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Abstract: Ionic liquids are a new and challenging class of fluids with great and tunable properties,
having the capability of an extensive area of real-life applications, from chemistry, biology, medicine
to heat transfer. These fluids are often considered as green solvents. Several properties of these fluids
can be enhanced by adding nanoparticles following the idea of nanofluids. These ionic liquids-based
nanocolloids are also termed in the literature as ionanofluids or nanoparticles-enhanced ionic liquids.
This review summarizes the findings in both areas of ionic liquids and ionic liquids nanocolloids (i.e.,
ionic liquids with nanoparticles in suspension) with direct applicability in convective heat transfer
applications. The review presents in a unified manner the progress and prospects of ionic liquids
and their nanocolloids from preparation, thermophysical properties and equally experimental and
numerical works. As the heat transfer enhancement requires innovative fluids, this new class of ionic
liquids-based nanocolloids is certainly a viable option, despite the noticed drawbacks. Nevertheless,
experimental studies are very limited, and thus, extensive experiments are needed to elucidate ionic
liquids interaction with nanoparticles, as well as their behavior in convective heat transfer.

Keywords: ionic liquid; nanoparticles; convection; heat transfer; experimental correlations; thermo-
physical properties

1. Introduction

Ionic liquids (ILs) are considered as a candidate for heat transfer applications particu-
larly when nanoparticles are dispersed into them making a new class of fluids (known as
ionanofluids) with improved thermal performance. Thus, it is important to briefly highlight
thermophysical properties of ILs such as density, viscosity, thermal conductivity and spe-
cific heat and how these properties are influenced by temperature and pressure, which are
particularly crucial for convective heat transfer application. Similar to common molecular
liquids, density of ILs slightly decreases (mostly linearly) with increasing temperature. For
instance, at atmospheric pressure, an increase in temperature from 288 to 363 K decreases
the density of [BMIM][NTf2] from 1446 to 1375.7 kg/m3 (4.86%) [1,2]. Density of ILs also
changes with pressure, and it increases with increasing pressure. For example, at 298 K
density of [BMIM][NTf2] increased from 1436 to 1561.5 kg/m3 (8.74%) due to increasing
pressure from 0.1 (atmospheric) to 249.6 MPa [1]. Although viscosity of ILs is generally
higher than those of common heat transfer fluids such as ethylene glycol similar to any
other liquids’ viscosity of ILs also decrease considerably (non-linearly) with increasing
temperature (e.g., Ferreira et al. [3]). Such a decrease in viscosity of IL is particularly
important for the convection applications at elevated temperature, as it can significantly
reduce the pumping power. However, unlike conventional liquids, thermal conductivity
of ILs was found to decrease slightly (for some ILs almost independent of temperature)
with increasing temperature [3,4]. However, specific heat of ILs shows behavior similar to
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common viscous fluids such as ethylene glycol, as this property increases mostly linearly
with temperature [5], which is good for thermal energy storage.

Apart from above properties and their dependent on temperature and pressure, ILs are
thermally stable up to considerably high temperature (e.g., 450 ◦C). Because of interesting
characteristics and properties as well as potential applications some special types of ILs
such as imidazolium-based ILs are widely used and studied types. Based on application as
for convective heat transfer, the properties and features of ILs play an important role for
their own performance as well as their nanofluids (INF).

Adding nanoparticles to ionic liquids came as a logical step to increase their thermal
conductivity, which is rather low if compared to several well-known heat transfer fluids. A
comprehensive discussion on this topic was attained by Minea [6], where the advantages
and disadvantages of using ionic liquids for different applications based on the ionic liquids
description at molecular level can clearly be noticed. Additionally, Minea [6] discusses
thermophysical properties of ionic liquids in comparison with regular heat transfer fluids,
outlining both their benefits and drawbacks, concluding that ionic liquids are superior to
basic heat transfer fluids mostly in relation of stability, low vapor pressure and environmen-
tal safety. The most important feature of ILs is their easy-to-design properties by merging
anions and cations, and the most significant feature that distinguishes ionic liquids among
regular commercial heat transfer fluids is the extraordinarily low saturated vapor pressure
at high temperature. From the state-of-the-art literature, it is obvious that the thermal con-
ductivity is increasing by adding solid nanoparticles to ionic liquid, and the phenomenon
occurring is similar with the one observed for nanofluids. In regard to viscosity, a general
conclusion is that the viscosity is increasing by adding nanoparticles and is decreasing at
heating. More details about this behavior and the changes in thermophysical properties of
a number of ionic liquids studied in the open literature can be found in a previous work
published by these authors (Minea and Murshed [7]).

One of the first reviews on ionic liquids-based nanocolloids came from Marsh et al. [8]
who presented the net advantages of adding nanoparticles to ionic liquids and also dis-
cussed their possible applications.

Many papers discuss heat transfer applications: For example, a study performed
by França et al. [9] demonstrated that these new fluids, due to high thermal conduc-
tivity and specific heat, are suitable candidates for heat transfer applications in a shell
and tube heat exchanger. The same conclusion was also reached by other authors (see,
for example, [7,10–15]) that performed mainly numerical studies on heat transfer perfor-
mance. Anyhow, it was noticed from the archived literature that, at least by these authors’
knowledge, the number of experimental studies are scarce.

This review came as a continuation of our work, and it summarized and discussed
comparatively recent research performed both in the area of ionic liquids and ionic liquids-
based nanocolloids, with emphasis on both of these fluids’ thermophysical properties
in relation to their convection heat transfer. Nevertheless, the last parts are dedicated
to numerical studies performed until now as well as proposed analytical and numerical
correlations on heat transfer behavior.

2. Selection of ILs and Preparation of INF

For heat transfer-based applications, ILs are mainly selected based on their thermo-
physical properties particularly of high thermal conductivity and low viscosity. Another
important factor is their miscibility in water due to improving their thermal properties
such as thermal conductivity, heat capacity and reducing viscosity.

Preparation of ionanofluids is the first key step, as their properties, performance and
suitability in application highly depend on it. The preparation methodology of ionanofluids
is similar to those of conventional nanofluids where nanoparticles are either directly
synthesized inside the base fluid or mixed in base fluid [16]. While the first route is known
as the one-step method, the latter is called the two-step method. For ionanofluids, the
one-step method, which is direct synthesis of nanoparticles in base ionic liquid, is rarely
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used. Whereas, ionanofluids are commonly prepared using the two-step method where
dry nanoparticles (purchased or synthesized) are dispersed in base IL and then they are
homogenized (better dispersed) mainly using ultra sonication. Schematic of ionanofluids
preparation methodology (two-step) is shown in Figure 1, which also highlights different
techniques of stable dispersion of nanoparticles in base IL.
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Figure 1. Schematic of concept of ionanofluids preparation.

Various types of nanoparticles such as Al2O3, carbon nanotubes, graphene, SiC and
graphene oxide are used for the preparation of ionanofluids; whereas, among ionic liquids,
imidazolium-based ionic liquids are widely used. While selecting ionic liquid as base fluids
for heat transfer-based applications, it is important to choose those with high thermal prop-
erties such as thermal conductivity and heat capacity. Although the preparation procedure
is quite straight forward, it is very challenging to ensure proper/homogenous dispersion
of nanoparticles and long-term stability of prepared ionanofluids. Thus, besides sonication,
surfactants are also added to improve stability of prepared ionanofluids. Another way
to improve stability is by nanoparticles’ surface treatment or modification. However, the
latter option is rarely employed in ionanofluids preparation. It is important to note that
special attention must be given while ultrasonicating ionanofluids, as excessive sonication
(long time and at high amplitude) can deteriorate the sample in both chemical and physical
condition (such as destroying structure and surface of nanoparticles such as CNT). Due
to prolong ultrasonication (especially probe type) the sample ionanofluids can be evap-
orated, and the concentration of nanoparticle can be changed. It is also advisable not to
use surfactant, as they can also deteriorate or can become inactive at moderate to high
temperature conditions. Nevertheless, it is important to assess the degree of stability of
prepared ionanofluids by performing a stability study, which includes determining zeta
potential, UV-Vis absorbance, size distribution using dynamic light scattering as well as
TEM or SEM analysis. The stability assessments of ionanofluids are the same as commonly
used for nanofluids [16–18].

3. Thermophysical Properties of ILs and INFs Used on Convective Heat
Transfer Applications
3.1. Ionic Liquids Thermophysical Properties

Thermophysical properties of base ILs are crucial for their own as well as their INFs’
heat transfer performance, particularly for convective heat transfer applications. Thus,
important thermophysical properties including viscosity, density, thermal conductivity
and heat capacity of commonly considered ILs are presented in Tables 1 and 2. Reference
temperature (mainly room temperature condition) of the property value and corresponding
references are also provided. It is noted that the values of these properties can be different in
other sources that are not used in these tables. As the focus of this study is not ionic liquid,
no analysis of results from individual studies from the literature on these properties of ionic
liquid will be provided here. However, a detailed review on ILs thermophysical properties
and on ILs as heat transfer fluids can be found elsewhere in the literature (e.g., Chernikova
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et al. [19]). The data presented in these tables (Tables 1 and 2) will help to identify suitable
ILs for INFs as well as for their applications, particularly in thermal applications.

Table 1. Viscosity and density of ILs used as base fluids for INFs.

Ionic Liquid Viscosity (mPa·s) Condition [Reference] Density (kg/m3) Condition [Reference]

[C4mim][NTf2] 99.6 298 K [20] 1.436 298 K [1]
[C6mim][NTf2] 70.5 298 K [21] 1.372 298 K [22]

[C4mim][CF3SO3] 76.0 298 K [23] 1.306 293 K [24]
[C4mim][PF6] 257.0 298 K [23] 1.372 293 K [24]
[C6mim][PF6] 485.8 298 K [25] 1.293 298 K [25]

[C2mim][EtSO4] 125.4 293 K [2] 1.236 298 K [2]
[C4mim][(CF3SO2)2N] 51.1 313 K [26] 1.426 313 K [26]

[C6mim][BF4] 250.0 298 K [27] 1.149 298 K [27]
[C2mim][CH3SO3] 149.1 298 K [28] 1.239 298 K [28]

[N4111][NTf2] 105.4 298 K [29] 1.392 298 K [30]
[C4mpyr][NTf2] 68 303 K [31] 1.382 298 K [32]

[(C6)3PC14][NTf2] 318 298 K [33] 1.065 298 K [3]
[HMIM][BF4] 250 298 K [34] 1.123 298 K [35]
[C4mim][BF4] 85.37 303.15 K [36] 1.198 303.15 K [36]
[EMIM][DEP] 274 298 K [37] 1.148 298 K [37]
[EMIM][DCA] 13.2 300 K [38] 1.1 298 K [39]
[C4mim][Cl] 545 333 K [40] 1.087 293 K [40]
[C4mim][Br] 215 303 K [40] 1.298 293 K [40]
[C4mim][I] 379 303 K [40] 1.489 293 K [40]

Table 2. Thermal conductivity and heat capacity of ILs used as base fluids for INFs.

Ionic Liquid Thermal Conductivity
(W/m K) Condition [Reference] Heat Capacity (kJ/kg·K) Condition [Reference]

[C4mim][NTf2] 0.126 300 K [41] 1.352 298 K [42]
[C6mim][NTf2] 0.122 293 K [43] 1.426 298 K [22]

[C4mim][CF3SO3] 0.142 293 K [43] 1.484 298 K [44]
[C4mim][PF6] 0.145 293 K [4] 1.432 308 K [4]
[C6mim][PF6] 0.142 293 K [24] 1.358 293 K [25]

[C4mim][DCA] 0.176 298 K [45] 1.827 296 K [46]
[C4mim][BF4] 0.163 298 K [43] 1.614 298 K [43]
[C6mim][BF4] 2.21 298 K [27] 0.166 298 K [27]

[C2mim][CH3SO3] 0.190 298 K [47] 1.629 298 K [47]
[C2mim][EtSO4] 0.1706 293.4 K [48] 1.57 293 K [49]

[C4mim][(CF3SO2)2N] 0.1114 293.4 K [48] 1.373 313 K [26]
[N4111][NTf2] 0.122 303 K [30] 1.70 303 K [30]

[C4mpyrr][NTf2] 0.124 303 K [30] 1.58 303 K [30]
[(C6)3PC14)][Phosph] 0.135 298 K [3] 2.12 298 K [3]

[(C6)3PC14][NTf2] 0.137 298 K [3] 1.788 333 K [3]
[HMIM][BF4] 0.166 298 K [34] 2.265 298 K [34]
[EMIM][DEP] 0.1749 303 K [37] 1.998 293 K [50]
[C4mim][Cl] 0.176 293 K [40] 1.982 298 K [51]
[C4mim][Br] 0.16 293 K [40] 1.421 298 K [42]
[C4mim][I] 0.131 293 K [40] 1.165 298 K [52]

Unlike conventional heat transfer fluids, Figure 2 reveals that temperature does not
have noticeable influence on thermal conductivity of ILs. However, as can be seen from
Table 2 as well as Figure 2, changing the anion or cation type resulted in a larger variation
in thermal conductivity. Varying the alkyl chain length, n, of the [Cnmim][NTf2] ionic
liquids had no significant effect on the thermal conductivity.



Nanomaterials 2021, 11, 1039 5 of 23

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 24 
 

 

Ionic liquids commonly exhibit high viscosity and, thus, are not very suitable in con-
vection application. However, similar to common heat transfer fluids, the viscosity of ILs 
is strongly influenced by temperature, as can be seen from Figure 3 where the viscosity of 
representative ILs decreases exponentially with the temperature, which is good for their 
cooling application at high temperature conditions. 

 
Figure 2. Effect of temperature on the thermal conductivity of ILs[4,48,53,54]. 

 
Figure 3. Effect of temperature on the viscosity of ILs [55–57]. 

 

Temperature (K)
290 300 310 320 330 340 350 360

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
/m

-K
)

0.12

0.14

0.16

0.18

0.20

0.22

0.24

[C2mim][NTf2] 
[C4mim][NTf2]
[C4mim][PF6]
[C4mim][BF6]
[C6mim][NTf2]
[C4mim][CF3SO3]
[C2MIM][EtSO4]
[C2MIM][EtSO4] 
[C4mpyrr][NTf2]

Figure 2. Effect of temperature on the thermal conductivity of ILs [4,48,53,54].

Ionic liquids commonly exhibit high viscosity and, thus, are not very suitable in
convection application. However, similar to common heat transfer fluids, the viscosity of
ILs is strongly influenced by temperature, as can be seen from Figure 3 where the viscosity
of representative ILs decreases exponentially with the temperature, which is good for their
cooling application at high temperature conditions.
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Usually, reduction in viscosity and increase in specific heat capacity of ILs are com-
monly used by mixing with water. For binary mixture of IL and water, the heat capacity of
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the mixture increases by increasing the mole fraction of water [58]. Heat capacity of IL also
increases with temperature [58]. Although there are many immiscible ILs, binary mixture
of ILs with water is better as a base fluid for ionanofluids than a heat transfer medium.

3.2. Thermophysical Properties of Ionic Liquids-Based Nanocolloids

This section attempts a comprehensive review on thermophysical properties of ionic
liquid-based nanocolloids with emphasis on relevant properties for convective heat transfer.

3.2.1. Thermal Conductivity

Thermal conductivity is one of the most important property of fluids when it talks
about heat transfer capability of a certain fluid. Table 3 shows experimental data on ionic
liquids-based nanocolloids thermal conductivity.

Table 3. Literature results on thermal conductivity of ionic liquid-based nanofluids.

Reference Ionic Liquid Nanoparticles Concentration Conditions Observation

Franca et al. [26]

[C4mim][(CF3SO2)2N]

MWCNT 0.5–3 %wt.
Temperature

variation in the range
293–343 K

1. Thermal conductivity remains
almost constant when temperature

increases.

[C2mim][EtSO4]
2. Thermal conductivity of ionic

liquid increases with nanoparticles
concentration.

Ribeiro et al. [59]

[C2mim][(CF3SO2)2N]

MWCNT 1 %wt.
Temperature

variation in the range
293–353 K

1. Thermal conductivity decreases
linearly in the studied temperature

range.[C4mim][(CF3SO2)2N]

[C6mim][(CF3SO2)2N]
2. Thermal conductivity of ionic
liquid increases up to 35% when

MWCNT are added.
[C8mim][(CF3SO2)2N]

[C4mim][BF4]

Patil et al. [60] [C4mim][BF4] Ru 0.003 M
Temperature

variation in the range
293–333 K

1. Thermal conductivity increase
by adding Ru is extremely

low—up to 4%.

Ferreira et al. [3]

[(C6)3PC14)][Phosph]

MWCNT 0.05–0.1 %wt.
Temperature

variation in the range
283–334 K

1. Thermal conductivity slightly
increases, up to 1.5%, with

nanoparticle addition.

[(C6)3PC14)][NTf2] 2. Thermal conductivity remains
almost constant with temperature.[(C6)3PC14)][NTf2]

Paul [61]
[C4mpyrr][NTf2]

Al2O3 0.5–2.5%
Temperature

variation in the range
303–343 K

Thermal conductivity increases up
to 15%, with nanoparticle addition

and temperature.
[C4mim][NTf2]

Paul et al. [62] [N4111][NTf2]

Nieto de Castro
et al. [24]

[C4mim][NTf2]

MWCNT 1 %wt. Room temperature,
293 K

High enrichment (35%) for
[C4mim][NTf2]) + MWCNT and

up to 10% rise in thermal
conductivity for the other ILs.

[C4mim][CF3SO3]

[C6mim][NTf2]

[C8mim][NTf2]

[C4mim][BF4]

Ribeiro et al. [4]

[C6mim][BF4]

MWCNT 1 %wt.
Temperature

variation in the range
293–353 K

1. A moderate increase in the
thermal conductivity was noticed

when temperature rises.[C4mim][CF3SO3]

[C4mpyrr][NTf2]
2. Thermal conductivity is
enhanced up to 10% when

MWCNT are added.
[C4mim][PF6]

[C6mim][PF6]

Wang et al. [34] [HMIM][BF4] Graphene
MWCNT

0.03 and 0.06
%wt.

Temperature
variation in the range

298–338 K

1. Enhancement of up to 20% at
nanoparticle addition.

2. Temperature has little to no
influence.

Jorjani et al. [63] [BMIM][BF4] Nano-diamond 0.36–1.04 %vol. Ambient temperature 1. Enhancement of up to 9.3% at
nanoparticle addition.
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Table 3. Cont.

Reference Ionic Liquid Nanoparticles Concentration Conditions Observation

Liu et al. [35] [HMIM][BF4] Graphene 0.03, 0.06 %wt. Ambient temperature

1. Thermal conductivity increases
up to 13.1% at 0.06 %wt.

2. Thermal conductivity increases
with temperature.

Xie et al. [37]
[EMIM]

MWCNT 0.2, 0.5, 1 %wt. Ambient temperature
Thermal conductivity increases up

to 9.7%.[DEP] + DI water

Paul et al. [64] [C4mim][NTf2] Al2O3
0.18, 0.36,
0.9 %vol. Ambient temperature Thermal conductivity increases by

11% for 0.9 %vol.

Chereches et al.
[47,65]

[C2mim][CH3SO3] Al2O3 0.5–5 %wt.
Temperature

variation in the range
293–353 K

1. Thermal conductivity increases
by 12.9% when alumina is added.

2. Thermal conductivity variation
with temperature is not significant.

Chereches et al.
[47,65]

[C2mim][CH3SO3] +
water

Al2O3 0.5–5 %wt.
Temperature

variation in the range
293–353 K

1. Thermal conductivity increases
up to 10% when alumina is added.

2. Thermal conductivity variation
with temperature is not significant.

Chen et al. [66] [HMIM][BF4] SiC 0.01, 0.03 and
0.06 %wt.

Temperature
variation in the range

298–358 K

1. Thermal conductivity increases
up to about 10% when SiC is

added.

2. Thermal conductivity increases
with temperature.

Jorjani et al. [63] [BMIM][BF4] Nano-diamond 0.36, 0.69 and
1.04 %vol. Ambient temperature

Thermal conductivity
enhancement percentages of 4.2,

5.3 and 9.3 if compared to the base
fluid and in respect to increasing

the volume fraction of the
nanodiamond.

Hosseinghorbani
et al. [67] [Bmim][NTf2] graphene oxide

(GO) 0.5, 1, 2 %wt.
Temperature

variation in the range
288–328 K

Thermal conductivity increases
with temperature. The

enhancement is up to 6.5% at 2%
mass concentration of GO

nanoparticles.

Zhang et al. [68] [BMIM][BF4] GNP, SWCNT,
graphene

0.005, 0.01 %wt.
Temperature

variation in the range
293–428 K

At ambient temperature, thermal
conductivity increases with
nanoparticle addition, while
graphene influence is higher.

When temperature rises to 428 K,
thermal conductivity enhancement

is up to 16.3%, depending on
nanoparticle type and

concentration.

Xie et al. [37]
[EMIM][DEP]

MWCNT 1 %wt.
Temperature

variation in the range
298–353 K

Thermal conductivity increases
within the range of 1.3–9.7%
compared to ionic liquids.

[EMIM][DEP] + H2O Temperature influence is a
linear one.

Most of the new fluids contain little concentration of nanoparticles, up to 1 %wt. with
several exceptions when the nanoparticles fractions are up to 0.05 (see, for example, Franca
et al. [26], Paul [61], Paul et al. [62], Chereches et al. [47,65], Hosseinghorbani et al. [68]). As
for base fluids, several ionic liquids were considered and few authors, such as, for example,
Xie et al. [37] and Chereches et al. [47,60], made mixtures between water and ILs.

If we consider experimental results on thermal conductivity, all of the authors noticed
an increase in thermal conductivity values when nanoparticles are added to the ionic liquids.
Nevertheless, the temperature influence was little, as was shown in Table 3. Overall, the
enhancement in thermal conductivity is up to 10% at low percentages of nanoparticles.
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Nevertheless, Ribeiro et al. [59] found an increase of up to 30% when 1%wt. MWCNT are
added to several ILs.

For instance, thermal conductivity was found almost constant with temperature
variation of several ionic liquids with nanoparticles measured by Franca [26]. The same
phenomenon was noticed also by other researchers (see, for example, Ribeiro et al. [59], Patil
et al. [60], Ferreira et al. [3] and Ribeiro et al. [4]) concluding that the thermal conductivity
of ionic liquids with nanoparticles is following the same trend as that found in the literature
for molecular liquids [69] and other ionic liquids [24,53,70–72].

Furthermore, a comparison is performed in terms of nanoparticles and/or ionic liquid
influence on the thermal conductivity values. From Table 3, we can conclude that the
experimental data are scattered and a large variety of combinations were considered. First,
the influence of base ionic liquid was checked using two kinds of the most considered
nanoparticles: MWCNTs and alumina.

Figures 4 and 5 synthetize some data from the literature in regard to nanoparticles’
influence on thermal conductivity enhancement if compared with the ionic liquid thermal
conductivity. If we look to Figure 4, we can conclude that the enhancement of conductivity
is decreasing when a mixture of ionic liquid + water is considered as the base fluid (see the
results from Xie et al. [37]). Plus, if we compare data from Franca [26] and Xie et al. [37],
we can see that, for the same quantity of nanoparticles, the ionic liquid slightly impacts the
experimental values. On the other hand, Wang et al. [34] obtained larger increases with
very low quantities of nanoparticles (of 0.03% and 0.06% wt. MWCNT).

Figure 5 contains experimental data using Al2O3 as a nanoparticle in four base fluids:
[C4mpyrr][NTf2], [C4mim][NTf2], [C2mim][CH3SO3] and a mixture between [C2mim][CH3SO3]
and water (with 0.25 mole fraction) [47,62,63,65]. Results concluded that, for 1%wt. alu-
mina, the thermal conductivity enhancement varies from 0–10%, thus there is a relatively
strong influence of the base fluid.

Furthermore, in Figure 6, the thermal conductivity values of [HMIM][BF4] and of
several nanoparticles-enhanced ionic liquids are plotted with the addition of graphene,
MWCNT and SiC. Results clearly show that the nanoparticle type influences the experimen-
tal conductivity of the fluid. For example, adding 0.03%wt. of graphene, the augmentation
is 9%, which is larger than that if SiC or MWCNT are added (i.e., 3.6%).
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Concluding, the phenomenon behind the thermal conductivity augmentation is similar
with that noticed for regular nanofluids with water or ethylene glycol. Brownian motion
seems to be accepted by most of the researchers, while several other mechanisms are
discussed in the open literature (for example: thermal boundary resistance, clustering and
layering phenomenon), but a number of questions are still unanswered in regard to the
main cause for this phenomenon. Another aspect that has to be clarified in the next steps
of research is the influence of the base ionic liquid and of the nanoparticle type/shape in
order to tailor a better new heat transfer fluid.

3.2.2. Viscosity

While most of nanofluid research has been devoted to thermal conductivity, viscosity
has received little attention. Viscosity is a critical parameter when a new fluid for heat trans-
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fer applications is developed. This is relevant in the majority of heat transfer applications,
where a pumping power is employed to pump the fluids in a certain application.

Most of the experimental studies, as can be seen from Table 4, noticed an increase in
viscosity when nanoparticles were added to the ionic liquids, depending on nanoparticles
mass concentration (see, for example, Paul et al. [62], Fox et al. [72]). Besides that, several
authors (see Patil et al. [60], Ferreira et al. [3], Zhang et al. [68]) found a decrease in viscosity
when nanoparticles were added and explained this phenomenon relying on the low density
and lubricating properties of nanoparticles, on the interactions between the ions of ILs and
the MWCNT, which can hardly be acceptable without a scientific explanation.

Table 4. Literature results on viscosity of ionic liquid-based nanofluids.

Reference Ionic Liquid Nanoparticles Concentration Conditions Observation

Patil et al. [60]

[C4mim][BF4]

Ru 0.003 M
Temperature

variation in the range
303–373 K

1. The viscosities of ILs and INFs
reduce substantially with

temperature increase.[C4mim][Cl]

[C4mim][Br] 2. The viscosity of ILs decreases
significantly with the addition of

Ru particles.[C4mim][I]

Ferreira et al. [3]

[(C6)3PC14)][Phosph]

MWCNT 0.05–0.1 %wt.
Temperature

variation in the range
283–334 K

1. The viscosities of ILs and INFs
reduces with temperature increase.

[(C6)3PC14)][NTf2] 2. The viscosity of ILs decreases
significantly with the addition

nanoparticles.[(C6)3PC14)][NTf2]

Wang et al. [34] [HMIM][BF4] Graphene
MWCNT

0.03 and 0.06
%wt.

Temperature
variation in the range

298–348 K

1. The viscosities of ILs and INFs
remain almost constant with

temperature increase.

2. The viscosity of ILs decreases
with the addition nanoparticles.

Paul et al. [62] [C4mpyrr][NTf2] Al2O3 0.5–2.5%
Temperature

variation in the range
293–353 K

1. The viscosities of ILs and INFs
decreases with temperature

increase.

2. The viscosity of ILs increases
significantly with the addition of

nanoparticles, up to 600%.

3. The viscosity variation also
depends on the nanoparticle shape
(whiskers NP gives lower viscosity
results if compared with spherical

nanoparticles).

Fox et al. [72] [C4mmim][NTf2]

SiO2

0.5 %wt.
Ambient temperature

298 K

1. Viscosity increases when
nanoparticles are added to the

ionic liquid. The increase varies
from 3% (for SiO2) up to 52%

(for CB)

Au

ZnO

CuO

Fe2O3

2. The viscosity variation also
depends on the nanoparticle type.

SGNF (stacked
graphene
nanofiber)

MWCNT

CB (carbon
black)

Jorjani et al. [63] [BMIM][BF4] Nanodiamond 0.36–1.04 %vol. Ambient temperature 1. Increase between 32 and 126%
when nanoparticles are added.

Paul et al. [64] [C4mim][NTf2] Al2O3
0.18, 0.36, 0.9

%vol.

Shear viscosity of ionanofluid
decreases with the rise in shear rate

where shear thinning occurred.

Chereches et al.
[65]

[C2mim][CH3SO3]
Al2O3 0.5–5 %wt.

Temperature
variation in the range

293–353 K

1. Viscosity increases between 39 to
78% when alumina is added.

[C2mim][CH3SO3] +
water

2. Viscosity decreases with
temperature.
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Table 4. Cont.

Reference Ionic Liquid Nanoparticles Concentration Conditions Observation

Alizadeh and
Moraveji [73]

[BMIM][PF6] GNP 1–3 %wt.
Temperature range:
between 293.15 and

333.15 K.

1. Viscosity reduces as
temperature rises.

2. At 293.15 K, viscosity of
ionanofluids containing 1, 2 and
3% wt. GNPs are around 20, 27

and 43% lower than that of pure
ionic liquid.

3. The relative viscosity increases
with enhancement of temperature.

Chen et al. [66] [HMIM][BF4] SiC
0.01, 0.03 and

0.06 %wt.

Temperature
variation in the range

298–358 K

1. The viscosity decrease
nonlinearly with the increasing

temperature, where the viscosity of
0.03 %wt. SiC fluids decreases

from 275 to 67 cp as the
temperature increases up to 358 K.

2. Nanoparticles loading induces
the viscosity increase in fluids,

where the viscosity value at 298 K
increases from 250 to 289 cp.

Hermida-Merino
et al. [74] [C2C1py][C4F9SO3] GNP 1, 5 and 10

%wt.

Temperature
variation in the range

293–353 K

Viscosity decreases with
temperature and increases with

nano additive concentration.

Pamies et al. [38]
[EMIM][TFSI] graphene 0.5, 1 %wt.

Temperature
variation in the range

298 to 393 K

[EMIM][DCA] shows much lower
viscosity values than

[EMIM][TFSI], and an increase in
graphene content increases the

viscosity values, but this increase is
higher in the case of [EMIM][TFSI].
The increase is between 48.5–269%
depending on the ionic liquid type

and nanoparticle loading.
The decrease in viscosity appears

with increasing temperature.[EMIM][DCA]

Jorjani et al. [67] [BMIM][BF4] Nanodiamond 0.36, 0.69 and
1.04 %vol. Ambient temperature

The viscosity increase percentages
were 32, 67 and 126, if compared to

the base fluid and in respect to
increasing the volume fraction of

the nanodiamond.

Soman et al. [75] [BMIm][Br] Al2O3 0.1 to 0.6 %wt.
Temperature

variation in the range
293.15 to 373.15 K

Viscosity of aqueous 1-butyl-3-
methylimidazoliumbromide
suspensions increases with

concentration and decreases with
temperature.

Hosseinghorbani
et al. [67] [Bmim][NTf2]

graphene oxide
(GO) 0.5, 1, 2 %wt.

Temperature
variation in the range

298–348 K

The shear stress data were
obtained for shear rates between

3.96 and 79.2 s−1 at 298 K.

As the concentration of
nanoparticles increases, the
viscosity increases. When

concentration amplifies from 1 to
2%, the viscosity changes from 68.8

to 180 cP at room temperature.

Increasing the temperature
decreases viscosity.

Zhang et al. [68] [BMIM][BF4]
GNP, SWCNT,

graphene 0.005, 0.01 %wt.
Temperature

variation in the range
293–428 K

Viscosity decreases drastically with
temperature increase.

Viscosity also decreases when
nanoparticles are added to the base

fluid, maximum decrease being
attained for lower concentrations.
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Table 4. Cont.

Reference Ionic Liquid Nanoparticles Concentration Conditions Observation

Xie et al. [37]

[EMIM][DEP]

MWCNT 0.2, 0.5, 1 %wt.
Temperature

variation in the range
298–323 K

The viscosity is reduced when the
amount of water in the base fluid is

increased.

[EMIM][DEP] + H2O
Viscosity increases with increasing
volume fraction of the MWCNTs
and decreases with temperature.

Additionally, a comparison is shown in Figures 7 and 8 in terms of nanoparticles
and/or ionic liquid influence on viscosity values. From Table 4, it can easily be noticed that
the experimental data are scattered.
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Figure 7 shows the influence of base ionic liquid using MWCNTs as a base of compari-
son, and we can conclude that the viscosity is decreasing when a mixture of ionic liquid +
water is considered as the base fluid (see the results from Xie et al. [37]). Figure 7 depicts an
increase of up to 38% at a small fraction of MWCNTs (i.e., 0.005). Most of the authors found
an increase in viscosity when nanoparticles were added to the ionic liquid, and several
authors (see, for example, Wang et al. [34]) obtained a decrease. Nevertheless, the decrease
in viscosity is a phenomenon rarely noticed and insufficiently described in the literature.

In Figure 8, a comparison for alumina and different base ionic liquid is depicted. A
smaller upsurge in viscosity was observed for base fluids from ionic liquids and water
mixtures, but the actual influence of the base fluid seems larger at higher nanoparticles’
mass concentrations.

Viscosity increase mechanisms are to be elucidated, and several authors attributed
this growth to strong interactions between graphene sheets and IL molecules (see Pamies
et al. [26]). Plus, Pamies et al. [38] discussed the increase in concentration based on increases
in the internal shear stress, with the subsequent viscosity increase.

Even though in the literature, there are numerous models for viscosity estimation,
no theoretical correlation was found acceptable to estimate both nanofluids or other
nanoparticle-enhanced fluids’ viscosity behavior. However, a number of papers are propos-
ing the Krieger–Dougherty or Pastorizza–Galllego models (see, for example, the work of
Chereches et al. [65] and Pastorizza–Galllego et al. [76]), which seems to describe well the
experimental results.

3.2.3. Specific Heat

Specific heat results are also contradictory, as can be clearly seen from Table 5, and it
is concluded that the experimental values may greatly depend on the chemical structure of
the ionic liquid and of its molecules interaction with nanoparticles.

Based on the previous reports on the simple molecular solvents-based nanofluids, the
mechanism of the heat capacity enhancement of ionanofluids is probably driven by the
existing interfacial nanolayering occurring on the surface of nanoparticles [45].

Zhang et al. [68] found that the decreases noticed for the GNPs-dispersed nanofluids
are less than those reached by the SWCNT and GE; the explanation came from the fact that
the zero dimensional GNPs has higher thermal energy density than the two-dimensional
GE and the one-dimensional SWCNTs.

Some other studies reported the possibility of mesolayers overlapping, as a mecha-
nism of variation of specific heat for nanofluids also extended to the ionic liquids with
nanoparticles (see Oster et al. [45]).

In the case of specific heat, since the results are scattered, it is hard to make a
good comparison on nanoparticles or ionic liquid influence on the actual variation of
the experimental values.

Table 5. Literature results on specific heat of ionic liquid-based nanofluids.

Reference Ionic Liquid Nanoparticles Concentration Conditions Observation

Paul [61]
[C4mpyrr][NTf2]

Al2O3 0.5–2.5%
Temperature

variation in the range
293–353 K

Specific heat increases up to 65%,
with nanoparticle addition while

temperature influence is small.
[C4mim][NTf2]

Paul et al. [62] [N4111][NTf2]

Wang et al. [34] [HMIM][BF4]
Graphene

0.03 and
0.06 %wt.

Temperature
variation in the range

293–353 K

1. Decrease of up to 3% at
nanoparticle addition.

MWCNT 2. Temperature has little to no
influence.

Paul et al. [64] [C4mim][NTf2] Al2O3
0.18, 0.36,
0.9 %vol. Ambient temperature Heat capacity increases by 49% for

0.9 %vol.

Chereches et al.
[48,65]

[C2mim][CH3SO3]
Al2O3 0.5–5 %wt.

Temperature
variation in the range

293–353 K

Isobaric specific heat capacity is
found to decrease with mass
fraction and to increase with

temperature.

[C2mim][CH3SO3] +
water
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Table 5. Cont.

Reference Ionic Liquid Nanoparticles Concentration Conditions Observation

Chen et al. [66] [HMIM][BF4] SiC 0.01, 0.03 and
0.06 %wt.

Temperature
variation in the range

298–358 K

1. Specific heat increases up to 4%
at nanoparticle addition, at

ambient temperature.

2. Specific heat increases up to 9%
at temperature growth.

Hermida-Merino
et al. [74] [C2C1py][C4F9SO3] GNP 1, 5 and

10 %wt.

Temperature
variation in the range

293–353 K

Specific heat increases with both
nanoparticle addition and

temperature.

Oster et al. [5]

[C4C1Im][Dca]

Carbon
nanotubes, Boron
nitride, Graphite

0.5–3 %wt.
Temperature range
was set from 298.15

to 363.15 K.

Heat capacity enhancement is
determined by the type of

nanoparticles, instead of type of
ionic liquid.[C4C1Im][NTf2]

[C2C1Im][C2SO4]
Heat capacity increases with

temperature.[C4C1Pyrr][NTf2]

[C6C1Im][PF6]

Hosseinghorbani
et al. [67] [Bmim][NTf2] graphene oxide

(GO) 0.5, 1, 2 %wt.
Temperature

variation in the range
288–348 K

Specific heat capacity increases
when temperature rise. Specific

heat capacity enhances up to 42%
at 2% mass fraction of GO

nanoparticles.

Zhang et al. [68] [BMIM][BF4] GNP, SWCNT,
graphene 0.005, 0.01 %wt.

Temperature
variation in the range

293–428 K

Specific heat variation is
determined by the type of

nanoparticles.

Specific heat increases with
temperature and decreased when

nanoparticles are added.

Based on the previous reports on the simple molecular solvents-based nanofluids, the
mechanism of the heat capacity enhancement of ionanofluids is probably driven by the
existing interfacial nanolayering occurring on the surface of nanoparticles [45].

Zhang et al. [68] found that the decreases noticed for the GNPs-dispersed nanofluids
are less than those reached by the SWCNT and GE; the explanation came from the fact that
the zero dimensional GNPs has higher thermal energy density than the two-dimensional
GE and the one-dimensional SWCNTs.

Some other studies reported the possibility of mesolayers overlapping, as a mecha-
nism of variation of specific heat for nanofluids also extended to the ionic liquids with
nanoparticles (see Oster et al. [45]).

In the case of specific heat, since the results are scattered, it is hard to make a
good comparison on nanoparticles or ionic liquid influence on the actual variation of
the experimental values.

3.2.4. Density

Patil [40] performed some experiments to evaluate the density of several ILs with Ru
nanoparticles and noticed a slight decrease in density due to Ru addition, as per Table 6.
Overall, the density is the less studied parameter, and all authors concluded that density
variation is in line with existing equations, meaning that it increases with nanoparticle
addition and decreases with temperature rise.
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Table 6. Literature results on density of ionic liquid-based nanofluids.

Reference Ionic Liquid Nanoparticles Concentration Conditions Observation

Patil et al. [60]

[C4mim][Cl]

Ru 0.003 M
Temperature

variation in the range
293–333 K

1. Density increase by adding Ru is
up to 50%.[C4mim][Br]

[C4mim][I] 2. Density decreased when
temperature rises.[C4mim][BF4]

Chereches et al.
[47]

[C2mim][CH3SO3]
Al2O3 0.5–5 %wt.

Temperature
variation in the range

293–353K

Density is found to be in line with
existing equations. Density
increases with nanoparticle

addition and decreased with
temperature.

[C2mim][CH3SO3] +
water

Chen et al. [66] [HMIM][BF4] SiC 0.01, 0.03 and
0.06 %wt.

Temperature
variation in the range

298–358 K

1. Density increase by adding SiC
from 1.14 to 1.21 g/cm3.

2. Density decreases when
temperature rises.

Oster et al. [5]

[C4C1Im][Dca]

Carbon
nanotubes, boron
nitride, graphite

0.5–3 %wt.
Temperature range
set from 298.15 to

363.15 K.

Density is found to be in line with
existing equations. Density
increases with nanoparticle
addition and decreases with

temperature.

[C4C1Im][NTf2]

[C2C1Im][C2SO4]

[C4C1Pyrr][NTf2]

[C6C1Im][PF6]

Jorjani et al. [63] [BMIM][BF4] Nanodiamond 0.36, 0.69 and
1.04 %vol. Ambient temperature

Density is found to be in line with
existing equations. Density
increases with nanoparticle
addition and decreases with

temperature.

Hosseinghorbani
et al. [67] [Bmim][NTf2] graphene oxide

(GO) 0.5, 1, 2 %wt.
Temperature

variation in the range
298–338 K

Density increases with
nanoparticle addition and

decreases with temperature.

Xie et al. [37]
[EMIM][DEP]

MWCNT 0.2, 0.5, 1 %wt.
Temperature

variation in the range
298–323 K

Density increases with
nanoparticle addition and

decreases with temperature.[EMIM][DEP] + H2O

4. Experimental Works on Convective Heat Transfer (for Both ILs and INFs)

Only a handful of experimental works from a single research group on convective
heat transfer of ILs and their nanofluids (INFs) are reported in the literature [62,77–80].
The findings of those works are summarized in Table 7. It can be seen from Table 7 that
only Al2O3 nanoparticle of (three concentrations) was used in three different types of ILs
([N4111][NTf2], [C4mim][NTf2]) and [C4mpyrr][NTf2]), and their convective heat transfer
coefficient was determined in forced and natural convection conditions. For laminar flow
conditions, they reported a maximum enhancement of heat transfer coefficient of 20%
for 1 %wt. loading of spherical shaped Al2O3 nanoparticle [79]. A natural convection
study from the same group [80] showed that whiskers shaped nanoparticles had slightly
higher Nu compared to spherical one at the same Ra. However, both nanoparticles actually
degraded the natural convection heat transfer. Apart from direct convective heat trans-
fer experimentation, Huminic and Huminic [15] carried out a heat transfer performance
analysis using thermophysical properties of [Hmim][SF4] and based on nondimensional
performance numbers such as the Mouromtseff number as well as calculating a few fig-
ures of merit. They concluded that in laminar flow, condition graphene/[Hmim][SF4]
ionanofluids are beneficial over SiC/[Hmim][SF4] in heat transfer applications.
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Table 7. Summary of experimental studies on convective heat transfer of ILs and their nanofluids from the literature.

Reference IL Nanoparticles Concentration Geometry
Type of

Convection/Flow
Regime

Findings

Paul et al. [77] [C4mmim][NTf2] - - Rectangular
enclosure

Natural convec-
tionLaminar Nusselt number of IL is found

to be higher (42%) than that of
DI water.(Ra = 1.13 × 107

− 7.7 × 107)

Paul et al. [78] [N4111][NTf2] - - Circular tube

Forced
convection Nu of this IL is found to well

correlate with well-known
Shah’s and Gnielinski’s

equations.

Laminar and
turbulent (Re:

512–1955 and Re:
3220–5333)

Paul et al. [79]
[C4mim][NTf2] Al2O3

1 %wt. Circular tube
Forced convec-
tion/laminar

flow

Maximum 20% enhancement in
convective heat transfer

performance.[C4mpyrr][NTf2] (spherical
shape)

Paul et al. [80] [N4111][NTf2]
Al2O3

0.5 %wt. Circular tube
Forced convec-
tion/laminar

flow

15% enhancement in heat
transfer performance.(spherical

shape)

Paul et al. [62] [C4mpyrr][NTf2]

Al2O3

0.5, 1, 2.5 %wt. Rectangular
enclosure

Natural convec-
tion/laminar

Although IL with whiskers
-shaped nanoparticles shows

slightly higher Nu compared to
spherical one at the same Ra,

both nanoparticles are actually
found to degrade the natural

convection heat transfer.

(spherical and
whiskers
shapes)

Compared to a relatively large number of numerical works on convection heat transfer
of ILs and INFs, such a handful of experimental works was performed due to several
reasons among, which are the high price of ILs and nanoparticles as well as ILs and INFs
having very high viscosity. Thus, despite showing some enhancement in convection heat
transfer of INFs [79,80], based on large pressure drop (leading to high pumping power)
and high cost, no conclusions can be made on the suitability of these INFs as advanced
heat transfer fluids for convection applications.

5. Numerical Works on Convective Heat Transfer of ILs and INFs (for Both ILs and INFs)

One of the first numerical studies performed on ionic liquids and their colloids
is from Minea and Murshed [7], who implemented simple geometry into several fully
described ionic liquids (i.e., [C4mim][NTf2] + Al2O3, [C4mim][NTf2] + 1%wt. MWCNT;
[C2mim][EtSO4] + MWCNT and [HMIM][BF4] + MWCNT/graphene), and the results are
depicted in Table 8. One of these authors’ main conclusions is that with increasing flow, the
heat transfer coefficient increases considerably, and it appears that the thermal conductivity
plays a superior role in laminar convection, while viscosity is of reduced relevance. Plus,
heat transfer seems to be greatly influenced by both ionic liquid and nanoparticle type
and concentration.
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Table 8. Results on numerical implementation of ionic liquids-based nanofluids.

Reference Ionic Liquid Nano
Particles Geometry CFD Code Flow Type HTC Enhancement

Minea and
Murshed [7]

[C4mim][NTf2] Al2O3 Tube Ansys Work
bench

Steady, laminar
forced flow

At Re = 2000, an enhancement of up to
55.6%, depending on NP concentration

[C4mim][NTf2] MWCNT Tube Ansys Work
bench

Steady, laminar
forced flow

At Re = 2000, an enhancement of 11.1%
for 1% wt. MWCNT

[C2mim][EtSO4] MWCNT Tube Ansys Work
bench

Steady, laminar
forced flow

At Re = 2000, an enhancement of 8.5%
for 1% wt. MWCNT

[HMIM][BF4] MWCNT
Graphene Tube Ansys Work

bench
Steady, laminar

forced flow

At Re = 2000, an enhancement of up to
12.1%, depending on NP concentration
or type. Higher values were attained

for graphene.

Chereches
et al. [10]

[C4mim][NTf2] Al2O3 Tube Ansys Work
bench

Steady, lami-
nar/turbulent

forced flow

Enhancement of heat transfer
coefficient up to 619.7% is noticed
when Re increases and alumina

nanoparticles are added to the base
ionic liquid, and this enrichment is as

high as the Al2O3 concentration
increases.[C4mpyrr][NTf2]

Chereches
et al. [81,82]

[C2mim][CH3SO3] Al2O3
Two zone

tube
Ansys Work

bench
Steady, laminar

forced flow

The convective heat transfer coefficient
is decreasing up to 70% when water is

added to the ionic liquid.

The increase in Re from 500 to 2000
determines an upsurge of the

convection heat transfer coefficient up
to about 13%.

[C2mim][CH3SO3]
+ water

NEILs heat transfer coefficient goes to
an augmentation of up to 50% by

adding alumina nanoparticles in the
0.25W + 0.75IL mixture.

El-Maghlany
and

Minea [11]
[C4mim][NTf2] Al2O3 Tube

In-house
code using
the finite
volume

technique

Re = 100–2000

The nanoparticles addition improves
the heat transfer with low pressure

drop penalty.

Laminar flow
with

longitudinal
and radial flow
(no swirl flow)

simulating solar
application

Minea and
El-Maghlany

[12]
[C4mim][NTf2] Al2O3

Square
enclosure

In-house
code using
the finite
volume

technique

Natural
convection

Nu number varies slightly with the
temperature increase and volume

concentration of alumina
nanoparticles.

Dayf et al.
[83] [C4mim][NTf2] Al2O3 Cubic cavity

In-house
code using
the finite
volume
method

Natural
convection

The addition of nanoparticles allows a
noteworthy increase in heat transfer

compared to the base fluid.

Liu et al. [84] [HMIM][BF4] Graphene Cylindrical
receiver MAT LAB

The receiver efficiency increases with
increasing solar concentration and

receiver height, but conversely with
the graphene concentration under

concentrated incident solar intensity.

Ansarpour
et al. [13] [EMIM][EtSO4] Al2O3 Tube Fluent 16.2 Laminar flow

The enhancement in heat transfer
coefficient was up to 44.9% by adding

nanoparticles.

The explanations behind these results are attributed to several phenomenon, such as
the increase in viscosity when nanoparticles are added to the ionic liquid; the dominant
role of convection over conduction heat transfer when it comes to ionic liquid nanocol-
loids; the formation of polar molecules (i.e., water molecules) around ionic liquids ions
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associated with the decrease in bonds between ionic components of the IL when water is
added. Furthermore, alumina nanoparticles’ addition marginally drops the ions mobility
by substituting water molecules with nanoparticles in the ions vicinity [10,80–82].

It may underline here that all the fluids were modelled as single-phase fluids with
known thermophysical properties. This is a good approach, especially in the case of
experimentally determined properties, as was demonstrated for nanofluids in the only
numerical benchmark study, as can be seen from Minea et al. [85]. Of course, other
techniques are available, as multiphase model, but no relevant studies were identified in
the open literature, where most of the simulations involve calculated properties, based on
the nanofluids’ empirical models.

6. Theoretical Development and Correlations

In regard to theoretical development of correlations, the literature review revealed little
information. Work was performed mostly on simulation and results will be discussed further.

Chereches et al. [10] developed a numerical analysis for laminar and fully developed
turbulent flow in a heated circular duct using the single-phase model approach of two ionic
liquids ([C4mim][NTf2] and [C4mpyr][NTf2]) and three concentrations of nanoparticles
(0.5, 1 and 2.5%). A constant heat flux of 12,998.83 W/m2 was applied at tube wall. The
correlation was developed for the Nusselt number as:

Nu = 4.15 Re0.09Pr0.195(1 − ϕ − 200ϕ2). (1)

The correlation, with a ±7% data precision, is valid under the laminar flow regime
with 500 < Re < 2000 and total weight concentration ranging from ϕ = 0 to 2.5%. Based on
these results, Chereches et al. [10] found an increase in heat transfer performance and Nu
number with the increase in nanoparticle addition, as can also be noticed from Table 8.

Another interesting analysis was performed by El-Maghlany and Minea [11] in a tube
subjected to heat flux, with direct application to solar energy. The aforementioned study
considered [C4mim][NTf2] ionic liquid enriched by adding alumina nanoparticles with 0.5,
1 and 2.5% volume concentration. The simulation geometry was similar to the one for the
solar collectors, modelling the real application as accurate as possible, and the correlations
are (with a deviation of up to 5.5%):

Nu = 0.558 (Re Pr D/L)0.376—valid for the ionic liquid, (2)

Nu = 0.6 (Re Pr D/L)0.372—valid for ϕ = 0.5% alumina, (3)

Nu = 0.63 (Re Pr D/L)0.369—valid for ϕ = 1.0% alumina, (4)

Nu = 0.696 (Re Pr D/L)0.361—valid for ϕ = 2.5% alumina. (5)

Another correlation that involves the thermal diffusivity (α) was also proposed by
El-Maghlany and Minea [11] as follows:

Nu2.702 = 0.226Re Pr
D
L

(
αf

αionano

)
(6)

Authors explained that the equation reveals the relevant role of thermal diffusivity in
evaluating the performance of the heat transfer and concluded that the outcomes show that
adding nanoparticles to ionic liquids improves the convection heat transfer, corroborated
with low pressure drop consequence.

Another approach comes from studying the ionic liquids and its derivatives in natural
convection in a squared enclosure. In this regard, Minea and El-Maghlany [12] performed a
study of [C4mim][NTf2] ionic liquid with small volume concentrations of alumina nanopar-
ticles at Ra = 104–106.

The numerical results are correlated as a function of both Ra and ϕ, and the results in
terms of Nu number are:
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• For the hot element at the bottom wall:

Nu = 81.663 ϕ + 0.555 (Ra − 4614.793)0.226 − 3710.366 ϕ2, (7)

• For the hot element at the left wall:

This is example 1 of an equation:

Nu = 116.173 ϕ + 0.484 Ra0.245 − 5001.894 ϕ2. (8)

Ansarpoura et al. [13] studied [EMIM][EtSO4] ionic liquid with small concentrations
of alumina nanoparticles in laminar flow and determined a correlation for Nu number
using Gauss Newton algorithm using 143 data points and it writes:

Nu = 0.772(Re Pr)0.2102 (1 + φ)−7.721. (9)

The correlation is valid for 500 < Re < 2000, 278.15 < T < 323.15 and for volume
concentrations less than 2.5% wt.

Huminic and Huminic [15] performed a very interesting theoretical study on perfor-
mance evaluation of [Hmim][BF4] ionic liquid and several suspensions with nanoparticles
(silicon carbide and graphene), using the experimental properties available on the literature.
Authors evaluated several figures of merit in laminar and turbulent flows. The conclu-
sion pointed out that ionanofluids can enhance the thermal performance, particularly in
laminar flow.

7. Conclusions and Future Works

Developing a new heat transfer fluid as well as improving thermal properties of
existing ones has become extremely important nowadays due to the necessity of reducing
energy consumption in many applications.

Ionic liquids have major advantages, especially as medium temperature heat transfer
fluid, and by adding nanoparticles, the thermal conductivity is augmented resulting in
better convective heat transfer coefficients.

Here, an extensive review was performed in terms of properties and thermal convec-
tion applications of ionic liquids and their suspensions with nanoparticles. The following
conclusions are drawn from this state-of-the-art review:

• Although thermal conductivity of ionic liquids are mostly independent of tempera-
ture, viscosity follows the common fluids nature with temperature, as they decrease
with temperature;

• Thermal conductivity increases by adding nanoparticles and slowly decreases
with temperature;

• Viscosity upsurge depends on nanoparticle addition and type and decreases drastically
with increasing temperature;

• Specific heat variation is determined by the type of nanoparticles, while it increases
with temperature;

• Density increases with nanoparticle addition and decreases with rising temperature;
• Heat transfer seems to be greatly influenced by both ionic liquid and nanoparticle

type and concentration.

Nevertheless, an important drawback of the studies published by now is the lack of
insight at a molecular level, such as intermolecular interaction between nanoparticles and
the solvent. The phenomenological approach needs to be further developed. Furthermore,
the application of artificial intelligence-based predictive methods in ionic liquid studies
is at its very beginnings and requires further insights. The first step was noticed in the
open literature (see Yusuf et al. [86]), and a number of machine-learning applications in
the prediction of several ionic liquids’ properties are carefully reviewed. These predictive
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methods can also be further extended for the ionic liquids-based nanocolloids; however, a
more coordinated approach is recommended.

As a conclusion of this review, it can be inferred that ionic liquids-based nanocolloids
can be seen as an efficient method for convective heat transfer enhancement. However,
tremendous studies are needed in order to better understand and to elucidate their heat
transfer mechanisms together with the interactions between anions, cations and nanoparticles.
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Abbreviations

[C4mim][NTf2] 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
[(C6)3PC14)][Phosph] Trihexyltetradecylphosphoniumphosphinate
[(C6)3PC14][NTf2] Trihexyltetradecylphosphoniumbis(trifluoromethylsulfonyl)imide
[C2mim][CH3SO3] 1-Ethyl-3-methylimidazolium methanesulfonate
[C2mim][EtSO4] 1-ethyl-3-methyl imidazoliumethylsulfate
[C4mim][(CF3SO2)2N] 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonylimide)
[C4mim][BF4] 1-Butyl-3-methylimidazolium tetrafluoroborate
[C4mim][Br] 1-butyl-3-methylimidazolium bromide
[C4mim][CF3SO3] 1-n-butyl-3-methylimidazoliumtrifluoromethanesulfonate
[C4mim][Cl] 1-n-butyl-3-methylimidazolium chloride
[C4mim][DCA] 1-n-butyl-3-methylimidazolium dicyanamide
[C4mim][I] 1-butyl-3-methylimidazolium iodide
[C4mim][NTf2] 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
[C4mim][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate
[C4mpyr][NTf2] N-butyl-N-methylpyrrolidiniumbis(trifluoromethanesulfonyl)imide
[C6mim][BF4] 1-hexyl-3-methylimidazolium tetrafluoroborate
[C6mim][NTf2] 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
[C6mim][PF6] 1-hexyl-3-methylimidazolium hexafluorophosphate
[EMIM][DCA] 1-Ethyl-3-Methylimidazolium dicyanamide
[EMIM][DEP] 1-Ethyl-3-Methylimidazolium Diethyl Phosphate
[HMIM][BF4] 1-Methylimidazolium tetrafluoroborate
[N4111][NTf2] butyltrimethylammoniumbis(trifluoromethylsulfonyl)imide
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