway upon π-π* excitation largely accounts for the wavelength-dependent
behavior of azobenzene [80]. Karolina and coworkers utilized DFT to optimize the ground
and transition state geometries, the densities of states, and the electronic structures of
azobenzene structures, indicating that the possible mechanism of the cis–trans isomeriza-
tion process for 4-(4-hydroxyphenylazo)pyridine has a different relaxation time than other
azo-compounds [13].

3. Halogen-Bond Supramolecular Assembles

Similar to the H-bond, the AzPy group, as an electron-rich Lewis base, can act as
a halogen-bond (X-bond) acceptor due to the lone pair of electrons of a nitrogen atom
in the pyridine ring. The nitrogen atom interacts non-covalently with an electropositive
Lewis acid (H-bond donor), usually a σ-hole of a halogen atom, to form an X-bond [81,82].
The X-bond strength ranges from 10 kJ/mol to 150 kJ/mol, depending on the interaction
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partners, which is slightly weaker than the corresponding H-bond and can be modulated
by the composition of the donor atoms as well as its substitution groups. Typically, X-bond
strength has a general order of I > Br > Cl > F, where a fluorine atom can only be an X-bond
donor when attached to strong electron-withdrawing groups [83]. In addition, X-bonding
is more directional than H-bonding because the σ-hole of a halogen atom is narrowly
confined on the elongation of the R-X covalent bond axis. Hence, the B-X···A angle is
closer to 180◦ than a H-bond [84,85]. The first report of the X-bond can be traced back
to 1863 when Guthrie described the formation of the NH3···I2 complex [86]. After that,
the bond energy and geometry details of X-bonds were investigated from the solid to gas
phases, which was reviewed by Legon [87]. In 2004, Bruce and co-workers reported an
X-bonded liquid–crystalline complex by the equimolar mixing of the non-mesomorphic
components of 4-alkoxystilbazole with pentafluoroiodobenzene [88]. Then, the following
research was reviewed by Giuseppe and co-workers [81]. Very recently, X-bonding has
been successfully applied in designing novel photoresponsive liquid crystals from small
molecules to polymers. Benefiting from the strength and more directional nature of X-
bonds, supramolecular chemists can easily design and prepare diverse smart materials.
This part will focus on the X-bond supramolecular assemblies based on AzPy derivatives.

In 2014, Chen and co-workers reported the first example of AzPy-containing X-bonded
liquid crystals, where halogen molecules (I2 or Br2) act as X-bond donors and pyridine in
the AzPy-containing molecule with different alkyl chains functions as the X-bond acceptor,
as shown in Figure 15 [89]. In addition, the bromine-bonded liquid crystals were obtained
with a high mesophase stability, indicating that the N-Br interaction is strong enough to
form ordered mesophases in the specific system. Upon UV irradiation, iodine-bonded
liquid crystals show a reversible photoinduced phase transition but are not detected in
bromine-bonded liquid crystals. These photochemical processes are completely reversible,
and the iodine-bonded liquid crystals appeared when the visible light was exposed on the
isotropic samples.

Molecules 2022, 27, x FOR PEER REVIEW 16 of 29 
 

 

1863 when Guthrie described the formation of the NH3∙∙∙I2 complex [86]. After that, the 

bond energy and geometry details of X-bonds were investigated from the solid to gas 

phases, which was reviewed by Legon [87]. In 2004, Bruce and co-workers reported an X-

bonded liquid–crystalline complex by the equimolar mixing of the non-mesomorphic 

components of 4-alkoxystilbazole with pentafluoroiodobenzene [88]. Then, the following 

research was reviewed by Giuseppe and co-workers [81]. Very recently, X-bonding has 

been successfully applied in designing novel photoresponsive liquid crystals from small 

molecules to polymers. Benefiting from the strength and more directional nature of X-

bonds, supramolecular chemists can easily design and prepare diverse smart materials. 

This part will focus on the X-bond supramolecular assemblies based on AzPy derivatives. 

 

Figure 15. Possible molecular scheme of halogen complexes of AnAzPy and POM observation of 

12I at its LC phase upon UV irradiation. The right picture was obtained after irradiation with visible 

light for 80 s. Reprinted with permission from [89]. Copyright 2014, Royal Society of Chemistry. 

In 2014, Chen and co-workers reported the first example of AzPy-containing X-

bonded liquid crystals, where halogen molecules (I2 or Br2) act as X-bond donors and pyr-

idine in the AzPy-containing molecule with different alkyl chains functions as the X-bond 

acceptor, as shown in Figure 15 [89]. In addition, the bromine-bonded liquid crystals were 

obtained with a high mesophase stability, indicating that the N-Br interaction is strong 

enough to form ordered mesophases in the specific system. Upon UV irradiation, iodine-

bonded liquid crystals show a reversible photoinduced phase transition but are not de-

tected in bromine-bonded liquid crystals. These photochemical processes are completely 

reversible, and the iodine-bonded liquid crystals appeared when the visible light was ex-

posed on the isotropic samples. 

X-bonds between AzPy and fluorine substitute chemicals are another important cat-

egory. For example, Alaasar and co-workers designed a photoswitchable liquid–crystal-

line aggregate with an X-bonding formation between a non-mesogenic tetrafluoroiodo-

benzene as an X-bond donor and non-mesogenic AzPy derivatives as X-bond acceptors 

[90]. Interestingly, these X-bonded polycatenars exhibit enantiotropic liquid–crystal 

phases over a wide range of temperatures, which are the widest among all photorespon-

sive perfluoroaryliodide-based supramolecularly X-bonded liquid crystals. A similar 

structure with photoresponsive iodine-bonded liquid crystals based on AzPy derivatives 

with a low phase-transition temperature was also reported recently by Du and co-workers 

[91]. 

Figure 15. Possible molecular scheme of halogen complexes of AnAzPy and POM observation of
12I at its LC phase upon UV irradiation. The right picture was obtained after irradiation with visible
light for 80 s. Reprinted with permission from [89]. Copyright 2014, Royal Society of Chemistry.

X-bonds between AzPy and fluorine substitute chemicals are another important cate-
gory. For example, Alaasar and co-workers designed a photoswitchable liquid–crystalline
aggregate with an X-bonding formation between a non-mesogenic tetrafluoroiodoben-
zene as an X-bond donor and non-mesogenic AzPy derivatives as X-bond acceptors [90].



Molecules 2022, 27, 3977 16 of 28

Interestingly, these X-bonded polycatenars exhibit enantiotropic liquid–crystal phases
over a wide range of temperatures, which are the widest among all photoresponsive
perfluoroaryliodide-based supramolecularly X-bonded liquid crystals. A similar structure
with photoresponsive iodine-bonded liquid crystals based on AzPy derivatives with a low
phase-transition temperature was also reported recently by Du and co-workers [91].

Changing the degree of fluorination at the X-bond donor of the supramolecular liquid
crystal allows for the fine-tuning of the X-bond strength and thereby provides control over
the mesophase temperature range. In 2018, Saccone and co-workers evaluated a series of
X-bond donors of the fluorine substitute iodobenzene (D1-7 in Figure 16) [92]. With the
help of a DFT calculation, the molecular electrostatic potentials of the iodine atom increase
(more positive) as the number of fluorine atoms increases, demonstrating a simplistic “the
shorter, the stronger” view of the H-bonding interaction. However, at least three fluorine
atoms must be present to ensure the efficient polarization of the X-bond donor and the
mesophase formation. This work offers a method for fine-tuning the X-bond strength
by changing the degree of fluorination at the X-bond donor. As suggested, it is better to
use donors and acceptors with long-lived metastable states and liquid–crystal phases that
occur close to room temperature with low clearing points for stabilizing the photoinduced
isotropic state of X-bond complexes.
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right 2019, American Chemical Society.

Hu and co-workers recently reported an AzPy-containing liquid–crystalline gel through
X-bonding between an AzPy-C10 and 1,4-tetrafluorodiiodobenzene (TFDIB), as shown
in Figure 17a [93]. Upon irradiation with UV light, the gel shows a gel–sol transition
as well as a morphology change from flake to peony-like due to the light-induced trans–
cis isomerization of the AzPy moiety. This remarkable photo-modulated morphology
transition can be attributed to the variations in the cis-isomer content and X-bond strength.
Using the same construction strategies, Tong and co-workers introduced a visible light-
responsive gel structure via X-bonding by the mixing of AzPy-Cn (n = 8, 10, and 12) as an
X-bond acceptor and 1,2-bis(2,3,5,6-tetrafluoro-4-iodophenyl) diazene (BTFIPD) as both
the X-bond donor and visible-light-responsive moiety (Figure 17b) [94]. The obtained gel
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has a visible-light-responsive gel-to-sol transition under green light irradiation because the
BTFIPD moieties contain an electron-withdrawing group (fluorine) to azobenzene at the
ortho-position. This method provides a useful strategy for the preparation of a visible-light-
triggered phase transition of supramolecular materials, in particular application scenarios,
from energy conversion to information storage.
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Figure 17. Illustrative strategy for preparing the supramolecular gel driven by X-bond. (a) Gel
prepared from AzPy-C10 and 1,4-tetrafluorodiiodobenzene(TFDIB); Reprinted with permission
from [93]. Copyright 2019 Wiley; and (b) gel prepared from AzPy-Cn (n = 8, 10, and 12) and
1,2-bis(2,3,5,6-tetrafluoro-4-iodophenyl)diazene (BTFIPD). Reprinted with permission from [94].
Copyright 2019, Royal Society of Chemistry.

Very recently, Chen and co-workers successfully prepared an X-bond-based poly(ethylene
oxide) and AzPy-containing block copolymer (PEO-b-PAzPy) by co-assembly with 1,2-
diiodotetrafluorobenzene (1,2-DITFB), as shown in Figure 18a [95]. Macroscopically or-
dered nanocylinders in a hexagonal packing were homogeneously dispersed in a polymer
film displaying a smectic-A (SmA) phase due to the X-bond self-organization. Interest-
ingly, the efficient photoalignment and photo-reorientation of the nanocylinder array in the
supramolecular X-bond liquid–crystal block copolymer film were successfully obtained
by manipulating linearly polarized light irradiation, as shown in Figure 18b. The robust
nature of mesogens in the X-bonded state and the enhanced directional ordering of the
cis-isomer can be a reason for this photoalignment. It is an extremely rare example of the
elegant maneuverability of the nanostructures of polymers by the emerging supramolecu-
lar interaction.
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Figure 18. (a) Chemical structures of the 1:1 X-bond complex between PEO-b-PAzPy and 1,2-
diiodo-3,4,5,6-tetrafluorobenzene (1,2-DITFB). (b) Photo-reorientation of supramolecular mesogens
and ordered microphase separation nanostructures in the XB-involved supramolecular LCBC film.
Reprinted with permission from [95]. Copyright 2020, American Chemical Society.

4. Coordination Interaction with Metal Ions

As a neutral electron-donor ligand, pyridine and its derivatives easily form a coor-
dination bond with the vacant orbital of various metals. Thus, pyridine derivatives are
important ligands in coordination chemistry that have been employed with all transition
metals in producing pyridine–metal complexes [96,97]. The coordination complex with
AzPy combines the physical characteristics of metal ions with the well-known properties
of AzPy ligands, such as photoinduced isomerization, the self-organization of mesogens,
and the formation of metal–organic frameworks (MOFs). The synthesis, characterization,
and application of AzPy (usually 4,4′-azopyridine) MOFs were recently investigated and
reviewed [98–100]. These complexes also show potential applications in the areas of col-
orimetric detection, water harvesting, and CO2 capture [99,101,102]. In this section, we
will focus on the photo-switchable metallo-mesogens, especially their photoresponsive
properties and the mesogenic structures of the supramolecular complexes.

In 2002, Das’s group synthesized a series of AzPy-containing silver complexes ex-
hibiting nematic, smectic, and cholesteric liquid–crystalline phases, respectively [103]. The
complexes were prepared by the stoichiometric reaction of silver dodecyl sulfate and the
corresponding ligand in anhydrous methanol or dichloromethane at an ambient temper-
ature in darkness. The isotropization temperatures have an odd–even effect against the
alkane chain lengths of AzPy derivatives. The silver-based mesogens are relatively stable
under UV irradiation, and the lifetime of cis-AzPy in silver-based liquid–crystal complexes
is less than that in the non-coordination state [103]. In the following work of the same group,
hexagonal columnar liquid–crystalline phases were detected from AzPy-containing hexa-
catenar silver complexes [104]. The photoisomerization study of these complexes indicates
that the rate of the cis-to-trans thermal relaxation of silver complexes was ~50–100 times
faster than that of AzPy-containing compounds, which can be traced back to the increase
in donor–acceptor electron delocalization in AzPy-Ag complexes.

Cui and co-workers synthesized diblock copolymers (PS-b-PAzPy) containing polystyrene
(PS) and a polymethacrylate with an AzPy side group [105]. The amorphous photoactive
block of PAzPy can be transformed into a liquid–crystalline phase through self-assembly
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with different carboxylic acids through H-bonding. Moreover, with the coordination inter-
action of zinc-tetraphenylporphyrin (ZnTPP) between the metal ions and the pyridyl group
of the AzPy side-chain polymer, the complex becomes both photoactive and electroactive,
as shown in Figure 19. In addition, AzPy-containing polymers efficiently increase the
glass transition temperature (Tg) and thermal stability when coordinating with metallo-
porphyrins (ZnTPP or CoTPP). Then, Dahmane and co-workers reported a strategy of
optically and electrochemically active supramolecular polymers through a coordination
interaction [106]. The trans-to-cis photoisomerization of the AzPy chromophore was re-
stricted after a coordination interaction in the solid state. While an organic solvent (a
mixture of dichloromethane and acetonitrile, 1/5, v/v) showed different behaviors, the
reversible trans-to-cis photoisomerization of AzPy upon light irradiation was found to
alter the equilibrium of the axial coordination between pyridine groups and ZnTPP in
solution, resulting in photo-regulable redox potentials and fluorescence emission of the
metalloporphyrin [107]. Very recently, another AzPy-containing block copolymer was
reported to inhibit the photoisomerization of AzPy moieties when it formed a coordination
interaction with a four-coordinate cobalt (II) Schiff base in toluene [108].

Molecules 2022, 27, x FOR PEER REVIEW 20 of 29 
 

 

 

Figure 19. Complexation via axial coordination between PAzPy and ZnTPP or CoTPP. Reprinted 

with permission from [106]. Copyright 2006, Wiley. 

In addition, Zhao and colleagues fabricated cholesterol-AzPy conjugate organogels 

by H-bond-based self-assembly [109]. The obtained organogels have a photo-controllable 

dimensional transition from 2D microbelts to 1D nanotubes and finally to 0D nanoparti-

cles, as shown in Figure 20a. The driving force for this dimensional transformation is the 

photoisomerization of the 4-AzPy unit. Interestingly, with the addition of metal ions into 

the organogels, the self-assembled laminar aggregates were noticed to have a helicity in-

version based on the coordination between the metal ions and the pyridyl unit. Specifi-

cally, Ni 2+, Mg 2+, and Eu3+ ions turned the gel into left-handed twisted nanoribbons, while 

right-handed nanostructures were obtained from the Cu2+- and Bi3+-based metallogels 

(Figure 20b). 

 

Figure 20. (a) Chemical structure and photoinduced dimensional transition of the PAzPCC self-

assembly, insets SEM images of assemblies upon the irradiation of 365 nm light for different times. 

(b) The coordination interaction of AzPy gelator with Ni2+, Eu3+, Cu 2+, and Bi3+ produce helical chi-

rality nanofibers. Reprinted with permission from [109]. Copyright 2018, American Chemical Soci-

ety. 

Figure 19. Complexation via axial coordination between PAzPy and ZnTPP or CoTPP. Reprinted
with permission from [106]. Copyright 2006, Wiley.

In addition, Zhao and colleagues fabricated cholesterol-AzPy conjugate organogels
by H-bond-based self-assembly [109]. The obtained organogels have a photo-controllable
dimensional transition from 2D microbelts to 1D nanotubes and finally to 0D nanoparticles,
as shown in Figure 20a. The driving force for this dimensional transformation is the
photoisomerization of the 4-AzPy unit. Interestingly, with the addition of metal ions into the
organogels, the self-assembled laminar aggregates were noticed to have a helicity inversion
based on the coordination between the metal ions and the pyridyl unit. Specifically,
Ni 2+, Mg2+, and Eu3+ ions turned the gel into left-handed twisted nanoribbons, while
right-handed nanostructures were obtained from the Cu2+- and Bi3+-based metallogels
(Figure 20b).

Very recently, Peng and co-workers successfully introduced an AzPy-Zn(II) coordi-
nation system into polydimethylsiloxane (PDMS) to obtain a self-healing polymer that
demonstrates excellent light-healing properties, even after three cutting/healing cycles at a
mild temperature (40 ◦C) in various harsh conditions (e.g., underwater and subzero tem-
perature), as shown in Figure 21 [110]. After cutting off the elastic complex, breakage can
be renewed in 24 h because of the coordination bond and the photoisomerization of AzPy
moieties. The repairing efficiency was around 93.4% after irradiation by 365 nm and 450 nm
light on the cut surface. In addition, the obtained supramolecular elastomer with out-
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standing sensitivity to strain makes it an excellent candidate for light and stress-simulated
flexible devices.
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Figure 20. (a) Chemical structure and photoinduced dimensional transition of the PAzPCC self-
assembly, insets SEM images of assemblies upon the irradiation of 365 nm light for different times.
(b) The coordination interaction of AzPy gelator with Ni2+, Eu3+, Cu 2+, and Bi3+ produce helical chi-
rality nanofibers. Reprinted with permission from [109]. Copyright 2018, American Chemical Society.
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5. Quaternization Reaction 

As a Lewis base with a pKa at ~4.53 [113], the AzPy chromophore is able to react with 
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Figure 21. (a) The synthetic route of AzPy-PDMS; (b) the structure of Zn(AzPy)2-PDMS and (c) pho-
tographs of the gelation formation of an AzPy -PDMS toluene solution (70 mg/mL, 3 mL) upon
the addition of methanol solution of Zn(OTf)2 (0.18 M, 100 µL); (d) The schematic diagram of the
light-healing process. Reprinted with permission from [110]. Copyright 2020, Elsevier.

Another recent example of AzPy-containing coordination gel was reported by Li and
co-workers. They employed C3-symmetric AzPy ligands and Ag(I) to form a coordination
polymer [111]. Due to the presence of dynamic coordinating bonds, the obtained polymer
exhibited self-healing and multi-stimuli responses to heating, light, mechanical shearing,
and chemicals. Guo and co-workers prepared a molecular crystal from an AzPy small
molecular 4-(4-(6-Hydroxyhexyloxy) phenylazo) pyridine (6cAzPy) and Zinc (II). The
obtained crystals exhibited a fascinating photomechanical bending motion, which was
related to the trans-to-cis photoisomerization of the AzPy derivatives in the crystalline
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phase. After forming the metal-AzPy complex, this motion was enhanced because of the
looser packing of the molecules inside the complex crystal [112].

5. Quaternization Reaction

As a Lewis base with a pKa at ~4.53 [113], the AzPy chromophore is able to react with
a variety of organic/inorganic acids. Besides, the pyridine group in AzPy, moieties are capa-
ble of reactions with alkyl halides, resulting in a pyridinium salt through a quaternization
reaction. Undoubtedly, the physicochemical properties (e.g., electron delocalization, water-
solubility, the photoisomerization mechanism, and the hydrogen/halogen/coordination
condition) can be regulated by simply changing the solution pH into an acidic environment
or reacting with alkyl halides to form azopyridinium salts.

In 2010, Garcia-Amoro and co-workers reported a modified mechanism for the pho-
toisomerization of quaternized AzPy chromophores by analyzing the photochemistry
property of a set of azopyridinium methyl iodide salts [114], as shown in Figure 22. After
quaternization, the absorption band had an obvious redshift of 50–60 nm from 350 nm in
the native state to ~ 410 nm in the quaternized state. This notable redshift is related to a
strong charge transfer from the alkoxy group to the positively charged nitrogen atom due
to the push–pull effect. Interestingly, the cis-to-trans thermal recovery of azopyridium was
obtained within 130–450 ms, much faster than that reported previously for other push–pull
azobenzene-doped nematic mixtures. The lifetime of cis-azopyridium is too short to be
detected by a normal UV-Vis spectrometer, and a transient absorption spectrum was rec-
ommended (Figure 22b). Figure 22c shows the proposed mechanism of the fast thermal
relaxation, where the partial breaking of the N=N bond of the azobenzene moiety occurred
due to an electron transfer from the alkoxy group to the positive charge center. Hence,
the partial break of N=N bonds facilitates the rotation around itself to recover the more
stable trans conformation [114]. The substituent group effect of this fast relaxation was
investigated and reviewed by the following work in the same group [73,115,116]. Since this
fast isomerization is able to be conducted at room temperature, which is very similar to the
physiological conditions, the possibility of the design of the AzPy chromophore in biologi-
cal and medical applications and in opto-electronic switches was also explored [117,118].
Very recently, this fast recovery of protonated AzPy in polymer aqueous solution was
also investigated [24,79]. The self-assembly structures and the solution cloud point of
AzPy-terminated PNIPAM homopolymers can be easily controlled by verifying the pH
value of the solution.
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Figure 22. (a) Effect of the presence of a positively charged nitrogen as an electron−withdrawing
group on the thermal relaxation time at 298 K, τ, for the type−I azoderivative. (b) Oscillation of the
optical density of an ethanol solution of azo-dye generated by UV-light irradiation. (c) Mechanism
proposed for the thermal cis-to-trans isomerization process for the azopyridinium methyl iodide salt.
Reprinted with permission from [73,114]. Copyright 2010, American Chemical Society and 2011,
Royal Society of Chemistry.
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On the aspect of the acid–base reaction, the azopyridium-based nanofibers were
first reported by Zhou and co-workers [119,120] with a series of low-molecular-weight
amphiphilic azopyridiniums and dodecylbenzenesulfonic acid or its salt (Figure 23). The
film of the fabricated hybrid fibers shows interesting electrical conductivity in the order
of 1.0 × 10−7 to 1.0 × 10−5 S/cm, which was attributed to the existence of freely movable
ions [119]. Chen and co-workers fabricated a series of AzPy-based nanofibers with inorganic
acids in various organic solvents. The fiber morphologies can be controlled by the acid
dissociation constant (pKa values) [121].
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Figure 23. (a) Structure and synthesis of low-molecular-weight compounds for fabrication of organic
nanofibers. (b) Optical images and POM images of AzPyC4 and AzPyC8. Reprinted with permission
from [121]. Copyright 2015, Royal Society of Chemistry.

Very recently, Xue and co-workers reported the CO2 response property of AzPy
moieties when introducing CO2 into an AzPy-containing (9~13% mol content) copolymer
P(NIPAM-co-PAZO-co-EGMA) [122]. The cloud point of the polymer solution (2 mg/mL)
increased from 49 ◦C to 62 ◦C after injecting CO2 gas due to an enhancement of the water
solubility of the protonated AzPy component in an acidic condition caused by carbonate
formation. The reversible transparency was recorded from the AzPy-containing copolymer
solution at 60 ◦C with alternating injections of CO2 gas and inert Ar2 gas into the solution.
On the aspect of the photochemistry of AzPy in the copolymer solution, there were nearly
no absorbance changes upon UV light irradiation under acidic conditions. In the the neutral
condition, it showed a slight decrease in the absorbance peak at around 310 nm.

Besides bringing the pH-sensitive characteristics into the supramolecular system, the
quaternization reaction of AzPy was also used as a crosslinking site. For example, Li and
co-workers designed photo-activated bimorph composites with AzPy side-chain liquid–
crystalline polymers and Kapton film (commercially available polyimide) to mimic the
circadian rhythm behavior of Albizia julibrissin leaves, as shown in Figure 24 [123]. After
adding a certain amount of 1,4-diidonetetra-butane (DIB) as the crosslinking agent, the
AzPy group gradually quaternized with DIB. Interestingly, the photoresponsive rate of the
crosslinked copolymer was increased by changing the AzPy group into the famous type of
push–pull azobenzene.
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6. Conclusions and Outlook

In conclusion, this paper reviewed the AzPy-containing supramolecular materials
based on the hydrogen/halogen bonds and coordination bonds as well as ionic bonds.
A great many outstanding examples of each interaction were reviewed, from delicate
synthetic strategies to the structure–function relationship. These supramolecular assembles
expand the synthesis strategies for multiple responsive materials, including responsive
liquid–crystalline compounds, films, fibers, and gels in the condensed state, the micelles
in the solution state, and even light-driven actuators based on composite materials. Some
breakthroughs have been achieved in the fabrication of photoinduced oscillation films
as self-cleaning surfaces through H-bonding [15], rearrangements of nanocylinder arrays
through X-bonding [95], and self-healing of the elastic complex through the coordination
interaction [110].

Although significant progress has been achieved in this area in the past decades, the
following issues still need to be addressed to promote the development of AzPy-containing
materials from theoretical study to practical applications. First, increased efforts should
be directed at regulating wide time-scale relaxation and precise space scales to match
different application scenarios by carefully controlling the ligands. For example, the bond
strengths and the operating wavelengths of AzPy-containing supramolecular complexes
can be controlled by the structures of the donor and acceptor species [36,92]. The thermal
recovery of cis-isomerism can also modulate from ms to hrs by controlling the electron
delocalization states of light-responsive moieties in some specific examples [24]. In addition,
AzPy-containing materials derived by visible light may extend their applications in the
fields of medical and life sciences. Borchers and co-workers gave an excellent example of a
visible light photocarving of X-bonded co-crystals with micrometer-scale precision [124].
Second, it is of great significance to fabricate AzPy materials showing high mechanical/light
stability. Currently, most AzPy supramolecular aggregates are still limited to achieving
high mechanical strength, which can only be utilized by compositing with high-strength
polymers, such as polyimide, polyethylene (PE), and other films. However, the stability
and durability of its composition materials have a restriction in its application, especially
in wearable devices. Konieczkowska and co-workers have made some explorations in
this regard by introducing AzPy into the polymer main chain or crosslinker to form an
elastomer [125–127]. Finally, based on the improved mechanical properties and precise
modulations of AzPy materials, they may have extensive application prospects in the
field of 4D printing. The multiresponsive AzPy moieties offer materials with photo- and
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chemical-controllable deformation [128]. We are optimistic about the future of AzPy-
containing supramolecular materials and expect more breakthroughs in theory and practice
in this field.
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