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Abstract

For infectious diseases, a genetic cluster is a group of closely related infections that is usually interpreted as representing a
recent outbreak of transmission. Genetic clustering methods are becoming increasingly popular for molecular epidemiol-
ogy, especially in the context of HIV where there is now considerable interest in applying these methods to prioritize groups
for public health resources such as pre-exposure prophylaxis. To date, genetic clustering has generally been performed with
ad hoc algorithms, only some of which have since been encoded and distributed as free software. These algorithms have sel-
dom been validated on simulated data where clusters are known, and their interpretation and similarities are not transpar-
ent to users outside of the field. Here, I provide a brief overview on the development and inter-relationships of genetic
clustering methods, and an evaluation of six methods on data simulated under an epidemic model in a risk-structured pop-
ulation. The simulation analysis demonstrates that the majority of clustering methods are systematically biased to detect
variation in sampling rates among subpopulations, not variation in transmission rates. I discuss these results in the context
of previous work and the implications for public health applications of genetic clustering.
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1. Introduction

Whether or not we intend to, we are naturally inclined to per-
ceive patterns in everything we encounter. A major aspect of
recognizing patterns is clustering, the act of assigning objects
into groups so that objects in the same group are more similar
than objects in different groups. A clustering method or algo-
rithm codifies this process into a set of rules that confers
transparency and reproducibility (Everitt et al. 2011); even
so, clustering remains an inherently subjective process.
Nevertheless, clustering methods play an important role in
studying the extensive genetic diversity that accumulates in vi-
ruses (Foxman and Riley 2001; Van Regenmortel 2007).

Genetic clustering methods operate on variation that is typi-
cally measured by nucleotide sequencing or nucleic acid profil-
ing of conspicuous genetic features, such as restriction
fragment length polymorphisms (RFLPs). Historically, genetic

clustering has often been used to partition the sequence diver-
sity of a virus into clades or subtypes, so that different investi-
gators can refer to similar variants using a common
nomenclature (Van Regenmortel 2007). For example, Simmonds
et al. (1993) proposed an early nomenclature system for hepati-
tis C virus based on a genetic clustering analysis of the nucleo-
tide sequence variation in the NS5B gene. More recently, there
has been a surge of interest in the use of genetic clustering to
identify and characterize localized outbreaks of an infectious
disease. By detecting subpopulations exposed to high rates of
transmission, clustering may potentially facilitate a more im-
pactful and cost-effective deployment of public health re-
sources (Little et al. 2014; Novitsky et al. 2015; Poon et al. 2016),
such as point-of-care testing or pre-exposure prophylaxis (Pillay
et al. 2015). There are now many different genetic clustering
methods that have been developed for this purpose, predomi-
nantly in the field of HIV (e.g. Balfe et al. 1990; Yerly et al. 2001;
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Hué et al. 2004). Furthermore, software implementations for
several of these methods have since been released into the pub-
lic domain (Prosperi et al. 2011; Ragonnet-Cronin et al. 2013;
Vrbik et al. 2015). However, these methods have seldom been
validated on simulated data where actual clusters are known
(but see Villandre et al. 2016), and few studies have evaluated
different clustering methods on the same empirical datasets.

In this article, I will first briefly review the evolution of ge-
netic clustering methods in the context of infectious diseases,
and show how different categories of clustering methods are re-
lated. Next, I will apply six genetic clustering methods to trees
and sequence alignments simulated under a compartmental
epidemic model. This model is designed to mimic the spread of
an infectious disease through a structured population, which al-
lows one to evaluate the ability of different clustering methods
to capture heterogeneity in rates of transmission and sampling.
The principal result of this simulation analysis is that most
methods are systematically biased to detect subpopulations
with higher rates of sampling, for example, becoming diagnosed
following infection. However, the majority of methods are less
effective, and in some cases incapable, of detecting differences
among subpopulations in rates of transmission. Finally, I dis-
cuss the implications of this finding for the utility of clustering
for public health.

2. Genetic Clustering

A cluster of genetically similar infections may represent an out-
break related through a succession of recent transmission
events (Brenner et al. 2007; Fisher et al. 2010; Volz et al. 2012).
Furthermore, clusters can be used to characterize the structure
of an epidemic driven by repeated introductions (Hué et al.
2005). Using genetic data instead of phenotypic assays provides
a faster and potentially cost-effective means to detect outbreaks
from what might otherwise appear to be a number of unrelated
cases, to determine risk factors associated with recent trans-
missions, and to track the spread of clinically significant vari-
ants (Foxman and Riley 2001). One of the earliest examples of
genetic clustering to detect an outbreak of infectious disease
was the use of RFLPs to characterize isolates from a nosocomial
outbreak of herpes simplex virus type 1 (HSV-1) in a pediatric in-
tensive care unit in 1978 (Buchman et al. 1978). Based on these
data, the investigators were able to distinguish between the
cases in the outbreak from control samples, and to extrapolate
that there had been two separate introductions of HSV-1 into
the unit. Similar “genetic fingerprinting” methods have also
been used extensively to characterize outbreaks of
Mycobacterium tuberculosis (e.g. Daley et al. 1992). One of the first
uses of nucleotide sequences for genetic clustering was a study
of a common source outbreak of HIV infection among hemo-
philiacs who had received transfusions from a contaminated
batch of a blood clotting factor (Balfe et al. 1990). Six out of eight
hemophiliacs who had been exposed to this source comprised a
cluster of closely related HIV nucleotide sequences with short
pairwise genetic distances between subjects. The use of genetic
clustering to characterize regional epidemics of HIV has since
come to predominate this field. Consequently, most of the clus-
tering methods referenced in this article were originally devel-
oped for the study of HIV and may not be directly translatable
to other viruses and infectious diseases, where the extent of
sampling and levels of genetic diversity vary substantially; I will
expand on this issue in Section 4.

To date, every genetic clustering method that has been ap-
plied to virus sequences has been nonparametric, in that

clusters are defined on the basis of criteria that are not in-
formed by a model. Instead, these decisions are based on the ge-
netic or evolutionary distances between the sequences.
However, the specific criteria used to derive clusters from this
information tend to vary from one study to the next (Grabowski
and Redd 2014). Figure 1 displays a dendrogram generated from
a hierarchical clustering analysis of a binary character state ma-
trix for nine categories of nonparametric clustering methods
(Supplementary Table S1). This dendrogram indicates that
nonparametric methods can be split into two broad categories:
methods that cluster directly on sequence variation via pairwise
distance measures, and methods that interpret this variation in
the context of subtrees in a phylogeny.

2.1. Distance-Based Methods

A genetic distance is a function that maps two genetic se-
quences to a non-negative number that roughly corresponds to
the extent they have diverged from a common ancestor (Nei
and Kumar 2000). A key advantage of genetic distances is that
they can be computed rapidly. For some basic models of molec-
ular evolution, the corresponding distance can be computed ex-
actly using a finite number of mathematical operations; in
other words, the distance exists as a closed form expression.
Pairwise genetic distances have played an important role in the
development of virus nomenclature systems (Simmonds et al.
1993; Van Regenmortel 2007) and early applications of cluster-
ing to infectious disease outbreaks (Balfe et al. 1990). Clusters
can be obtained from the pairwise distance matrix by specifying
a cutoff distance below which individuals are assigned to the
same cluster (Aldous et al. 2012). Under this criterion, one as-
sumes that individuals within a cluster are related through one
or more recent transmission events, such that there has been
limited time for their respective virus populations to diverge in
sequence from their common ancestors. More sophisticated
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Figure 1. A hierarchical clustering dendrogram of nonparametric genetic clus-

tering methods. This dendrogram was generated from a binary character state

matrix that encodes ten different features for nine categories of nonparametric

methods. Internal nodes of the dendrogram are labeled with features that dis-

tinguish the categories below the node. Each category is annotated with a small

number of citations to publications that either describe the method or provide

examples of its usage; these are not meant to be exhaustive lists.
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clustering algorithms that operate on pairwise genetic distances
have since been proposed by Prosperi et al. (2010) and Vrbik
et al. (2015, Gap Procedure; see below).

A distance between pairs of sequences can also be derived
from a phylogenetic tree that represents how the sequences are
related by their common ancestors. Each tip of the tree corre-
sponds to an observed sequence, and each branch represents
the descent of the respective lineage from an ancestor it shares
with another lineage. If the phylogeny is reconstructed by maxi-
mum likelihood for a given substitution model, then the branch
lengths are measured in the expected number of substitutions
(evolutionary distance; Felsenstein 1981). Without additional in-
formation, it is not possible to express branch lengths in units
of real time. The length of path from one tip of the tree to an-
other is known as the patristic distance (Farris 1967). Similar to
pairwise genetic distances, clusters can be assembled from
pairs of sequences whose patristic distance is below a cutoff
value (Pommier et al. 2009; Poon et al. 2015). Although the joint
reconstruction of branch lengths in the tree by maximum likeli-
hood is a more computationally demanding task, it also utilizes
more of the information content of the sequence alignment. For
instance, genetic distances are unable to differentiate between
rapidly and slowly evolving sites in a pairwise comparison of se-
quences, which can cause this approach to underestimate their
divergence time (Gillespie 1986). However, it may be sufficient
for the purpose of clustering that the genetic distances are sig-
nificantly correlated with the underlying evolutionary distances
(Wertheim et al. 2014).

2.2. Subtree-Based Methods

Distance-based methods assemble clusters from pairwise com-
parisons of sequences without consideration for how these se-
quences related through common ancestors. For instance, one
may want to include a sequence in a cluster despite its genetic
or patristic distance from the others because it shares a recent
common ancestor. These relationships can be evaluated by ex-
amining the subtrees of a phylogeny. A subtree is a portion
of the tree that contains all descendants of a given ancestor
that is represented by an internal node of the tree. Clusters
have been defined on the basis of the characteristics of individ-
uals represented by the tips of a particular subtree, such as
the country of sample collection. For example, Hué et al.
(2005) identified clusters in an HIV-1 pol phylogeny from sub-
trees relating over twenty-five sequences, of which at least 90%
were collected in the UK. In general, clusters generated by
this approach have been based on geographical labels, but la-
bels can potentially be clustered on other characteristics
such as risk factors or demographic groups. As a result, I pro-
pose to refer to this approach as label-based subtree clustering
(Fig. 1).

The bootstrap support value is another criterion for classify-
ing subtrees as clusters (Yerly et al. 2001; Hué et al. 2004). One of
the earliest examples of using bootstrap support to define clus-
ters was published by Yerly et al. (2001), who used this method
to identify clusters of HIV-infected individuals that they subse-
quently compared with documented epidemiological linkages.
Bootstrapping refers to the non-parametric technique of ran-
domly resampling new datasets from the original dataset; thus,
“pulling oneself up by one’s bootstraps”. It is used when it is not
feasible to estimate the confidence interval by collecting a large
number of true replicates. The application of bootstrapping to
assess confidence in phylogenies was first proposed by
Felsenstein (1985). Trees are generated from replicate

alignments with the same dimensions as the original alignment
by sampling columns from the latter at random with replace-
ment (such that the same column may be sampled more than
once). The support value of an internal node is the proportion of
replicate trees that contain an internal node ancestral to a par-
ticular group of sequences to the exclusion of all others, that is,
a monophyletic group. Note that the node support value does
not correspond to any particular subtree out of all possible sub-
trees relating sequences in the group. There is no guarantee
that the true tree is represented in the bootstrap set. Hence,
one’s confidence in the monophyletic group is specific to the
dataset and method of phylogenetic reconstruction (Hillis and
Bull 1993).

Nonparametric bootstrapping scales linearly with the num-
ber of replicates. Since a phylogeny needs to be reconstructed
for each replicate, it can become too computationally demand-
ing to perform bootstrapping when the original dataset is large.
Consequently, studies employing this clustering method (e.g.
Yerly et al. 2001; Hué et al. 2004) have tended to use faster
distance-based methods for phylogenetic reconstruction, such
as neighbor-joining (Saitou and Nei 1987). In addition, several
groups have developed methods to approximate support values
in the framework of maximum likelihood phylogenetic recon-
struction (Hasegawa and Kishino 1994). Thus, in cases where
bootstrap support is used as a clustering criterion, it is impor-
tant for the authors to specify which method was used to gener-
ate the support values.

Node support values have also been used to filter subtrees
for further evaluation on the basis of pairwise distances or
branch lengths within each subtree. One of the earliest exam-
ples of this “bootstrap and branch lengths” approach was imple-
mented by Hué et al. (2004), who extracted clusters from a
neighbor-joining tree constructed from HKY85 distances among
HIV-1 pol sequences, given a support value exceeding 99% and a
mean branch length within the subtree below 0.015. A large
number of genetic clustering studies have employed a similar
approach with variations on the evaluation of the composition
of subtrees with high node support values. For example, the
software Cluster Picker calculates the maximum pairwise ge-
netic distance between sequences within a subtree (Ragonnet-
Cronin et al. 2013). Alternatively, the patristic distances can be
used to evaluate subtrees with high support values (Prosperi
et al. 2011).

A side effect of subtree-based clustering methods is that the
cluster must include every sequence in the subtree; for in-
stance, one cannot exclude a descendant sequence that is
highly divergent from the others. In addition, subtree-based
methods do not provide a representation scheme for the
individual-level structure of a cluster (Wertheim et al. 2014).

3. Evaluation of Clustering Methods
3.1. Methods

I used MASTER 5.0.0 (Vaughan and Drummond 2013) for the
forward-time simulation of transmission trees under a struc-
tured susceptible-infected-removed (SIR) model in which the
susceptible and infected populations were partitioned into two
subpopulations indexed by i. Epidemics were seeded by a single
individual in the majority subpopulation (i¼ 0), such that the
initial population sizes were S0 ¼ 8999; S1 ¼ 1000; I0 ¼ 1 and
I1 ¼ 0. Transmission dynamics were described by the following
system of ordinary differential equations:
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dS0

dt
¼ �b0S0I0 þmðS1 � S0Þ

dS1

dt
¼ �b1S1I1 þmðS0 � S1Þ;

dI0

dt
¼ b0S0I0 þmðI1 � I0Þ � ðlþ wÞI0

dI1

dt
¼ b1S1I1 þmðI0 � I1Þ � ðlþ wÞI1;

dI�0
dt
¼ w0I0

dI�1
dt
¼ w1I1;

where I�i are infected individuals in the ith subpopulation who
have been sampled at a constant rate wi, m is the migration rate
between subpopulations, l is the mortality rate of infected indi-
viduals, and bi is the transmission rate in the ith subpopulation.
Note that transmission occurs exclusively between individuals
in the same subpopulation. This model assumes that sampled
infections are not transmissible to susceptible individuals;
hence, individuals are removed by either mortality or sampling.

I generated ten replicate trees under four different scenarios to
evaluate the impacts of transmission and sampling rates on clus-
tering: (1) control, b1 ¼ 0:045; w1 ¼ 0:5; (2) faster sampling,
b1 ¼ 0:045; w1 ¼ 2:5; (3) faster transmission, b1 ¼ 0:135; w1 ¼ 0:5;
(4) both faster, b1 ¼ 0:135; w1 ¼ 2:5. All other parameters were held
constant as follows: m¼ 0.05, l ¼ 0:01; b0 ¼ 0:005, and w0 ¼ 0:5.
Note that b1 was always rescaled by a factor of nine to compensate
for the smaller size of the minority subpopulation. One of the
shortcomings of compartmental models is that an individual is
equally likely to transmit to any susceptible member of their sub-
population, and the transmission rate is cumulative with this
number. As a result, setting b1 ¼ b0 resulted in significantly longer
internal branches in the subtrees of the phylogeny mapping to the
minority subpopulation. Each simulation terminated once 1000 in-
fections had been sampled from either subpopulation.

Given limited migration between subpopulations, we expect
that subtrees will be “compartmentalized” by subpopulation
such that adjacent branches will tend to represent infections
sampled from the same subpopulation. By chance, trees may
contain shapes that are recognized as clusters. We expect clus-
ters to be associated with the minority subpopulation in the
presence of substantial variation in model rates among subpop-
ulations. If the transmission rate in the minority subpopulation
(b1) is substantially higher than the majority, then less time
elapses between transmission events in that subpopulation and
the internal branch lengths should be shorter in the respective
subtrees. Similarly, if the sampling rate in the minority subpop-
ulation (w1) is substantially higher, then less time elapses be-
tween a transmission event and sampling of the descendant
lineage and the terminal branch lengths should be shorter.

To confirm that the model parameters had the expected ef-
fect on tree shapes, I plotted the average lengths of internal and
terminal branches for replicate trees under the different scenar-
ios. Increasing b1 (“faster transmission”) resulted in markedly
shorter internal branch lengths in lineages sampled from the mi-
nority subpopulation (Fig. 2A). Similarly, increasing w1 (“faster
sampling”) resulted in significantly shorter terminal branch
lengths in the minority subpopulation. Further, I manually ex-
amined the simulated trees to confirm that clusters associated
with the minority subpopulation were visually recognizable to
the casual observer when b1 and w1 were both increased (Fig. 2B).

Next, I simulated multiple sequence alignments along each
tree using INDELIBLE version 1.03 (Fletcher and Yang 2009).
Each simulation was seeded with a sequence of 1197 bases
spanning the region of HIV-1 pol gene from the reference variant
HXB2 (GenBank accession number K03455) encoding protease
and the first 300 codons of reverse transcriptase. Variation in
the nonsynonymous/synonymous rate ratio (x) across sites was
modeled by a gamma distribution with shape parameter a ¼ 1:5
and rate parameter b¼ 3, discretized into fifty classes at regular
intervals along x. The transition bias parameter was set to
j ¼ 8:0. Input trees were rescaled such that the pairwise
Tamura-Nei distances had a mean and interquartile range that
was similar to those observed between baseline HIV-1 subtype B
pol sequences from different individuals in the British Columbia
Drug Treatment Database (0.055, IQR 0.047–0.062; Poon et al.
2015).

Phylogenies were reconstructed from these alignments by
approximate maximum likelihood using FastTree2 version 2.1.9
with double precision (Price et al. 2010) or by neighbor-joining
using MEGA version 7.0.15 (Kumar et al. 2016). Bootstrap support
values at internal nodes were approximated by the implemen-
tation of the (SH; Shimodaira and Hasegawa 1999) test in
FastTree2, or by nonparametric sampling with 1000 replicates
in MEGA for neighbor-joining trees.

I evaluated a number of clustering methods on these simula-
tions, by generating the true and false positive rates under vary-
ing settings, as follows:

• Tamura-Nei (TN93) pairwise genetic distance: TN93 distances were

calculated using an open source implementation in Cþþ (http://

github.com/spond/TN93, commit number 284f093), which is also

used by the clustering software HIV-TRACE for defining clusters

based on pairs of individuals whose distance falls below a user-

defined cutoff (Wertheim et al. 2014). In this evaluation, any se-

quence with at least one pairwise distance below the cutoff was

classified as being clustered.
• Patristic distance: A patristic distance is the sum of branch lengths

on the path from one tip to another in the tree (Farris 1967). The

use of patristic distances for genetic clustering is essentially an

extension of clustering by pairwise genetic distances (Pommier

et al. 2009; Poon et al. 2015). I extracted patristic distances ex-

tracted from 100 replicate trees reconstructed from bootstrap

alignments using FastTree2. A Python script for rapidly extract-

ing these distances from a tree is publicly available at http://git.

io/vrcmz. A sequence was classified as clustered if its shortest

patristic distance to another sequence was below the cutoff in

80% or more of the bootstrap trees. This is the same clustering

method being used for near real-time monitoring of HIV hotspots

in British Columbia, Canada (Poon et al. 2016).
• Gap Procedure: This program partitions sequences based on the

largest gaps between adjacent pairwise genetic distances in a

sorted vector for the ith sequence: maxfdi;jg where the range of j

is truncated to omit the n largest gaps as outliers (Vrbik et al.

2015). Each simulated alignment was used as the input matrix

for the GapProcedure function in R, which was computed using

its default implementation of the Kimura 2-parameter model

(“aK80”) and an outlier adjustment value of 0.9. Sequences

uniquely assigned to singleton clusters by the GapProcedure

function were classified as not clustered.
• Bootstrap and branch-lengths: This method emulates the approach

taken by Hué et al. (2004) where subtrees in a neighbor-joining

tree were classified as clusters if the support value exceeded a

cutoff, and the mean branch length within the cluster was below
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a second cutoff distance. All sequences within subtrees meeting

both criteria were classified as clustered.
• Cluster Picker: This program performs a depth-first search of the

tree starting at the root (Ragonnet-Cronin et al. 2013). For this

evaluation, I used version 1.2.4 of the program. For each subtree

with a support value that exceeds a user-defined cutoff, it com-

putes the maximum pairwise genetic distance within the sub-

tree; if this distance is below the second user-defined cutoff,

then the subtree is classified as a cluster. An alignment and its

corresponding tree, reconstructed by FastTree2 with support val-

ues based on the SH test, were used as inputs for this program.

Following the author recommendations, the initial threshold

was set to the same value. Sequences assigned a cluster number

greater than �1 in the “clusterPicks_list.txt” output were classi-

fied as clustered.
• PhyloPart: Similar to Cluster Picker, PhyloPart performs a depth-

first search of the tree starting at the root to evaluate subtrees

with a support value exceeding a fixed cutoff of 0.9 (Prosperi et al.

2011). The program computes the distribution of patristic dis-

tances for the entire tree. Next, it evaluates the patristic distances

within a given subtree and classifies the subtree as a cluster if the

median falls below a user-defined percentile threshold in the full

distribution. Based on the initial application of this program by

the authors, I used trees generated by FastTree2 with SH test-

based support values. For this evaluation, I used the original ver-

sion of the program associated with Prosperi et al. (2011).

Although a second version has since been released, the batch

command-line functionality appears to have been disabled in the

newer version. Sequences assigned a cluster number greater than

0 in the output were classified as clustered.

Each method was evaluated by their assignment of individ-
ual sequences into clusters of two or more. Sequences assigned
to clusters were counted as “true positives” if they were sam-
pled from the minority subpopulation, and “false positives” oth-
erwise. Sequences that were not assigned to clusters were
counted as “true negatives” if they were sampled from the ma-
jority subpopulation, and “false negatives” otherwise.

3.2. Results

Results from this simulation analysis are summarized in Figure 3.
Each receiver operator characteristic curve illustrates the trade-
off between the true and false positive rates (TPR and FPR) in

classifying individuals into the minority and majority subpopula-
tions. These rates varied in response to varying the threshold on
a continuous parameter; in most cases, this parameter was a ge-
netic distance measure. Similar results were obtained for both
pairwise distance methods (TN93 and patristic distances). The
patristic method achieved a slightly higher TPR than TN93 owing
to the additional robustness conferred by evaluating replicate pa-
tristic distance estimates across 100 bootstrap trees. For example,
given a 20% FPR, TN93 obtained a 55% TPR whereas the patristic
method obtained 71% under the “both faster” scenario. Both pair-
wise methods were comparably robust to varying simulation sce-
narios. Moreover, patristic distance was the only method overall
that was more sensitive to the combination of both faster rates of
sampling and transmission.

Results obtained by Gap Procedure under the “both faster”
scenario were similar to those obtained under “faster sam-
pling”, indicating a lack of sensitivity to faster transmission
rates. This method did not have a continuous parameter to vary
with useful effect; for example, the same results were obtained
under a broad range of outlier cutoff values. In all cases, this
method suffered from a high FPR (about 60%). Under the “faster
transmission” scenario, the method did not perform measur-
ably better than a random classifier.

The “bootstrap and branch length” clustering method using
neighbor-joining trees obtained the best performance for simu-
lations under the “faster sampling” scenario. However, this per-
formance was highly sensitive to the threshold value used for
the mean branch length within subtrees. The best results under
this scenario with a 80% bootstrap support cutoff, for example,
were obtained with a branch length cutoff of 0.007 (TPR 78%,
FPR 29%) but the FPR rose to 52% when this cutoff was increased
to 0.008; similarly, the TPR fell to 50% when the cutoff was de-
creased to 0.006. This sensitivity may be a side-effect of defining
clusters at the level of subtrees rather than pairs of individuals,
resulting in “all-or-nothing” outcomes. This method did not
perform as well in the presence of faster transmission in the mi-
nority subpopulation, and was as bad as random in the absence
of variation in sampling rates.

Cluster Picker and PhyloPart yielded mutually similar re-
sults; for instance, both methods performed poorly with varia-
tion in transmission rates. This result is surprising because
both methods use criteria similar to the “bootstrap and branch
length” method. I verified that this difference was not due to
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the use of maximum likelihood versus neighbor-joining trees
(Supplementary Fig. S1). Cluster Picker computes the maximum
pairwise genetic distance separating sequences in a subtree
with strong support. It is possible that its poor performance is
due to the inherent stochasticity in using the maximum branch
length as opposed to a measure of central tendency. On the
other hand, PhyloPart compares the median patristic distance
within well-supported subtrees to an empirical distribution
from the entire tree. The best results were obtained when sub-
trees with medians below the 1st percentile of this distribution
were classified as clusters. Given the size of the trees used in
this study, there should have been an adequate number of pair-
wise comparisons to obtain a reliable estimate of this percentile
threshold.

Despite no variation in transmission or sampling rates under
the “control” scenario, all six clustering methods detected a re-
sidual association between clusters and the minority subpopu-
lation (Supplementary Fig. S2). This result implies that
population structure in the simulations contributed to the for-
mation of clusters in resulting trees. Next, I evaluated the extent
that these methods identified clusters in the absence of any
variation among individuals (unstructured populations). I com-
pared the proportion of sequences assigned to clusters across
treatments by summing true and false positive rates. The “boot-
strap and branch” and Gap Procedure methods demonstrated
the greatest separation in these outcomes, with a strong ten-
dency for fewer sequences from unstructured populations to be
clustered (Supplementary Fig. S3). The TN93 and patristic meth-
ods exhibited a similar trend with less separation between the
control and unstructured scenarios, whereas Cluster Picker and
PhyloPart could only differentiate the “fast sampling” from
other scenarios.

4. Discussion

When a study employs a genetic clustering method to charac-
terize outbreaks of an infectious disease, there is an implicit
assumption that the resulting clusters represent actual subpop-
ulations affected by high transmission rates. The alarming over-
all result of this simulation study is that the majority of
clustering methods evaluated here were unable to detect het-
erogeneity among the subpopulations in rates of transmission.
When applied to simulations where both transmission and
sampling rates were elevated in the minority subpopulation,
the methods performed no better—in some cases, substantially
worse—than on simulations where only sampling rates were el-
evated (Fig. 3). In other words, faster transmission rates in the
minority subpopulation had little impact on the rate that se-
quences from this subpopulation were assigned to clusters.
This overall result is consistent with previous work. For exam-
ple, Volz et al. (2012) used a mathematical model to determine
that excess clustering of acute infections (quantified by the
times to their most recent common ancestors) was more likely
to be caused by the relative recency of sampling than by an ele-
vated transmission rate at this stage of infection. Villandre et al.
(2016) also recently published a similar simulation-based evalu-
ation of genetic clustering methods. To generate transmission
trees, they simulated epidemics that percolated over the nodes
of an “interconnected islands” contact network, which provided
an explicit graphical representation of clusters. As a result, their
study emphasized the effect of contact network structures on
variation in transmission rates. The simulated trees presented
in Villandre et al. (2016) do not exhibit the features that would
generally be recognized as genetic clusters. Long terminal
branches in these trees imply a low rate of lineage removal by
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rates (dotted, blue); or both (solid, red). For methods that use bootstrap support values, ROC curves are displayed for two different support cutoffs (labeled by percen-

tiles to the right of each curve). Results obtained using Cluster Picker with a bootstrap support cutoff of 99% were not qualitatively different from the results under a

cutoff of 95%. There was no tuning parameter used for the Gap Procedure method, so the results for each replicate tree were plotted directly on the graph.
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sampling, although this rate was not reported. A low sampling
rate may have been necessary for the epidemic to spread to the
entire network; for instance, to prevent sampling from prema-
turely terminating the spread of lineages between islands.

Taken together, these results highlight a critical ambiguity
in how genetic clusters are interpreted. To reiterate, a genetic
cluster is generally a group of sequences that are more similar
to each other than to the other sequences in the data set. In the
context of a phylogenetic tree, similar sequences may be related
by short internal branches that imply a cluster of transmission
events, or short terminal branches that imply a cluster of sam-
pling soon after transmission, or both. The approach taken by
Villandre et al. (2016) focused on clusters of transmission irre-
spective of whether the observed sequences remained geneti-
cally similar by the time they were sampled. Our results
indicate that most genetic clustering methods are systemati-
cally biased to detect variation among subpopulation in sam-
pling rates, that is, the waiting time until diagnosis of a new
HIV infection. In other words, genetic clusters will tend to col-
lect individuals sampled soon after infection, irrespective of (in
some cases, in spite of) whether those infections resulted from
higher rates of transmission. This is at odds with the conven-
tional interpretation of a genetic cluster has representing a
group of infections related by a rapid succession of transmis-
sion events (Volz et al. 2012), which is reflected by the wide-
spread use of the term “transmission cluster” (e.g. Leitner et al.
1996; Hué et al. 2004; Wertheim et al. 2014). This discrepancy
has significant implications for the public health interpretation
of clusters as potential foci for prevention services. By focusing
our attention on subpopulations indicated by certain genetic
clustering methods, we may be diverting public health re-
sources towards those who are already highly engaged in ac-
cessing primary care, and thereby diagnosed earlier in
infection, and away from the subpopulations with less access to
primary care who are also burdened by higher rates of
transmission.

There are several limitations with this simulation study that
need to be recognized while interpreting its results. First, it is
unlikely that the structured SIR model yielded trees that are
highly representative of a typical HIV phylogeny. This model as-
sumes that individuals are unable to transmit once they have
been sampled from the population (Kühnert et al. 2014). It also
assumes that individuals are sampled at a uniform rate with re-
spect to the time since infection. In real scenarios, the waiting
time to diagnosis of a new infection is unlikely to be exponen-
tially distributed. At the level of the population, sampling rates
tend to increase over time as resources for routine genotyping
become increasingly available. Second, the structured SIR
model was not parameterized using empirical data, which
would have required fitting the model to an observed phylogeny
in which the partition of the sample population into clusters
was known without ambiguity. Simulation of sequence evolu-
tion along the trees, on the other hand, was informed by empiri-
cal data. Third, this model was used to generate transmission
trees, which are not equivalent to phylogenetic trees that would
be reconstructed from real data. Unlike the transmission tree,
splits in a phylogenetic tree do not correspond to transmission
events; the discordance between these splits can be exacerbated
by incomplete lineage sorting within hosts (Romero-Severson
et al. 2014). In addition, the branch length distribution in the
simulated trees does not incorporate the well-documented re-
duced rate of evolution among hosts (Alizon and Fraser 2013),
which may be caused by the preferential transmission of early
variants (Vrancken et al. 2014). Since the objective of this study

was to validate a comprehensive set of clustering methods on
known clusters, I put forward that it was sufficient for the simu-
lated tree shapes to be a rough approximation of virus phyloge-
nies; it is more important that the trees clearly articulate
differences between subpopulations that should be detected by
clustering methods.

The limitations of clustering methods identified by the pre-
sent study and previous work do not preclude their application
to public health. First, the pairwise distance methods evaluated
here (TN93 and patristic) did yield clusters that were informa-
tive about variation in transmission rates. Second, the fixed 3-
fold increase in the rate of transmission within the simulated
minority populations may be modest relative to the magnitude
of rate change that may arise in priority subpopulations for a
public health response. There are also new areas of research
that may significantly improve the utility of genetic clusters for
public health. Nearly all uses of genetic clustering to infectious
diseases have occurred in the context of retrospective studies,
in which clusters are identified at a fixed point in time and sel-
dom revisited in subsequent studies. In settings where there is
widespread access to routine HIV genotyping, however, it is
possible to prospectively track the appearance of new infections
in clusters in real time (Little et al. 2014; Poon et al. 2016).
Regardless of the inherent biases of genetic clustering methods,
observing a rapid succession of new infections in a predefined
cluster may represent an important source of evidence of a lo-
calized outbreak. In addition, new methods are constantly being
developed in the area of phylodynamics, the study of the rela-
tionship between the epidemiology of an infectious disease and
the shape of its phylogeny (Volz et al. 2013)—genetic clustering
is essentially a simple non-parametric phylodynamic method.
For example, the recent development of methods to fit struc-
tured epidemic models to phylogenies (Stadler and Bonhoeffer
2013; Rasmussen et al. 2014; Poon 2015) represents an emerging
opportunity to develop parametric or “model-based” methods
for genetic clustering. Within such frameworks, clusters could
be identified by mapping discrete state transitions to branches
of the phylogeny.

The use of genetic clustering for identifying outbreaks has
focused primarily on HIV. Can these methods be used for other
infectious diseases? A key prerequisite for the effective use of
clustering is that measurable sequence evolution has occurred
on the time scale of transmission. Although this criterion could
potentially exclude bacterial pathogens from consideration, ad-
vances in whole-genome sequencing can compensate for the
relatively lower substitution rates per site (e.g. Harris et al. 2013;
Walker et al. 2013). The establishment of persistent chronic in-
fections may also be a requisite feature of the pathogen, be-
cause this results in greater internal structure in the phylogeny
for clusters to appear. For instance, methods developed for HIV
have also been applied to study hepatitis C virus epidemics
(Sacks-Davis et al. 2012; Jacka et al. 2014), sometimes for both vi-
ruses in the same population (de Oliveira et al. 2006; Pilon et al.
2011). On the other hand, Plotkin et al. (2002) used a pairwise
Hamming distance to identify clusters in an influenza A virus
phylogeny; phylogenies of this virus tend to be “comb-like” with
a high rate of lineage extinction. The literature also provides
several other examples in different viruses including hepatitis E
virus (Takahashi et al. 2003), hepatitis B virus (Dumpis et al.
2001), and human herpesvirus (Lamers et al. 2015). However, in-
vestigators studying different pathogens tend to develop own
clustering methodologies, and the details of these methods are
not consistently provided. With the impending prospect of ge-
netic clustering being used to inform public health decisions,
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and the methodological issues identified in this paper and pre-
vious work, the research community needs to have greater
skepticism about clustering methods and, ultimately, to reach a
consensus on best practices for generating and interpreting
clusters.

Supplementary data

Supplementary data are available at Virus Evolution online.
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