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The development of cell culture models that recapitulate the etiology and

features of nervous system diseases is central to the discovery of new drugs and

their translation onto therapies. Neuronal tissues are inaccessible due to skeletal

constraints and the invasiveness of the procedure to obtain them. Thus, the

emergence of induced pluripotent stem cell (iPSC) technology offers the

opportunity to model different neuronal pathologies. Our focus centers on

iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose

pathology remains in urgent need of new drugs and treatment. In this sense,

we aim to revise the process to obtainmotor neurons derived iPSCs (iPSC-MNs)

from patients with ALS as a drug screening model, review current 3D-models

and offer a perspective on bioinformatics as a powerful tool that can aid in the

progress of finding new pharmacological treatments.
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Introduction

ALS is a complex and currently uncurable neurodegenerative disease that affects both

upper and lower motor neurons (MNs). Although considered rare, it is the most common

motor neuron disease, with an incidence of 1–2 cases per 100.000 people per year

(Logroscino and Piccininni, 2019). This pathology presents a late-onset, with an average

of 50–60 years of age, that progresses from muscle weakness towards the patient’s

eventual decease due to respiratory muscle failure (Bruijn et al., 2004; Pasinelli and

Brown, 2006). It is estimated that 90% of ALS cases have an unspecific etiology, and thus

are categorized as apparently sporadic ALS (sALS). Familial ALS (fALS), which represents

the remaining 10% of cases, is defined by specific genetic alterations and traced through

the patient’s family history. Both categories, although widely used, can be biased and

unreliable in their distinction (Brown and Al-Chalabi, 2017; Turner et al., 2017). Factors
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such as unknown family history, non-paternity and incomplete

genetic penetrance, contribute to this misclassification

(Robberecht and Philips, 2013). Lastly, the disease’s

complexity, due to symptoms’ heterogeneity -rate of

progression, onset site, and the presence of various degrees of

cognitive dysfunction- confers further difficulties in providing

effective treatment.

ALS patients’ life expectancy is about 3–5 years from

symptoms onset, with current drug treatments providing

limited improvement for select patients (Brown and Al-

Chalabi, 2017). In this sense, therapeutic and pharmacological

advances have been slow, mainly attributed to the limitations in

the disease’s modeling. Neuropathological tissue samples are

difficult to obtain, and restricted to rare invasive biopsies and

post-mortem tissues (Stan et al., 2006). Furthermore, they model

the final stage of the disease and therefore are unreliable for

studying its progression. while animal models are useful to

elucidate some of the disease’s underlying mechanisms, and

most interestingly, to observe their behavioral cues, their

translational value for drug development is yet to be proven

(Van Norman, 2019). The intrinsic differences between species,

including immunological response and anatomical structures,

such as the absence of neurological disease-relevant tissues

(Eaton and Wishart, 2017) contribute to their limitations.

Furthermore, animal models can only replicate hereditable

traits, excluding sporadic forms that, as mentioned, represents

most diagnosed cases. In this context, the introduction of iPSC

technology has allowed an unprecedented opportunity to model

nervous system diseases, from both genetic and idiopathic origin.

We are certain that advances in 3D cell culture systems coupled

with the integration of bioinformatics tools will considerably

change our current understanding and therapeutic landscape

of ALS.

Amyotrophic lateral sclerosis molecular
and genetic characterization

In broad terms, the pathological hallmark of ALS involves the

degeneration of MNs of the motor cortex, spinal anterior horn,

and the lateral columns of the spinal cord (Saberi et al., 2015).

Patients with ALS exhibit both upper and lower MN disease

symptoms such as muscle weakness, hyper reflexivity, spasticity,

and/or rigidity (Redler and Dokholyan, 2012). Patients have also

reported symptoms involving exercise intolerance and cognitive

impairment (Mezzani et al., 2012; Chiò et al., 2017; Cividini et al.,

2021). The inexorable progression of muscle weakness leading

towards disability, combined with cognitive changes (Phukan

et al., 2007), is devastating for both patient and loved ones. Due to

the severe impact of the disease, there is an urgent need to

understand the genetic and molecular underpinnings of ALS.

From decades of research dedicated to uncovering the genetic

basis of ALS, researchers have discovered over 50 genes to be

potentially causative or disease-modifying (Mejzini et al., 2019).

The major genes described for ALS include C9orf72, SOD1,

TARDBP, and FUS. The C9orf72 gene contains a

hexanucleotide repeat expansion of the six-letter string of

nucleotides GGGGCC. The normal length of the repeat

consists of about 2–24 nucleotides, whereas mutation carriers

have more than 30 and even up to hundreds or thousands of

repeats (Smeyers et al., 2021). C9orf72 accounts for about 33% of

fALS and less than 5% of sALS cases in European populations

(Zou et al., 2017). SOD1 was the first gene discovered for fALS

and codes for superoxide dismutase 1. Although the role of

SOD1 is heavily debated, there is evidence for a toxic gain-of-

function (Healy et al., 2020). Mutations in SOD1 account for

about 30% of fALS, and 2–7% of sALS cases (Bernard et al.,

2020). TDP-43 is encoded by the TARDBP gene and is a

transcriptional repressor. TARDBP mutations only account for

about 3% of fALS (Rutherford et al., 2008). Finally, FUS encodes

an RNA binding protein with the mutations accounting for about

1% of fALS and less than 1% of sALS. FUS mutations are

associated with juvenile ALS presenting basophilic inclusions

(Picher-Martel et al., 2020).

The genes described above share and differ in the disrupted

cellular processes. C9orf72, SOD1, TARDBP, and FUS mutations

are associated with impaired proteostasis, but other processes,

such as cytoskeleton and axon-transport defects, are associated

with SOD1, while disturbed RNAmetabolism is seen in TARDBP

and FUS. There are several other genes with known disease-

significance, such as TP73 (Russell et al., 2021), which is

implicated in apoptosis (Wood, 2021).

The identification of new genes and mutations is increasing

due to technological advances and increased awareness. With the

great number of genes implicated in the disease, and even greater

number of mutations associated with each gene, it becomes a

challenging task to unveil the critical pathological mechanism of

ALS. A characteristic molecular feature is the presence of

cytoplasmic inclusions. For example, TDP-43 is a protein

present in these inclusions, which are shared between both

sALS and fALS (Gruzman et al., 2007; Prasad et al., 2019). In

this sense, deciphering the mechanisms of protein misfolding

and the role of misfolded protein is key to understanding pivotal

aspects of ALS pathomechanisms. Interestingly, recent research

has attributed soluble misfolded proteins as the toxic player in

neurodegeneration rather than the large aggregates (Kirkitadze

et al., 2002; Urushitani et al., 2006; Proctor et al., 2016; Choi and

Dokholyan, 2021), implying a protective mechanistic role of large

aggregates (Zhu et al., 2018). The toxic mechanism of soluble

misfolded proteins is unknown, but major cellular processes

include dysfunctional RNA metabolism, impaired proteostasis,

mitochondrial dysfunction, and excitotoxicity (Ruegsegger and

Saxena, 2016; Butti and Patten, 2019; Calió et al., 2020; Gunes

et al., 2020). With the complexity of the aberrant cellular

processes and unknown disease triggers, it poses a challenge

for developing an effective, common therapeutic.
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Historically, neurological disease research focused on

neurons as a single and isolated functioning unit. However,

dismissing the complex interplay of the stroma and other

disease-implicated cell types results in a lack of physiological

relevance, more so when modeling a systemic disease. ALS

possesses great genotypic and phenotypic heterogeneity, where

both cell-autonomous and non-cell-autonomous factors drive

the diseases’ progression towards common clinical

manifestations. MNs and glial cells are in continuous

interaction in order to maintain proper tissue homeostasis.

Among other functions, glial cells provide trophic factors,

myelinate axons, and clear cell debris, that is, they are critical

for health maintenance and survival. Transcriptomics data

revealed that multiple non-neuronal cell types are vulnerable

to dysfunction and are crucial to maintaining neuronal health

(Enright et al., 2020; Gleichman and Carmichael, 2020). Glial

cells have been implicated in the initiation of ALS, and its

progression (Brites and Vaz, 2014). In addition, astrocytes

from SOD1 mice are sufficient to kill motor neurons in WT

mice supporting non-cell autonomous effects (Nagai et al., 2007)

iPSC derived astrocytes from ALS patients showed impaired

autophagy through non-cell-autonomous mechanisms (Madill

et al., 2017). iPSCs and co-cultures are potentially beneficial to

incorporate critical controllers of neuronal health into ALS

studies. This involvement of non-neuronal cell types is

consistent with the non-cell-autonomous theory that

challenges the cell-autonomous theory (Chen et al., 2018;

Argueti-Ostrovsky et al., 2021).

The complexity of ALS, evidenced by the number of cellular

aberrant processes and its heterogeneity indicates that the disease

is most likely caused by multiple factors rather than a single

inciting event (Chiò et al., 2018; Mejzini et al., 2019). Improving

models of disease by using iPSCs and 3D-cultures can aid in

highlighting the most critical cellular processes disturbed in ALS

disease pathogenesis and thus, allow for the discovery of new

therapeutic compounds.

Overview of induced pluripotent stem
cells technology and culture
characterization

Briefly, in 2006, Takahashi and Yamanaka reported the

development of iPSCs, via retroviral transduction of four

transcription factors (OCT3/4, SOX2, KLF4, and c-MYC)

delivered into mouse fibroblasts. These cells were

characterized as embryonic stem cells (ESCs)-like concerning

their morphology, growth pattern, ability to differentiate, express

pluripotent cell markers, and form teratomas after being injected

into immunodeficient mice (Takahashi and Yamanaka, 2006).

Shortly after, iPSCs generated from human somatic cells were

introduced (Takahashi et al., 2007; Wernig et al., 2007; Yu et al.,

2007; Kim et al., 2008; Park et al., 2008). Most importantly, these

cells bypass ethical concerns associated with the destruction of

human embryos, and are easily obtained by avoiding invasive

procedures (Zarzeczny et al., 2009; Niemiec and Howard, 2020).

Furthermore, as bona fide stem cells, their self-renewal

capabilities offer a robust supply of unlimited patient-derived

cells, which is especially relevant, as the rare-to-obtain neural

tissue samples lack the cell quantity needed for drug screening

assays. However, there are some disadvantages with their

reprogramming efficiency, being as low as 0.1–1% (Mali et al.,

2010), and the presence of incomplete reprogrammed cell

phenotypes, epigenetic memory, and genomic instability

(Mikkelsen et al., 2008; Kim K. et al., 2010; Gore et al., 2011;

Liu et al., 2020).

To obtain iPSCs, it is necessary to select an adequate

reprogramming cell population, as not all cell types have

shown the same reprogramming efficiency, mostly attributed

to their characteristic gene expression profile and epigenetic

status (Liebau et al., 2013). An attractive cell source is

peripheral blood mononuclear cells (PBMCs), on account of

both, the non-invasiveness of the extraction procedure and their

reprogramming efficiency (Trokovic et al., 2014; Ye and Wang,

2018). The next step is choosing the right combination of

reprogramming factors, given that they can be endogenously

expressed in some cell types (Kim J. B. et al., 2009). Optionally,

reprogramming enhancers can be added (reviewed by Kwon

et al., 2017). The nature of the research and technical skills of the

laboratory will condition the selection of the reprogramming

strategy. Although there are several available methods, not all are

deemed suitable for translational medicine. Two broad strategies

can be undertaken, an integrative strategy, which as the name

suggests, involves the integration of exogenous genetic material,

and a non-integrative strategy, also known as footprint free,

which uses excisable vectors or molecules that do not integrate

into the host genome. The advantage of the first strategy is the

persistent expression of the reprogramming factors, however,

there are high risks of genomic instability, random integration

leading to insertional mutagenesis, reactive transgenes and

chromosomal aberrations (Nakagawa et al., 2008; Tong et al.,

2011; Takahashi and Yamanaka, 2013). Both viral and non-viral

delivery methods are found within this strategy. The viral

methods include the classical use of retrovirus (Takahashi and

Yamanaka, 2006) and lentivirus (Yu et al., 2007). The non-viral

methods include transfecting plasmids (Okita et al., 2008) and

transposons (Woltjen et al., 2009). Within the non-integrative

strategies, clinical-grade and translational suitable iPSCs can be

obtained, mainly through the direct delivery of microRNAs

(Anokye-Danso et al., 2011; Kogut et al., 2018), mRNAs

(Warren et al., 2010; Yakubov et al., 2010), episomes (Yu

et al., 2009), cell-penetrating peptides (Kim D. et al., 2009),

small molecules (Hou et al., 2013), and viral vector

transduction via sendai virus (SeV) (Fusaki et al., 2009) or

adenovirus (Zhou and Freed, 2009). More recently, a CRISPR-

Cas9 variant, CRISPR activation (CRISPRa) has been introduced
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as a reprogramming tool (Weltner et al., 2018) (Figure 1). Some

of these non-integrative systems have combined both quality and

safety standards by introducing xeno-free culture methods that

meet good manufacturing practice standards (GMP) (Chen et al.,

2011; Wang et al., 2015). Do to the robustness of the

reprogramming process, it is suggested that the chosen

method does not significantly affect the differentiation

potential of the produced iPSCs (Churko et al., 2017).

Once iPSCs cultures are obtained, their characterization

must be performed through a combination of stringent

analysis that ensures their translational value, quality, and

reproducibility. A quick indicator is their morphology, which

should be consistently observed as tightly packed colonies, with

smooth and defined borders, composed of small cells with a large

nucleus/cytoplasm ratio (Meissner et al., 2007; Takahashi et al.,

2007). Regular monitoring of genotoxicity is unavoidable, since

genomic alterations are attributed to the effects of the

reprogramming method, prolong cell culture, and

pluripotency-induction itself (Hong et al., 2013; Liu et al.,

2020). Moreover, controls to evaluate the presence of residual

exogenous reprogramming factors, footprint, or inefficient

plasmid clearance are needed, as it hinders the cells

capabilities to differentiate, and predispose them to genomic

instability (Yu et al., 2007; Ramos-Mejia et al., 2010; Sommer

et al., 2012).

Regarding molecular characterization, robust test-sets often

include detection of core-factors and proteins related to

pluripotent stem cells (PSCs) and ESCs, such as NANOG,

OCT4, SOX2, tumor-related antigen (TRA)-1-60/81, stage-

specific embryonic antigen (SSEA)-3/4, and the traditional

staining of alkaline phosphatase (ALP) (Boulting et al., 2011).

Furthermore, functional assays must demonstrate their

pluripotency by differentiating toward cells belonging to the

three-germ layers. Both in vitro and in vivo approaches can be

undertaken. The in vitro approach includes molecule-based

differentiation or spontaneous embryoid body (EB) generation

(Sheridan et al., 2012), while the in vivo approach involves

teratoma formation (Müller et al., 2010). Regardless of the

method, cell lineage identity is assessed by markers such as

GFAP, NESTIN, PAX6 (Ectoderm); AFP, PDX1, GATA4

(Endoderm); and Brachyury (TBXT), FLT1, RUNX1, FOXA2

(Mesoderm) (Figure 2).

Obtaining iPSCs is a laborious and costly process that also

requires significant expert training. As experts in the field will

agree, high-quality iPSCs will determine the effectiveness and

efficiency of the subsequential differentiation process. In this

sense, we believe in the importance of incentivizing and joining

efforts to establish cell repositories or comprehensive cell

libraries. Publicly available and fully characterized iPSCs

derived from diverse ALS genetic backgrounds and idiopathic

origins can immensely aid the scientific community (Li et al.,

2015).

The un-standardized journey, from iPSCs
to motor neurons

iPSC technology, coupled with a deeper understanding of the

ectodermal cell differentiation process has allowed for the

production of diverse ALS neural cell types. This includes

MNs (Dimos et al., 2008), oligodendrocytes (OLGs)

(Ferraiuolo et al., 2016), astrocytes (ACs) (Birger et al., 2019),

sensory neurons (SNs) and microglia cells (Pereira et al., 2021).

Since multiple pathological mechanisms, both genetic and

molecular, converge in the degeneration and death of MNs,

most of the published works focus on obtaining and

characterizing these MN mono-culture systems.

In broad terms, molecule-based differentiation process

recapitulates neurodevelopment. Cells transition towards the

ectoderm layer, where both neural stem cells (NSCs) and

neural progenitor cells (NPSCs) can be specified by

supplementing cultures with appropriate molecules that

regulate cell-identity. Current protocols show large variations

FIGURE 1
Integrative and non-integrative reprogramming strategies.
Schematic overview of the available methodologies to
dedifferentiate cells towards pluripotency. Abbreviations: O,
OCT3/4; S, SOX2; K, KLF4; M, c-MYC.
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(reviewed by Faravelli et al., 2014; Sances et al., 2016), however,

they all rely on the same stages: induction of neuralization, caudal

patterning, ventral patterning, and a final maturation stage.

Neural induction results in the generation of NPCs,

parting either from EBs or monolayer cultures, and

involves the regulation of several signaling pathways,

including the fibroblast growth factor (FGF), bone

morphogen protein (BMP), transforming growth factor-β
(TGF-β), and notch pathway (Joannides et al., 2007; Du

et al., 2015; Maury et al., 2015; Bianchi et al., 2018). The

Neuralization process is commonly performed by the

synergistic action of dual-SMAD inhibitors (SMADi),

comprising SB431542 (SB) -a nodal inhibitor, member of

the TGF-β signaling pathway- and LDN193189 (LDN) or

noggin -a BMP inhibitor- (Chambers et al., 2009; Fukusumi

et al., 2016). Moreover, the efficiency of this process is further

increased when combining SMADi with γ-secretase inhibitors
and WNT activators (Bianchi et al., 2018). The next stage

involves caudalization, which is mainly driven by the effects of

retinoic acid (RA) (Li et al., 2005; Qu et al., 2014). The

activation of WNT/β-catenin signaling via GSK3β
inhibition, either by (2’Z, 3’E)-6-bromoin-dirubin-3’-oxime

(BIO) or CHIR99021 (CHIR) optimizes the procedure (Maury

et al., 2015; Shimojo et al., 2015). Ventral patterning is

orchestrated by a key Smoothened (Smo) agonist, sonic

hedgehog (SHH) (Li et al., 2005), or its synthetic

alternatives, purmorphamine (PMN) and SAG (Wichterle

et al., 2002). Finally, maturation can be guided by

neurotrophic factors, including insulin-like growth factor-1

(IGF-1), glial-derived neurotrophic factor (GDNF), and

brain-derived neurotrophic factor (BDNF) (Li et al., 2005;

Hu and Zhang, 2009; Burkhardt et al., 2013). Lastly, the γ-
secretase inhibitor, compound E (Cpd E), displays capabilities

to enhance and shorten maturation time (Du et al., 2015)

(Figure 3A).

Of great importance, Maury et al. (2015) demonstrated how

fine tuning of the combination, concentration, and exposure time

of the differentiating factors impact cell specification. Proving

that these subtle modifications cue MN progenitors (MNPs) to

differentially specify four neuronal subtypes, namely,

interneurons, SNs, cranial MNs, and spinal MNs.

Highly relevant to both translational and clinical research is

the development of GMP protocols performed under fully

humanized conditions. To our knowledge, there is only one

report of a fully xeno-free protocol from iPSCs to MN

production (Hu et al., 2016).

An alternative strategy to obtain iPSC-MNs involves the

combination of molecule-based differentiation with

transcriptional coding. After neuralization of iPSCs, NPCs can

be transduced with LIM/homeobox protein 3 (Lhx3), Islet-1

(Isl1), and neurogenin 2 (Ngn2) -LIN, either via adenovirus

(Hester et al., 2011) or lentivirus (Sepehrimanesh and Ding,

FIGURE 2
A schematic overview from patient’s tissue sample to characterized iPSCs cultures. Patient/donor samples are chosen, the four most frequent
tissues are fibroblasts, blood cells, urine track epithelial cells and keratinocytes. Reprogramming factors (RFs), enhancers, and the reprogramming
strategy are carefully selected. Once iPSCs cultures are obtained, controls and characterization assays are performed as shown. Abbreviations: SeV,
Sendai virus; CRISPRa, CRISPR-Cas9-based gene activation; IF, immunofluorescence; ALP, alkaline phosphatase assay; H&E, hematoxylin and
eosin; SNP, single-nucleotide polymorphism; CGH, comparative genomic hybridization; CNV, copy number variation.
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2020). Other protocols bypass neuralization and force the

expression of the transcriptional factors directly into iPSCs

(Figure 3B). As an example, lower-MNs are obtained by

generating LIN-inducible transgenic lines (Fernandopulle

et al., 2018). Footprint-free approaches, that avoid genomic

integrity concerns, use SeV encoding LIN (Goto et al., 2017),

piggyBac transposon vectors (Imamura et al., 2017), and

synthetic-mRNA encoding Ngn1, Nng2, Ngn3, NeuroD1

(ND1) and ND2 (Goparaju et al., 2017). Cranial MNs have

also been obtained via the ectopic expression of Ngn2, Isl1, and

Phox2a (Garone et al., 2019). Recent work shows that

overexpression of just Ngn2 coupled with molecular

patterning of RA and SAG produces a pure population of

lower induced MNs (LiMoNe). LiMoNe cells are obtained

with a high-yield, and display both electrophysiological

activity and form synaptic contacts with muscle cells (Limone

et al., 2022).

Transcriptional factor-driven differentiation shows some

advantages over molecule-based differentiation, including an

overall reduction in time, cost and technical skills, as well as

an increase in culture purity (reviewed by Canals et al., 2021).

Moreover, molecule-based differentiation generates cultures that

contain mixed-degrees of differentiated cells, which while

advantageous as a developmental model, its a concern for

drug screening. Therefore, MN-enrichment may be required

as an additional step. For this, protocols include gradient

centrifugation (Corti et al., 2012), magnetic cell sorting of

L1CAM (CD171) (Maciel et al., 2018), and more recently,

FIGURE 3
From PSCs to MNs. (A) A schematic view of commonly used molecules to differentiate PSCs towards MNs. (B) Differentiation strategies. (C)
iPSCs-MN cell markers for characterization. Abbreviations: RFs, reprograming factors; TFs, transcription factors; ß-ME, ß-Mercaptoethanol; AA,
ascorbic acid; Cpd E, compound E; cAMP, cyclic adenosine monophosphate; DAPT, N-[(3,5-difluorophenyl)acetyl]-l-alanyl-2- phenyl]glycine-1,1-
dimethylethyl ester; GSK3, glycogen synthase kinase 3; WNT, wingless/integrated; CHIR, CHIR99021; BIO, (2′Z, 3′E)-6-bromoin-dirubin-3′-
oxime; BDNF, brain-derived neurotrophic factor; CNTF, ciliary neurotrophic factor; GDNF, glial-derived neurotrophic factor; NT-3, neurotrophin-3;
BMP, bone morphogen protein; Cpd C, compound C; LDN, LDN193189; RA, retinoic acid; DMH, dorsomorphin; SHH, sonic hedgehog; TGF-ß,
transforming growth factor-ß; SB, SB431542; SAG, smoothened agonist; IGF, insulin-like growth factor; FGF-2, fibroblast growth factor-2; EGF,
epidermal growth factor; PMN, purmorphamine.
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fluorescent activated cell sorting (Klim et al., 2019). This last

strategy allows for efficient enrichment of post-mitoticHb9::GFP

+ MNs based on their NCAM+/EpCAM-immunoprofile.

A direct lineage conversion strategy has been refined, which

involves bypassing pluripotent reprogramming, and directly

converting somatic cells into other lineages. The process

centers on forced expression of transcriptional factors by

retroviral transduction. The combination of factors includes

Ascl1, Brn2 (also known as Pou3f2), Myt1l, Lhx3, Hb9, Isl1,

Ngn2, and ND1. The resulting cells, coined induced MNs

(iMNs), showed electrophysiological activity, neuromuscular

junction (NMJ) formation, and molecular and functional

properties of naïve MNs (Son et al., 2011). Induced Neurons

(iNs) can also be produced in this manner by lentiviral infection

of Brn2, Ascl1, Myt1l, and ND1 -BAMD. However, these cells did

not exhibit a fully mature phenotype (Pang et al., 2011). Notably,

there are some drawbacks to this methodology, including their

limited yield, as no stem cell nor progenitor cell stages are

present, therefore their number is restricted to the parting cell

count. Moreover, there is evidence that transdifferentiation

efficiency decreases in virtue of the donor’s age (Montana

et al., 2013), which becomes an obstacle for modeling late-

onset diseases. Furthermore, the use of integrative-viral

strategies, as previously mentioned, poses risk of insertional

mutagenesis.

As a cautionary tale, both the dedifferentiation and

differentiation processes subject cells to metabolic and

epigenetic changes that can lead to genomic variations. In

addition to this, protocol diversity, un-standardized cell

culture technique, and intrinsic variables associated with the

cells per-se, contribute to cell culture heterogeneity. Furthermore,

PSC lines have shown variating innate degrees of differentiation

potential towards a determined cell lineage, attributable to their

individual genetic and epigenetic background (Osafune et al.,

2008). Remarkably, a strategy to coax iPSCs lines with unsimilar

differentiation propensity towards a neural lineage is achieved by

SMADi, which is already an established stage of the MN

differentiation protocol (Kim D.-S. et al., 2010).

Regardless of the differentiation strategy, cell

characterization is central for appropriate downstream

research and data analysis. Early neuroectodermal markers

such as Pax6, NCAM, and SOX1/2 can be used to identify

NSCs (Joannides et al., 2007). For NPCs, there is overlapping

of markers, like Pax6 (Chambers et al., 2009), and SOX1 (Bianchi

et al., 2018), that can be used along with Nestin and Nkx6.1

(Maury et al., 2015). MNP markers include further overlapping

of Pax6, and the increasing expression of Olig2, Ngn2, Lhx3,

NKx2.2 (Hu and Zhang, 2009; Maury et al., 2015; Shimojo et al.,

2015; Bianchi et al., 2018). Mature MN markers comprise HB9,

Isl1/2, ChAT (Hu and Zhang, 2009; Maury et al., 2015), and

Synaptophysin, an indicator of possible synaptic connectivity

(Bianchi et al., 2018) (Figure 3C). Cytoskeletal pan-neural

markers, MAP2 (dendrite), ß-III tubulin [(Tuj1, TUBB2);

axon, dendrite and Soma], and neurofilament (axon) (Qu

et al., 2014; Bianchi et al., 2018; Sepehrimanesh and Ding,

2020) are also frequently used. The absence of proliferative

markers, as Ki67, can further characterize cells in their post-

mitotic stages (Maury et al., 2015).

Functional characterization validates the system in study and

offers physiological relevance to the generated data. Thus, MNs

should be synaptically mature, and exhibit an appropriate

electrophysiological activity. Several strategies can be used to

assess these characteristics, including patch-clamp, calcium

imaging (Prè et al., 2014), optopatch (Kiskinis et al., 2018)

and multielectrode array (MEA) (Taga et al., 2021). A central

MN ability, indicative of a mature phenotype, is NMJ formation.

These are specialized cholinergic synapsis that transmits

chemical signals to muscle fibers from the electrical impulse

generated by MNs. They can be identified by α-BTX staining of

acetylcholine receptors (AChRs) clustering on myotubes

juxtaposed to axon terminals (Lin et al., 2019).

Thus far, we have overviewed the process to obtain iPSC-

MNs from donor cells samples in the interest of introducing their

use in drug screening, and discuss how 3D-modeling and

bioinformatics can aid ALS research.

Induced pluripotent stem cell derived
from ALS patients as drug screening
models

A significant interest in iPSC-ALS modeling is associated

with targeting both fALS and sALS (Fujimori et al., 2018; Sun

et al., 2018). However, the diversity of the reprogramming

methods (Guo et al., 2017a), characterization criteria and

standards, and protocols to re-differentiate cells towards

neuronal lineages (Hawrot et al., 2020) hinders appropriate

comparison of results between the generated data. A crucial

tool for increasing confidence in iPSC-ALS modeling is the use of

isogenic lineages. These lineages are obtained either from

correcting the mutation of the parental-line in study, or by

inserting a mutation that correlates with the disease’s

phenotype. These cultures should only differ in the genome-

edited loci, and can be performed by CRISPR (Deneault et al.,

2021), transcription activator-like effector nucleases (TALENs)

(Chen et al., 2014), and zinc-finger nucleases (ZFNs) (Kiskinis

et al., 2014). Unfortunately, it is not possible to produce isogenic

controls when the genetic lesion is not identified, as in some cases

of sALS. The lack of isogenic lineages difficult the discerning of

the disease’s phenotype from the cells own phenotype. Relevant

to ALS drug screening is a novel scalable platform based on

CRISPR interference (CRISPRi). This technology centers on

robust gene-knockdown that allows for functional

characterization of genes that control disease-relevant

phenotypes including neuron survival and morphology.

Importantly, it enables interrogation of ‘druggable genome’.
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This technology coupled with isogenic controls could elucidate

new disease mechanisms that, in turn, lead to the discovery of

novel drug-targets (Tian et al., 2019).

Recent reviews have centered on the use of iPSCs-based drug

platforms for neurodegenerative diseases (reviewed by

Bonaventura et al., 2021; Ferraiuolo and Maragakis, 2021;

Pasteuning-Vuhman et al., 2021) Specifically for ALS,

researched drugs include rapamycin (Imamura et al., 2017;

Marrone et al., 2018; Osaki et al., 2018), bosutinib (Imamura

et al., 2017; Osaki et al., 2018), anacardic acid (Egawa et al., 2012),

ropinirole (Fujimori et al., 2018), vardenafil (Osborn et al., 2018),

ezogabine (Wainger et al., 2014), GKS2606414 (Szebényi et al.,

2021), trolox (Lopez-Gonzalez et al., 2016), 4-aminopyridine

(Naujock et al., 2016), kenpaullone (Yang et al., 2013), the

cyclin-dependent kinase inhibitors: digoxin, lanatoside C,

and proscillaridin (Burkhardt et al., 2013), and the histone

deacetylation inhibitors: HDAC6 antisense oligonucleotide-

ASO, tubastatin A and ACY-738 (Guo et al., 2017b)

(Figure 4). In the limelight, three of these drugs, ropinirole

(Morimoto et al., 2019), retigabine (Wainger et al., 2021),

and bosutinib (Imamura et al., 2019) are currently in clinical

trial.

Two concerns are put forward, the first involves cell-aging or

the conservation of the epigenetic drift in iPSCs, as ALS is a late-

occurring disease (Pandya and Patani, 2020). Several authors

have evidenced iPSCs rejuvenation by their whole-transcriptome

RNA sequencing (RNA-seq) (Mertens et al., 2015), nuclear

organization, reduced DNA damage, mitochondrial

metabolism (Miller et al., 2013), telomere length (Agarwal

et al., 2010), and the loss of senescence markers (Lapasset

et al., 2011). To overcome this age-setback, artificially

induced-aging strategies have been developed. For instance,

telomerase inhibition (Vera et al., 2016), and the forced

ectopic expression of progerin, a truncated form of the

nuclear envelope protein laminin A (Miller et al., 2013). This

last molecule was able to phenocopy tissue-specific age-

associated features that were later corroborated in vivo (Miller

et al., 2013). However, much uncertainty remains as to the degree

with which age-related physiology is mimicked.

The second concern involves the possible loss of non-genetic

disease-related traits, given that, during the reprogramming

process, cells suffer epigenetic reshaping allowing cell-identity

pattern erasing. Analogously, the possibility of acquiring

unknown and disease-unrelated features can render the model

less relevant (Liang and Zhang, 2013). Assessment of DNA-

methylation and histone marks from the reprogrammed iPSCs to

the patients’ wild-type cells, as well as the use of isogenic controls

increases the model’s credibility.

FIGURE 4
Assessed drugs using iPSC-ALS modeling. Identified drugs and their effects in both iPSCs-MNs and muscle fibers. Abbreviations: SG: stress
granules; Mt: mitochondria; ER: endoplasmic reticulum; UPR: unfolded protein response.
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Direct conversion could, to some extent, breach both aging

and epigenetic concerns. In this sense, iNs from donors of

diverse ages presented age-correlated features including

transcriptomic signature, compromised nucleocytoplasmic

compartmentalization (Mertens et al., 2015), microRNA

profile, and DNA-methylation status (Huh et al., 2016). Aging

hallmark preservation has also been observed in iMNs. Nuclear

organization (heterochromatin loss and DNA damage), and

increased senescence-activated ß-galactosidase activity (Tang

et al., 2017) have been reported. However, direct conversion

advantages related to cost, time, and epigenetic status should be

carefully considered in relation to their limitations. These

limitations include culture scale-up and their ability to form

organoids.

Three-dimensional cultures

Variations in cellular behavior, drug response and

pathomechanisms can be detected according to the cell

culture system used. Three-dimensional (3D) systems are

regarded with higher predictive value as they encompass

diverse cell type interactions, ECM interplay, and complex

microenvironmental cues not found in two-dimension (2D)

cultures (Pampaloni et al., 2007; Maltman and Przyborski, 2010).

A wide variety of 3D-culture systems have been implemented

in neurosciences. Complex tissue constructs, such as brain

region-specific organoids, including cerebral (Lancaster and

Knoblich, 2014), midbrain (Nickels et al., 2020), forebrain

(Gomes et al., 2020), hypothalamus (Qian et al., 2018), and

cerebellum (Muguruma et al., 2015), as well as spinal cord

organoids (Hor et al., 2018), spheroids (Paşca et al., 2015;

Bowser and Moore, 2019), assembloids (Birey et al., 2017),

and brain-on-a-chip technology (Adriani et al., 2017) are on

the rise.

A critical component in the generation of these tissues is the

presence or absence of a scaffold. The scaffold-free approach

involves spontaneously formed and self-organizing multilayer

cell aggregates that can eventually produce their own non-

cellular elements (Fennema et al., 2013; Raja et al., 2016;

Türker et al., 2018). The scaffold-based approach uses a

substrate that guides cell behavior and organization through

mechanical and chemical cues, allowing the generation of

bigger and more complex structures. These substrates are

hydrogels derived from a biological source (e.g., Matrigel,

Collagen, Gelatin, Alginate, etc.), have a synthetic origin (e.g.,

Polyglycol Acid, Polyethylene Glycol), or present a combination

of both. As each material has its own limitations and advantages,

the nature of the study or end-product will help determine the

appropriate approach (Reviewed: Murphy et al., 2017; Rey et al.,

FIGURE 5
An overview of bioinformatics and computational tools that can be paired to iPSC-ALS research. For ALS genetics, bioinformatics repositories
provide automated analysis for genotype to phenotype association studies (ALSoD) and interpretation of complex genetics data (ALSGeneScanner).
For iPSC-ALS, protein-protein interactions can be mapped with subsequent pathway analysis (STRING.db). Scaling up to multicellular systems
requires increased analysis techniques that are available (SEARCHIN). For iPSC-ALS drug discovery, small molecule targets to proteins of interest
can be identified (Neural Networks) and docked with the ligand (MedusaDock).

Frontiers in Cell and Developmental Biology frontiersin.org09

Amorós et al. 10.3389/fcell.2022.962881

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.962881


2020; Roth et al., 2021). Noteworthy, enhanced long-term culture

and mature phenotypes of neural cell types have been associated

with the use of natural scaffolds, such as Hyaluronan Acid

(Zhang et al., 2016; Wu et al., 2017) and decellularized brain-

derived ECM (Sood et al., 2019). However, these can compromise

xeno-free systems and contribute to variability, as they present

batch-to-batch variations in their composition.

Although MNs are predominantly studied, ALS is a

systemic non-autonomous and multicellular disease, that

cannot be fully represented by a single monolayer-cell

lineage. In this sense, 3D-cultures allow the formation of

neural networks, with brain-like functions, and

multidirectional communication between, for example,

neurons and glial cells (Lancaster et al., 2013; Sakaguchi

et al., 2019; Yakoub, 2019; Samarasinghe et al., 2021).

However, to date, only five 3D-systems have been published

for the study of ALS (Table 1).

Among these systems, organ-on-a-chip, is a microfluidic

device that aims to replicate the physiological

microenvironment, and allows the study of NMJs between

skeletal muscle cells (SMCs) and MNs (Osaki et al., 2018).

NMJs are highly relevant for ALS, as its structural

disassembly, and muscle denervation are both hallmarks of

the disease (Cappello and Francolini, 2017). With this system,

Osaki et al. were able to study iPSC-ALS-MNs phenotypical

characteristics, neurite elongation speed and length, as well as the

positive therapeutic effects of rapamycin and bosutinib. Thus,

variables such as axonal outgrowth, synapse formation, muscle

contraction, and atrophy can be assessed, highlighting the

device’s appealing approach to study drug efficiency for motor

unit recovery (Uzel et al., 2016; Osaki et al., 2018).

A more recent model, developed by Pereira et al. (2021),

involves the use of iPSCs derived from fALS (C9orf72 and FUS)

and sALS. The produced organoids were patterned towards

TABLE 1 3D-culture models implemented in the study of ALS.

Objective 3D-system Cell types
identified/
added to
the system

ALS model Central findings References

NMJ modeling and
drug testing
(Rapamycin/Bosutinib)

Microfluidic device
(ALS-on-a-chip)

iPSC-ALS-MNs sALS (TDP-43) - iPSC-ALS motor units generated fewer
contractions and NMJ formation

Osaki et al. (2018)

iPSC-ALS-ACs - iPSC-ALS-MN degradation

iPSC-SMCs Non-ALS - Apoptosis of iPSC-SMCs

iPSC-ECs - Drug combination improved iPSC-ALS-MN
survival and muscle contraction

NMJ modeling Sensorimotor organoid iPSC-ALS-MNs - fALS
(C9orf72 and FUS)

- Reduced contraction Pereira et al.
(2021)iPSC-ALS-SNs - Abnormal NMJs

iPSC-ALS-ACs

iPSC-ALS-Microglia

iPSC-ALS-SMCs - sALS

iPSC-ALS-ECs

Model development Polystyrene scaffold 3D-
culture plates (Alvetex,
Reprocell)

iPSC-ALS-Cortex
neurons

fALS (C9orf72) - Spontaneous cell cycle protein expression Porterfield et al.
(2020)

iPSC-ALS-ACs - Senescence-associated gene expression and
protein secretion

Drug testing
(Rapamycin)

Microfluidic device
(Drug gradient control)

mESC-ALS-MNs Transgenic mouse
(TDP-43-A315T)

- MN’s survival increased in a dosage-dependent
manner

Chennampally
et al. (2021)

Model development
and drug testing (GSK
2606414)

Cerebral cortical
organoid slice

iPSC-ALS-ULNs ALS (C9orf72) - Astroglia and neurons present transcriptional
and proteostasis disturbance-P26 and DPR poly
(GA)—GKS2606414 treatment reduces cell
damage

Szebényi et al.
(2021)iPSC-ALS-DLNs

iPSC-ALS-IN

iPSC-ALS-OL/OPC

iPSC-ALS-iRG/oRG

iPSC-ALS-ACs

Unidentified cells and
other immature/
progenitors

Abbreviations: NMJs, neuromuscular junctions; SNs, sensory neurons; ACs, astrocytes; SMCs, skeletal muscle cells; ECs, endothelial cells; mESC, mouse embryonic stem cell; ULN, upper

layer cortical neuron; DLN, deep layer neuron; IN, interneurons; OL/OPC, oligodendrocyte/progenitor cells; iRG, inner radial glia; oRG, outer radial glia; CP, choroid plexus; DPR poly

(GA), dipeptide repeat protein (DPR) poly (GA).
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neuromesodermal progenitors. Diverse cell types were identified

in these tissue constructs, including MNs, SNs, ACs, microglia,

SMCs, vasculature cells and dorsal spinal cord cell derivatives.

Unlike the previous model, all cell types present in the system

originate from an ALS source. Moreover, these sensorimotor

organoids facilitate cell type quantification, enable live-cell

imaging, and the study of NMJs, which were found impaired

compared to non-pathological controls.

A third model was established using a commercially available

3D-culture plate (Alvetex, Reprocell). Porterfield et al. (2020),

studied cortex neurons derived from patients presenting a

C9orf72 mutation. They reported that, compared to a 2D-

culture-control, phenotype-disease relevant characteristics

were observed. These include, spontaneous expression of

cyclin D1, dysregulation of cell cycle-associated genes, and the

expression of senescence related secretory molecules.

With a different approach, Chennampally et al. (2021),

explored the effects of rapamycin in a 3D microfluidic system

that allowed for concentration-gradient control while mapping

permissive zones of MN survival in the organoid. Here, the

chosen disease model was derived from mouse ESCs (mESCs)

harboring a TDP-43-A315T mutation. Their findings support

that rapamycin dosage (0.4–1.0 µM) can increase MN survival by

40.44% through autophagy regulation of aggregates. As an

advantage to the system, drug titration can be performed in a

single culture, thus enhancing test throughputs and results.

The newest 3D-model, by Szebényi et al. (2021), involves the

development of cortical brain organoids that are subsequently

sliced and cultured on fenestrated membranes at the air-liquid

interface. These organoid slices contain a consistent

microarchitecture, wide cell diversity presenting forebrain

signature identity, and functional and mature cortical circuits

that display disease-relevant phenotypes. However, mesoderm-

derived cells are not detected. The screened drug, GSK2606414,

reduced unfolded protein response (UPR) activation and poly

(GA) levels. Szebényi et al. (2021) suggested that dormant

perinatal or pre-symptomatic cortical vulnerability is present

in ALS patients.

A limitation for 3D-culture viability is their lack of

vascularization, which hinders the tissue from the adequate

circulation of nutrients, bioactive molecules, gaseous exchange,

and waste disposal. These factors limit the organoids size, induces

extensive cell death in the center or core of the tissue construct,

and restricts its culture time (Lancaster et al., 2013; Grebenyuk

and Ranga, 2019). However, Prolonged culture time is necessary

for stem cells to differentiate and mature and mimic adult tissues.

Szebényi et al. (2021) model circumvented vascularization

drawback by culturing slices instead of whole organoids.

These organoid slices boosted the cells viability because of

increased nutrition inflow and suppressed core necrosis. In

this manner, cultures were maintained for up to 240 days.

However, vasculature components (e.g., ECs and pericytes) are

indispensable and relevant to the appropriate differentiation and

maturation of NPCs (Koutsakis and Kazanis, 2016; Cakir et al.,

2019; Karakatsani et al., 2019). In this regard, two of the

aforementioned 3D-models present vascular elements. Pereira

et al. (2021) identified the formation of a reticulated pattern of

ECs. Albeit, the group did not address its functionality nor its

potential to model a blood-brain barrier (BBB), which is highly

pertinent for drug screening (Cecchelli et al., 2007). While Osaki

et al. (2018) model presents vascular elements, their use of a

microfluidic chamber compensated—to some extent—the lack of

a circulatory system. Taking a step further, theymodeled a BBB-like

structure, by incorporating iPSC-ECs and primming them towards

a brain-specific EC-phenotype. This barrier exhibited functional

characteristics by compromising the therapeutic activity of the

tested drugs and allowed the authors to hypothesize its possible

role in neuroprotection and muscle contraction.

The lack of standardization in 3D-cultures is a concern, and

efforts to increase confidence in organoids are under way. Velasco

et al. (2019), havemade amajor advance in developing amethod to

standardize individual brain organoids. They established four

different protocols to generate both organoids and spheroids

that were highly reproducible in cellular composition, even

across different lines and batches. Single-cell sequencing

confirmed that the organoids remained genetically stable along

with their morphology for up to 6 months, regardless of their

genetic background. Other groups have also shown reproducibility

of organoids as a stable model for studies of late stages of neuronal

development (Giandomenico et al., 2021), and use for neurological

disorders, including ALS (Pereira et al., 2021), Alzheimer’s

(Ghatak et al., 2019), and Leigh syndrome (Romero-Morales

et al., 2020). The challenges ahead include consistency of the

cellular and non-cellular components, the incorporation of

vascular elements, immune cell, and other disease-relevant cell

types (e.g., Schwann cells). As well as the development of more

sophisticated scaffolds, microfluidic devices, and analysis

technology adapted to 3D-systems that allow for high-

throughput screening.

The role of bioinformatics. Perspectives
and future

The integration of bioinformatic and computational tools

close the gap between animal and cell model disadvantages.

Furthermore, allows for the understanding of the disease

mechanisms by exploring large genetic datasets, identify

critical biochemical pathways, and generate hypotheses. Here,

we will highlight existing bioinformatic and computational tools

and their applications in ALS and iPSC-ALS.

ALS genetics is complex and there is a rapidly growing

dataset due to the advancement of technology and increased

sampling. Existing bioinformatics tools for understanding ALS

genetics are ALSoD (Abel et al., 2012) and ALSGeneScanner

(Iacoangeli et al., 2019). ALSoD (Abel et al., 2012) is a freely
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available database, that serves as a bioinformatics repository and

an analysis tool for genotype to phenotype association studies.

Since the development of ALSoD, several years of repository

enrichment established the evidence for the polygenic and

oligogenic basis of Australian sALS (McCann et al., 2021) that

would not be possible with bioinformatic analysis. In addition,

ALSGeneScanner is a tool that allows non-specialists, and

healthcare providers to use an automatic and annotated report

for interpreting ALS genetic data. The feasibility of

ALSGeneScanner allows for whole-genome and exome

sequencing, variant prioritization, and helps to distinguish

pathogenic from non-pathogenic variants (Iacoangeli et al.,

2019). Bioinformatics has bridged complex data generated

from advances in sequencing technology for ALS and

continues to advance the discovery of new ALS disease-

modifying genes such as EPHA4 and CHGB (Pampalakis

et al., 2019). The incorporation of bioinformatics provides

increased approachability for non-computational experts

through the accessibility of data and automatic data

processing. Computational techniques, such as comparative

omics, allowed researchers to find novel genetic variants such

as SPTLC1 variants and linked the variants to childhood-ALS

(Mohassel et al., 2021). Most importantly, the application of

bioinformatics and computational tools bolsters discoveries from

genetic datasets that would otherwise take many years to connect.

For iPSCs-ALS-MNs, the application of computational

techniques such as integrated multi-omic analysis resulted in

the identification of novel and known aberrant cellular pathways

(Li et al., 2021). Integrated multi-omic analysis distinguished

pathogenic versus compensatory disease phenotype pathways,

which allows for clearer understanding of disease mechanisms. In

disease pathway analyses, cell type heterogeneity from iPSC

cultures differentiation can confound investigations. Multi-

omics integration from genomics, transcriptomics, epigenomics,

and proteomics minimize variations from iPSC differentiation and

highlight network-based signatures. Researchers performed

comparative multi-omics analysis with selectively vulnerable

MN subtypes in ALS, and using iPSCs derived from fALS and

sALS patients, and have found dysregulation of lipid metabolism.

Lee et al. (2021) further applied targeted metabolomics to confirm

lipid metabolism dysregulation and showed pharmacological

reduction of arachidonic acid reversed disease-related

phenotypes in drosophila and mouse models of ALS (Lee et al.,

2021). In this sense, bioinformatics allows for the translation of

experimental studies to influence disease treatment and

management.

Within mechanistic studies for ALS, errors in protein

synthesis, trafficking, and degradation are regularly reported

(Van Der Stappen et al., 2005). Protein studies provide insight

and value in understanding the mechanism of ALS (McAlary

et al., 2020). Bioinformatics aid in the study of protein-protein

interactions, which are mapped and analyzed using online

databases, such as STRING.db (Szklarczyk et al., 2019).

STRING.db predicts not only physical protein-protein

interaction but also, functional interactions. Moreover,

subsequent pathway analysis is performed with both Gene

Ontology (Ashburner et al., 2000) and KEGG (Kanehisa,

2000; Kanehisa et al., 2021). Gene Ontology and KEGG help

to elucidate high-level functions of biological systems, identify

cellular pathways and the structural locations where these occur.

An example of Gene Ontology application comes from Feneberg

et al. (2020), who compared human wild-type and mutant TDP-

43 interactomes from iPSC-ALS, finding that disrupted protein

interactions alter TDP-43 response to oxidative stress.

Beyond protein-protein interactions are cell-cell interactions

that are critical for understanding disease phenotypes. The

development of complex multicellular models of ALS are

pushing the Frontier of in vitro models; however, there is a

major lack in cell-cell communication analysis tools. Systemic

Elucidation and Assessment of Regulatory Cell-to-cell

Interaction Networks (SEARCHIN) is an approach created to

identify interactions between multicellular models of disease

(Mishra et al., 2020). Mishra et al. identified in ALS models of

neuron-astrocyte, a deleterious ligand-receptor pair, amyloid

precursor protein (APP), and death receptor-6 (DR6).

Therefore, multi-modal integrative bioinformatics approaches

like SEARCHIN allow for the study of non-cell-autonomous

mechanisms.

Central to this review is the use of iPSC-ALS models for drug

discovery. Drugs under investigation, such as the

acetyltransferase inhibitor, anacardic acid, was discovered

through iPSC-ALS models (Egawa et al., 2012). ropinirole

was identified through multi-phenotypic screening with high-

content imaging using non-SOD1 fALS models from iPSCs

(Fujimori et al., 2018). The combination of iPSC-ALS models

and high-throughput drug screening with computational tools

accelerates the development of ALS drugs (Lee et al., 2018).

Neural networks (Congzhou et al., 2021) can be applied to

predict small molecule targets to proteins of interest such as

TDP-43, SOD1, and FUS. Drift is another tool from the

Dokholyan lab that predicts protein targets of chemical

compounds. In drug discovery, high-throughput screening

methods are used to select potential candidates, that are

computationally assessed though molecular modeling.

Moreover, in drug design, the conformational changes

induced by ligand binding are often difficult to capture and

calculating the configurational entropy may pose a challenge. To

circumvent these limitations, flexible docking approaches such as

MedusaDock (Yin et al., 2010; Wang and Dokholyan, 2019)

allow modeling both ligand and receptor flexibilities.

MedusaDock is well-suited for iPSC-ALS model studies as it

conformationally samples small molecules. Finally, Erebus

(Shirvanyants et al., 2011) validates the binding site of the

protein of interest. With the power of computation coupled

with better disease-reproducible models such as iPSCs

cultured in 3D-systems, the validity of the data is strengthened.
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Regarding the clinical translation of bioinformatics,

analysis of datasets investigating immune cells and gene

alterations provided potential biomarkers for the much

needed monitoring of ALS disease and treatment response

(Xie et al., 2021). Investigations for unique ALS gene

signatures compared to non-ALS controls led researchers to

predict disease occurrence based on the combination of

neurofilament-light (Nf-L) and neuroinflammatory

biomarkers in the serum and cerebral spinal fluid these

patients (Brodovitch et al., 2021). To date, the most

accurate biomarker for ALS is the unique combination of

Nf-L and neuroinflammatory markers in the serum and

cerebral spinal fluid. Nf-L and cytokines possess long-term

stability providing prognostic value as biomarkers for patients

with neurogenerative symptoms (Huang et al., 2020). Also, the

development of genetic bioinformatic tools affect clinical

decisions such as genetic counseling and disease-risk

assessment (Al-Chalabi et al., 2017). As stated, ALS

presents a late-onset, however the disease may manifest

much earlier, thus the discovery of specific and stage-

sensitive biomarkers can aid the timely identification of the

disease to efficiently intervene early symptoms and monitor

the pathologies’ progression.

ALS is a complex disease without a clear understanding of

targetable disease-curable pathways. Therefore, it is imperative to

highlight the critical axis for ALS pathogenesis. The application

of bioinformatics and computational approaches such as ALSoD,

ALSGeneScanner, multi-omics analysis, STRING.db,

SEARCHIN, neural networks, DRIFT, and MedusaDock

pushes the Frontier of our understanding of ALS. SEARCHIN

applied to iPSC co-cultures of ALS patients elucidated our

understanding of cell-cell interactions, similarly STRING.db

permits the use of proteins extracted from iPSC-ALS to

understand specific protein-protein interactions. Neural

networks, DRIFT, Erebus, and MedusaDock allow for

identification of new drugs, prediction of drug targets to

proteins of interest, binding site validation, and docking and

modeling of proteins or small molecules with iPSC-ALS cultures

for in vivo validation experiments (Figure 5). Bioinformatic and

computational techniques paired with iPSC-ALS experiments

empowers streamlining drug discovery of iPSC-ALS cultures.

Conclusion

Since their discovery, iPSCs’ public interest has centered on their

use as therapeutic agents. However, unlike their multipotent

counterparts, the mesenchymal stem cells, iPSCs’ clinical

translation is still in preliminary stages. The lagging in the

implementation of iPSCs in a clinical setting is due to the

discussed limitations that include genetic instability, lack of

standardized production, quality control, and robust xeno-free

clinical-grade protocols. We believe that iPSCs’ true impact

resides in their use as disease models and drug screening platform

for pharmaceutical development. In addition to their clear advantage

to model the donors’ genetic and epigenetic identity, iPSCs allow for

scaling-up and high-throughput drug screening processes. Perhaps

one of theirmost exciting features, is their capability to bypass animal

experimentation in drug trials, which translates to a substantial

reduction of the time, cost and ethical concerns associated with

animal use. However, for this system to be widely implemented in the

drug discovery field, iPSCs culture standardization demands must be

rigorously met. Defined differentiation protocols, along with

stringent characterization and use of isogenic controls can

significantly assist in the systems reliability.

While continuous improvement of iPSC production and a

deeper understanding of the cell differentiation process allows us

to search for shared protocol standards and define criteria, a new

set of tools involving 3D-culture and bioinformatics are

emerging. Using 3D-cultures we can increase the resemblance

of the in vivo physiological microenvironments, and thus, greatly

enhance our understanding of the diseases’ biology and drug

response. While bioinformatics can aid us in unveiling the

diseases’ pathological mechanisms and in predicting new

therapeutic compounds and their combinations for effective

treatments. The incorporation of both these tools have the

potential to shift the current limitations of ALS research and

spark the discovery of new drugs and treatments. However,

despite these clear advantages, 3D-modeling and

bioinformatics integration to iPSCs-ALS research is rarely

found. From scarce postmortem samples to in bulk-patient

specific iPSCs that differentiate into any cell type of the brain,

in vitro technology and their analysis tools have moved forward

with giant leaps. We are now in need of the next step, towards the

third dimension and integrated in silico analysis.
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