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Jawless fishes were the first vertebrates to evolve. It is thus important to investigate
them to determine whether consciousness was acquired in the common ancestor
of all vertebrates. Most jawless fish lineages are extinct, and cyclostomes (lampreys
and hagfish) are the sole survivors. Here, I review the empirical knowledge
on the neurobiology of cyclostomes with special reference to recently proposed
“markers” of primary, minimal consciousness. The adult lamprey appears to meet the
neuroanatomical criteria but there is a practical limitation to behavioral examination of
its learning ability. In addition, the consciousness-related neuroarchitecture of larvae
and its reconstruction during metamorphosis remain largely uninvestigated. Even less is
known of hagfish neurobiology. The hagfish forebrain forms the central prosencephalic
complex, and the homology of its components to the brain regions of other vertebrates
needs to be confirmed using modern techniques. Nevertheless, as behavioral responses
to olfactory stimuli in aquariums have been reported, it is easier to investigate the
learning ability of the hagfish than that of the lamprey. Based on these facts, I finally
discuss the potential future directions of empirical studies for examining the existence
of consciousness in jawless fishes.
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INTRODUCTION

The first vertebrates did not have a jaw. These jawless fishes (agnathans) prospered in the Paleozoic,
but most of them went extinct (Figure 1A). Cyclostomes are the only extant agnathans, consisting
of lampreys and hagfish. The jawed vertebrates (gnathostomes) evolved from one of these jawless
lineages and then diverged. From a cladistic perspective, the terms “jawless fishes,” “jawless
vertebrates,” and “agnathans” are invalid because they refer to a paraphyletic group. Nevertheless,
I use these terms in here for convenience.

Until recently, it was thought that consciousness is limited to the animals with relatively high
cognitive ability, such as mammals, birds, and perhaps cephalopods (e.g., Edelman et al., 2005;
Edelman and Seth, 2009). However, various researchers have started to consider that all vertebrates,
including fishes, share a basic type of consciousness, called primary consciousness or minimal
consciousness (Feinberg and Mallatt, 2013, 2016, 2018; Brown, 2015; Bronfman et al., 2016;
Ginsburg and Jablonka, 2019; Godfrey-Smith, 2016, 2020). If this is the case, the cyclostomes are
important because they are the only remaining stem vertebrates.

Although lampreys and hagfish form a monophyletic group, their brain structures are distinct,
reflecting their different lifestyles and lineage-specific adaptations (Figures 1B–M). It is thus
important to note that modern cyclostomes possess both ancestral and derivative characters.
Lampreys spend several years as filter-feeding ammocoetes larvae, which burrow in riverbeds.
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FIGURE 1 | Phylogenetic tree of early vertebrates and brain sections of the cyclostomes. (A) Cladogram showing the postulated relationships of the jawless fishes
and the Gnathostomata (jawed fishes) based on morphological characters (based on Benton, 2015). (B–E) Lateral view of adult lamprey (Lethenteron
camtschaticum, B), dorsal view of the brain (C), and its transverse brain sections at the forebrain (D) and midbrain (E) levels. The laminated structure of the optic
tectum is magnified in the inset of (E). (F–I) Lateral view of larval lamprey (F), dorsal view of the brain (G), and its transverse brain sections at the forebrain (H) and
midbrain (I) levels. The photograph for (G) is reproduced from Suzuki and Grillner (2018). (J–M) Lateral view of adult hagfish (Eptatretus burgeri, J), dorsal view of the
brain (K), and its transverse brain sections at the forebrain (L) and midbrain (M) levels. Sections are immunostained by anti-acetylated tubulin antibody (Sigma,
T6793, magenta) and counterstained with Fluorescent Nissl Stain (Invitrogen N21480, green). acoctl, area octavolateralis; cpc, central prosencephalic complex;
dmtn, dorsomedial telencephalic nucleus; hab, habenular ganglion; lp, lateral pallium; mp, medial pallium; nupo, nuclei praeoptici; pal, pallium; po, pineal organ; tect,
tectum; rdV, radix descendens nervi trigemini; rs, formation reticularis, pars superior; vl, ventriculus lateralis; Vmm, nucleus motorius magnocellularis nervi trigemini;
vq ventriculus quartus. Scale bars: 1 mm for (C,G,K); 500 µm for (D,E,L,M); 200 µm for (H,I).

As the larva has immature eyes (Figure 1F), the optic tectum
(the main visual center in non-mammalian vertebrates) also
remains undeveloped (Figure 1I). On metamorphosis, the animal
transforms into an active parasitic predator. Some lampreys are
landlocked and breed soon after metamorphosis, while others

migrate downstream to the sea or a large lake to attack their
prey. The adult lamprey has well-developed eyes (Figure 1B)
and a mature, layered optic tectum (Figure 1E). A recent
study found that the lateral pallium of the lamprey has three
layers, presumably representing the ancestral vertebrate state,
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from which the mammalian cortex is derived (Suryanarayana
et al., 2017). In comparison, the hagfish undergoes direct
development and has adapted to the deep sea, so its eyes and
tectum are degenerate (Figures 1J,M). The hagfish forebrain is
enlarged (Figure 1L) and predominantly receives olfactory input
(Wicht and Northcutt, 1993).

In this paper, I explore the current empirical knowledge
on the neurobiology of cyclostomes in light of the evolution
of consciousness. First, I briefly describe recently proposed
“markers” of primary, minimal consciousness. Then, I review
current empirical knowledge on the neurobiology of lampreys
and hagfish, examining the extent to which the existence
of the “markers” is supported in these organisms. Lastly, I
discuss possible directions for further studies of consciousness
in jawless fishes.

“MARKERS” OF PRIMARY, MINIMAL
CONSCIOUSNESS

Among recently proposed accounts of the evolution of
consciousness, the theories of Feinberg and Mallatt (2016,
2018), and Ginsburg and Jablonka (2019) are the most detailed
and supported by abundant empirical data. In discussing
the evolutionary origin of consciousness, the authors use
different “markers” of consciousness, while their conclusions
are the same; they agree that all vertebrates, as well as some
arthropods (including insects) and cephalopods (possibly only
coleoids), have consciousness. In this section, I briefly review
the two theories and the “markers” of consciousness suggested
by these authors.

Feinberg and Mallatt (2016, 2018) distinguish two
major aspects of consciousness, exteroceptive and affective
consciousness; interoceptive consciousness is intermediate
to the two (Feinberg and Mallatt, 2018, Figure 2.4). Their
criteria for the exteroceptive consciousness consist of several
“special” neurobiological features; complex neural hierarchies
(i.e., true brains), isomorphic representations (e.g., somatotopy
and retinotopy), multimodal integration (“nested and non-
nested hierarchical functions” in their words), interregional
neural interactions, and attention. The neuroanatomical and
behavioral criteria for affective consciousness include operant
learning involving global affective responses and relevant
reward/punishment systems [e.g., the ventral tegmental area
(VTA) and habenular nucleus].

In contrast to the enumerative approach of Feinberg and
Mallatt (2016, 2018), and Ginsburg and Jablonka (2019)
argue that a form of associative learning, which they call
“unlimited associative learning (UAL),” is the positive marker
of consciousness. UAL requires a list of capacities (e.g., global
accessibility, binding, selective attention, evaluative system, and
agency) that suffice for being conscious (Birch et al., 2020).
Lacking clear evidence for UAL, they also admit “proxies,”
including Pavlovian conditioning with compound conditional
stimuli, operant conditioning involving novel action patterns,
conceptual learning, and navigation learning (Ginsburg and
Jablonka, 2019, Table 8.1).

These criteria for consciousness raise two questions. How
many of the features listed in the criteria of consciousness
proposed by Feinberg and Mallatt (2016) do lampreys and hagfish
possess, and do the cyclostomes show UAL or its proxies? In the
following sections, I examine these questions applying available
empirical evidence.

LAMPREY

The adult lamprey has been used as an experimental model for
investigating the basic neuroarchitecture of vertebrates (Grillner
et al., 1998; Auclair and Dubuc, 2020), and its neurobiology
is relatively well-known. Feinberg and Mallatt (2016) use this
knowledge to discuss whether the lamprey has consciousness
based on their criteria (pp. 104–115). Current neurobiological
findings in fact indicate that the lamprey meets their criteria
for exteroceptive consciousness as follows (see also Table 1).
First, the lamprey brain shares basic brain regions (i.e., the
telencephalon, diencephalon, mesencephalon, cerebellum, and
rhombencephalon) and developmental mechanisms with other
vertebrates (Pombal and Puelles, 1999; Murakami et al., 2001;
Pombal et al., 2009; Sugahara et al., 2011, 2016; Murakami,
2017). Second, the optic tectum has a laminar structure, of
which the superficial layer receives visual input with retinotopy
(Jones et al., 2009). Third, electroceptive inputs are sent to the
intermediate layer with spaciotopy, being integrated with visual
perception (Kardamakis et al., 2016). In addition, retinotopic and
somatotopic organization is found in the lateral portion of the
pallium (a telencephalic structure homologous to the mammalian
cortex) (Suryanarayana et al., 2020). The lateral pallium sends
output to the optic tectum (Ocaña et al., 2015), while the optic
tectum sends its fibers to the thalamus (Northcutt and Wicht,
1997), which is the relay center between the pallium/cortex
and other brain regions. This suggests that there is a mutual
interaction between the pallium and optic tectum (Suzuki and
Grillner, 2018, Figure 1C). Lastly, the optic tectum also has
mutual connections to the SNc/VTA (SNc: substance nigra pars
compacta), which detects the saliency of the visual stimuli and
returns the information to the optic tectum via dopaminergic
axons (Pérez-Fernández et al., 2017).

Regarding affective consciousness, the lamprey possesses the
neuroarchitecture for reward/punishment systems. For example,
dopaminergic neurons in the SNc/VTA region send axons
not only to the optic tectum (as mentioned above) but also
to the basal ganglia, which presumably contributes to reward
prediction and motor decision-making based on the prediction
(Stephenson-Jones et al., 2011; Pérez-Fernández et al., 2017).
The lateral habenula is also present and probably contributes
to the reward coding and aversive behavior (Stephenson-
Jones et al., 2012; Grillner et al., 2018). The medial habenula
sends projections to the interpeduncular nucleus (IPN) and
further to the PAG/griseum centrale (PAG: periaqueductal
gray) and is perhaps mediates freezing and flight responses
(Stephenson-Jones et al., 2012; Grillner et al., 2018). However,
little behavioral research has examined learning in the lamprey
due to the practical limitation that available adult lampreys
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TABLE 1 | The criteria of consciousness and neurobiological evidence in the cyclostomes.

Lamprey, Adult Lamprey, Larva Hagfish

Feinberg and Mallatt (2016)

Exteroceptive consciousness

Complex neural hierarchy (true
brain)

Yes Murakami, 2017;
Murakami et al., 2001;
Sugahara et al., 2011,
2016

Yes Murakami et al., 2001;
Murakami, 2017

Yes Larsell, 1947, 1967;
Murakami, 2017

Pombal and Puelles,
1999

Sugahara et al., 2011,
2016

Sugahara et al., 2016,
2017

Pombal et al., 2009

Isomorphic representations Yes Jones et al., 2009;
Kardamakis et al., 2016

n.d. − Yes ? Amemiya, 1983;
Nishizawa et al., 1988

Multimodal integration Yes Kardamakis et al., 2016 n.d. − Yes ? Ronan, 1988; Ronan
and Northcutt, 1990;
Wicht and
Nieuwenhuys, 1998

Interregional neural interaction Yes Northcutt and Wicht,
1997; Ocaña et al.,
2015

n.d. − n.d. −

Attention Yes Pérez-Fernández et al.,
2017

n.d − n.d. −

Affective consciousness

Operant learning involving global
affective response

n.d. − n.d. − n.d. −

The relevant reward/punishment
system (e.g., VTA, habenular
nucleus)

Yes Stephenson-Jones
et al., 2011, 2012;
Pérez-Fernández et al.,
2017; Grillner et al.,
2018

n.d. − n.d. −

Ginsburg and Jablonka (2019)

UAL or its proxies n.d. − n.d. − n.d. −

n.d., not determined.

are postmetamorphic juveniles before downstream migration or
mature upstream-migrated fish, both of which lack appetites,
making them unsuitable for learning experiments using food
rewards. Notably, anadromous adult lamprey can only be alpha
conditioned [i.e., conditioning that is based on habituated
unconditional stimuli (USs)] and do not show true Pavlovian
conditioning when strong lights, strong electric shocks, and
nocuous tactile stimulations are used as USs, and weak lights,
mild shocks, mild tactile stimuli, sounds, and odors are used and
conditional stimuli (CSs) preceding the USs by 3–5 s (Sergeyev,
1964; Razran, 1971).

Interestingly, the lamprey brain changes drastically during
postembryonic development. The larval tectum remains
immature and becomes laminated during metamorphosis, as
mentioned above. The primary retina, which forms during
embryogenesis, is also immature and thought to function in
non-directional or broadly directional photoreception (Villar-
Cerviño et al., 2006; Suzuki et al., 2015a,b; Suzuki and Grillner,
2018). The primary optic nerve projects not to the optic tectum
but to the diencephalic pretectum (Suzuki et al., 2015a). A similar
neural organization for photoreception is found in amphioxus
(Suzuki et al., 2015a), which is a close invertebrate relative
of vertebrates and judged to be non-conscious based on the
criteria of Feinberg and Mallatt (2016). There are differences in

the cytological architecture (discussed in Suzuki et al., 2015a),
suggesting a need to analyze the origin of the vertebrate visual
system in terms of cell type evolution, possibly with reference to
genome duplication in the vertebrate lineage. Nonetheless, the
architectural similarity between the two groups implies that the
lamprey larval neural circuits for photoreception represent an
ancestral state before the evolution of image-forming vision. The
marginal region of the primary retina expands into the secondary
retina during the entire larval period. The retinal ganglion cells
in this secondary retina differentiate before metamorphosis,
and the secondary optic nerve projects to the optic tectum with
retinotopy (Cornide-Petronio et al., 2011), whereas other retinal
cell types (the photoreceptors, horizontal calls, and amacrine
cells) differentiate during metamorphosis (De Miguel et al.,
1989; Pombal et al., 2003; Villar-Cerviño et al., 2006; Abalo
et al., 2008). Thus, the image-forming vision established by the
optic tectum is actualized only after the metamorphosis (Suzuki
and Grillner, 2018; Suzuki et al., 2019). These findings suggest
that the consciousness-related neural circuits are immature
during the larval stage and are then reconstructed into the full-
blown, functional neuroarchitecture for consciousness during
metamorphosis. In other words, the lamprey may undergo
transformation from a non-conscious larva to a conscious adult
(Suzuki and Grillner, 2018).
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Furthermore, the similarity of the neural organization for
photoreception between the amphioxus and lamprey larvae
implies parallelism between the developmental transformation
in the lamprey and the evolutionary transformation in the
vertebrate lineage from non-conscious to conscious. However,
a recent fossil study indicated that stem lampreys lacked the
ammocoetes larval stage (Miyashita et al., 2021), suggesting
that the metamorphosis of modern lampreys was acquired
secondarily. Evans et al. (2018) agree that ancestral lampreys
were direct developers and propose a “condensation hypothesis,”
which holds that stem lampreys possessed both modern larval
and juvenile characters. Differential selection favored segregation
of the larval characters in the beginning of the life history
and juvenile characters after, requiring metamorphosis to
accommodate such body reconstruction. If this is the case, it
is possible that stem lampreys gradually developed derivative
consciousness-related brain structures, including an image-
forming visual system, without evident metamorphosis. Then
the development of those structures was condensed in later
stages, accompanied by the acquisition of metamorphosis. In
either case, the relationship between the evolutionary origin
of vertebrate consciousness and the development of lamprey
consciousness is an intriguing research topic in terms of
evolutionary developmental (evo-devo) biology. Nevertheless,
the neural circuits in the larval brain and their transformation
during metamorphosis, especially of the optic tectum, remain
largely uninvestigated and need further study. The learning
ability of the ammocoetes larva is also unknown.

Therefore, the adult lamprey meet the criteria of Feinberg
and Mallatt (2016) for exteroceptive consciousness. For affective
consciousness, the neuroanatomical criteria are satisfied,
although behavioral evidence is lacking. The existence of UAL
or its proxies has not been confirmed, thus not meeting the
requirement of Ginsburg and Jablonka (2019). The larval
lamprey does not appear to satisfy any of the criteria described
above, although much more study is needed. If in fact the
lamprey changes from non-conscious to conscious during
metamorphosis, studies of this transformation will provide
valuable information about both the development and evolution
of consciousness.

HAGFISH

Much less is known about the neurobiology of the hagfish
than that of the lamprey. Although a recent developmental
study revealed that the developmental mechanisms underlying
formation of the forebrain are conserved in the hagfish (Sugahara
et al., 2016), the hagfish forebrain later forms the central
prosencephalic complex, and the homology of its components
to the brain regions of other vertebrates is unclear (Wicht and
Nieuwenhuys, 1998). As a hagfish-specific character, there is
no overt epiphysis. A morphologically distinct cerebellum is
also absent, while developmental genes involved in cerebellum
formation (Pax6 and Atoh1) are expressed in the rhombic lip,
from which the cerebellum differentiates (Sugahara et al., 2016,
2017). At the posterior end of the midbrain, there is a portion of

the acousticolateral (or vestibulolateral) commissure, which can
be regarded as the rudimentary cerebellum (Larsell, 1947, 1967;
Sugahara et al., 2017). These findings suggest that the common
ancestor of vertebrates possessed at least a non-layered simple
cerebellum, similar to that of lampreys.

As mentioned above, the hagfish has degenerate eyes due to
adaptation to the deep sea. Fossil evidence indicates that this is
a secondary modification specific to the hagfish lineage (Gabbott
et al., 2016). In concordance with the degeneration of the eyes, the
retinotectal projection is largely reduced, and the retinopretectal
pathway becomes dominant (Kusunoki and Amemiya, 1983;
Wicht and Northcutt, 1990). Despite no empirical evidence,
the degenerate state of the eyes and retinotectal projection
implies no or severely disorganized retinotopy in the tectum.
Still, it receives inputs from various regions responsible for
different sensory modalities (e.g., the octavolateral area, sensory
nucleus of the trigeminal nerve, and dorsal column nuclei),
suggesting that it functions as an integrative center (Amemiya,
1983; Ronan, 1988; Ronan and Northcutt, 1990; Wicht and
Nieuwenhuys, 1998). Furthermore, primary trigeminal afferents
are arranged somatotopically in the sensory nucleus of the
trigeminal nerve according to the ramus in which they are
distributed toward the periphery (Nishizawa et al., 1988). It
remains to be determined whether this somatotopic organization
is maintained in the tectum. In addition, the hagfish has peculiar
taste bud-like chemosensory organs, the Schreiner organs, which
are distributed throughout the epidermis and in the prenasal
sinus, nasopharyngeal duct, and pharynx at high densities,
and in the oral and velar chambers at lower densities (Braun,
1998). These organs are innervated by the trigeminal and
glossopharyngeal/vagal nerves and the cutaneous rami of spinal
nerves (Braun, 1998). It is plausible that the mechanosensory and
chemosensory perception are initially segregated in the primary
receptive areas and they are integrated with each other and inputs
from other sensory modalities in a higher integrative center. One
possibility is that the chemosensory inputs from the Schreiner
organs are also received by the tectum. However, these postulates
lack solid empirical evidence.

The most prominent sensory modality in the hagfish
is olfaction. Its main brain center is the pallium, the
forebrain region homologous to the mammalian cortex (Wicht
and Northcutt, 1993). The hagfish pallium consists of five
layers (Jansen, 1930; Wicht and Northcutt, 1992). Recently,
Suryanarayana et al. (2017, 2021) revealed that the lamprey
has three layered cortices, which share neuroanatomical and
neurophysiological features with those of the reptiles, perhaps
being a precursor of the mammalian six-layered neocortex.
However, no molecular studies have examined layer-specific
genes. Expression analysis on the layer-specific genes is required
to elucidate the evolutionary relationships between the five
hagfish and three lamprey layers (i.e., which hagfish and lamprey
layers correspond), and between the three lamprey layers and the
three reptile layers (i.e., whether they are truly homologous or
just convergent).

Despite the patchy information, the above findings suggest
that the hagfish satisfies some features listed in the criteria
of Feinberg and Mallatt (2016) for exteroceptive consciousness
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(Table 1). However, many of the consciousness-related
neuroanatomical features remain to be investigated, including
the attention and affective systems.

Still, the hagfish appears to have an advantage in behavioral
experiments over the lamprey because it will feed in an aquarium.
Recently, Glover et al. (2019) reported that the chemosensory
behavior of the hagfish can be assessed using a modified T-maze
arena, in which food or noxious stimuli are placed in one of the
arms of the maze. This suggests that hagfish learning behavior can
be investigated using food as a reward. The degenerate vision of
the hagfish is a disadvantage in designing learning experiments.
However, odor, taste, and tactile stimuli can be combined to apply
compound stimuli, which are required for UAL or its proxies.

CONCLUSION AND FUTURE
DIRECTIONS

The cyclostomes are the sole surviving jawless fishes, which
were the first vertebrates to evolve. To examine the existence
of consciousness in jawless fishes, I assessed knowledge on the
neurobiology of the cyclostomes, i.e., lampreys and hagfish, while
referring to recently proposed criteria for animal consciousness.
The neuroanatomy of the adult lamprey meets the criteria of
Feinberg and Mallatt (2016) for exteroceptive consciousness, but
much information is lacking.

First, the learning behavior of the adult lamprey needs to
be investigated to determine whether the criteria of Feinberg
and Mallatt (2016) for affective consciousness are satisfied and
whether UAL or its proxies (Ginsburg and Jablonka, 2019)
are observed. For this purpose, an innovative experimental
design is needed, since available adults do not show appetitive
behavior in an aquarium.

Second, the consciousness-related neural circuits in the larval
brain and their transformation during metamorphosis, as well as
the learning ability of the larva, will be an intriguing subject from
the evo-devo perspective on consciousness. Establishment of
the multimodal isomorphic (e.g., retinotopic and electroceptive
spatiotopic) organization of the optic tectum is of special interest.

Lastly, the neurobiology of the hagfish is less developed in
terms of neuroanatomy, neurophysiology, and neuroethology.
Further studies using modern approaches, such as gene
expression analysis, would improve our understanding of this
mysterious creature.

To conclude, we have patchy knowledge on the neurobiology
of the cyclostomes for discussing the consciousness of jawless
fishes. Despite taxon-specific difficulties in their investigation,
further effort is required to elucidate the early evolution of
consciousness in the vertebrate lineage.
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