metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraethylammonium (acetylacetonato)bromidotricarbonylrhenate(I)

Alice Brink,* Hendrik G. Visser and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: alice.brink@gmail.com

Received 23 November 2010; accepted 30 November 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.019; wR factor = 0.047; data-to-parameter ratio = 21.6.

In the title compound, $(C_8H_{20}N)[ReBr(C_5H_7O_2)(CO)_3]$, the Re^I atom in the rhenate anion is surrounded by three carbonyl ligands orientated in a facial arrangement, a bromide ligand and an acetylacetonate ligand, leading to a distorted octahedral ReC₃BrO₂ coordination with a O-Re-O bite angle of 85.66 (7)°. An array of C-H···O and C-H···Br hydrogen-bonding interactions between the cations and the surrounding rhenate anions stabilize the crystal structure.

Related literature

For the synthesis of the Re(I)-tricarbonyl synthon, see: Alberto *et al.* (1996). For related rhenium-tricarbonyl complexes, see: Mundwiler *et al.* (2004); Wang *et al.* (2003); Saw *et al.* (2006). For studies of related rhenium(V) compounds, see: Roodt *et al.* (1992); Purcell *et al.* (1989). For acetylacetonato complexes and related structures, see: Brink *et al.* (2007*a*,*b*; 2010); Steyl & Hill (2009); Herbst *et al.* (2010). For a rhenium complex with pyridine and acetylacetonato ligands, see: Benny *et al.* (2008). For related structures, see: Schutte *et al.* (2009, 2010).

Experimental

Crystal data

 $(C_8H_{20}N)[ReBr(C_5H_7O_2)(CO)_3]$ $M_r = 579.5$ Orthorhombic, *Pbca* a = 13.0931 (1) Å b = 14.5865 (1) Å c = 20.8724 (2) Å

Data collection

```
Oxford Diffraction Xcalibur3 CCD
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2006)
T_{\rm min} = 0.227, T_{\rm max} = 0.563
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	223 parameters
$wR(F^2) = 0.047$ S = 1.02	H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.35 \text{ e} \text{ Å}^{-3}$
4819 reflections	$\Delta \rho_{\rm min} = -0.71 \text{ e} \text{ Å}^{-3}$

V = 3986.26 (6) Å³

Mo Ka radiation

 $0.26 \times 0.13 \times 0.08 \text{ mm}$

30330 measured reflections

4819 independent reflections

3641 reflections with $I > 2\sigma(I)$

 $\mu = 8.12 \text{ mm}^-$

T = 100 K

 $R_{\rm int}=0.031$

Z = 8

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C31 - H31A \cdots O01^{i}$	0.99	2.5	3.378 (4)	147
C31-H31B···O01	0.99	2.58	3.543 (4)	165
$C35-H35B\cdots O03^{ii}$	0.99	2.54	3.221 (3)	126
$C36-H36B\cdots O03^{ii}$	0.98	2.57	3.155 (4)	118
$C37-H37A\cdots Br1^{iii}$	0.99	2.91	3.859 (3)	161
			2	1 1

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) $x - \frac{1}{2}$, y, $-z + \frac{3}{2}$; (iii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2004); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL, the South African National Research Foundation (SA–NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA–NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2432).

References

Alberto, R., Schibli, R. & Schubiger, P. A. (1996). *Polyhedron*, 15, 1079–1089.
 Benny, P. D., Fugate, G. A., Barden, A. O., Morley, J. E., Silva-Lopez, E. & Twamley, B. (2008). *Inorg. Chem.* 47, 2240–2242.

Brandenburg, K. & Putz, H. (2004). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). Dalton Trans. pp. 5572– 5578.

- Brink, A., Roodt, A. & Visser, H. G. (2007*a*). *Acta Cryst.* E63, m2831–m2832. Brink, A., Roodt, A. & Visser, H. G. (2007*b*). *Acta Cryst.* E63, m48–m50.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Herbst, L., Koen, R., Roodt, A. & Visser, H. G. (2010). Acta Cryst. E66, m801m802.
- Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Purcell, W., Roodt, A., Basson, S. S. & Leipoldt, J. G. (1989). Transition Met. Chem. 14, 224–226.
- Roodt, A., Leipoldt, J. G., Helm, L. & Merbach, A. E. (1992). *Inorg. Chem.* **31**, 2864–2868.
- Saw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). *Inorg. Chim. Acta*, 359, 4087–4094.
- Schutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575-m1576. Schutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859-m860. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steyl, G. & Hill, T. N. (2009). Acta Cryst. E65, m233.
- Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386-393.

Acta Cryst. (2011). E67, m34-m35 [doi:10.1107/S1600536810050105]

Tetraethylammonium (acetylacetonato)bromidotricarbonylrhenate(I)

A. Brink, H. G. Visser and A. Roodt

Comment

The title compound forms part of an ongoing investigation aimed at determining the crystallographic and kinetic effects experienced by Re(I) and Re(V) complexes (Roodt *et al.*, 1992, Purcell *et al.*, 1989), in particular the manner which various *O*, *O'*-bidentate ligands have on rhenium tricarbonyl complexes as well as other transition group metals such as rhodium (Brink *et al.*, 2010), silver (Steyl & Hill, 2009) and niobium (Herbst *et al.*, 2010). Various rhenium tricarbonyl bidentate ligands have been synthesized (Mundwiler *et al.*, 2004, Wang *et al.*, 2003, Saw *et al.*, 2006), however few *O*, *O'*-bidentate ligands are reported in literature (Schutte *et al.*, 2010).

The octahedral geometry around the Re(I) metal atom in the rhenate anion shows little distortion (Fig. 1) with an O1—Re—O2 bite angle of 85.66 (7)°, which correlates well with a pyridine-coordinated rhenium acetylacetonato complex (85.07 (8)°; Benny *et al.*, 2008) and is similar to rhodium acetylacetonato complexes (88.69 (8)° and 88.20 (6)°; Brink *et al.*, 2007*a*,*b*). The Re—O_{acac} bond lengths (acac is acetylacetonate) of the title compound (2.1248 (18) Å and 2.1265 (19) Å) are slightly longer than that found in the pyridine analogue (2.1189 (19) Å and 2.1226 (19) Å; Benny *et al.*, 2008). The Re—Br bond lengths of 2.6448 (3) Å compares well with related structures (Schutte *et al.*, 2009, 2010). Intermolecular C—H···O and C—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations (Table 1 and Fig. 2)

Experimental

 $[NEt_4]_2[Re(CO)_3Br_3]$ (0.13 mmol) (synthesized according to Alberto *et al.* (1996)) was dissolved in 6 ml methanol. Acetylacetone (0.14 mmol), dissolved in 6 ml methanol was slowly added. The reaction mixture was heated to 329 K for 24 h. Crystals of the title complex were obtained by the slow evaporation of the solvent. Colourless crystals were stable in air for several months.

Refinement

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C)$ for the methine, methylene and methyl carbon atoms, respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest peak and deepest hole in the final difference map are located 1.12Å and 0.61Å from Br1 and H33*a*, respectively.

Figures

Fig. 1. Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. 2. Representation of the hydrogen-bonding interactions.

Tetraethylammonium (acetylacetonato)bromidotricarbonylrhenate(I)

Crystal data

$(C_8H_{20}N)[ReBr(C_5H_7O_2)(CO)_3]$	F(000) = 2240
$M_r = 579.5$	$D_{\rm x} = 1.931 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 16272 reflections
a = 13.0931 (1) Å	$\theta = 2.3 - 33.0^{\circ}$
b = 14.5865 (1) Å	$\mu = 8.12 \text{ mm}^{-1}$
c = 20.8724 (2) Å	T = 100 K
V = 3986.26 (6) Å ³	Parallelepiped, colourless
Z = 8	$0.26\times0.13\times0.08~mm$

Data collection

Oxford Diffraction Xcalibur3 CCD diffractometer	4819 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3641 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
Detector resolution: 16.1829 pixels mm ⁻¹	$\theta_{\text{max}} = 28^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
ω–scans	$h = -17 \rightarrow 16$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2006)	$k = -19 \rightarrow 15$
$T_{\min} = 0.227, \ T_{\max} = 0.563$	$l = -27 \rightarrow 27$
30330 measured reflections	

Refinement

Refinement on F^2

0 restraints

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.019$	$w = 1/[\sigma^2(F_o^2) + (0.0251P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.047$	$(\Delta/\sigma)_{max} = 0.002$
S = 1.02	$\Delta \rho_{max} = 1.35 \text{ e} \text{ Å}^{-3}$
4819 reflections	$\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$
223 parameters	

Special details

Experimental. The intensity data was collected on a Oxford Diffraction Xcalibur 3 area detector diffractometer using an exposure time of 10 s/frame. A total of 552 frames were collected with a frame width of 0.75° covering up to $\theta = 28.00^{\circ}$ with 100.0% completeness accomplished.

H-atom parameters constrained

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotr	opic or eauivalent isotro	nic displacement	parameters (Å	2)
i actional atomic coorainates and isotro	<i>spic of equivalent ison o</i>	pie aispiacement	parameters (11	

C10.6479 (2)0.59694 (18)0.79693 (14)0.0171 (6)C020.4190 (2)0.79609 (18)0.82159 (14)0.0178 (6)C010.5566 (2)0.91066 (19)0.86140 (14)0.0170 (6)C20.7475 (2)0.62159 (19)0.81179 (14)0.0198 (6)H20.79870.57640.80520.024*C30.7799 (2)0.70650 (19)0.83555 (14)0.0186 (6)C030.5822 (2)0.82991 (18)0.74731 (16)0.0174 (6)C40.8919 (2)0.7204 (2)0.84831 (16)0.0253 (7)		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C020.4190 (2)0.79609 (18)0.82159 (14)0.0178 (6)C010.5566 (2)0.91066 (19)0.86140 (14)0.0170 (6)C20.7475 (2)0.62159 (19)0.81179 (14)0.0198 (6)H20.79870.57640.80520.024*C30.7799 (2)0.70650 (19)0.83555 (14)0.0186 (6)C030.5822 (2)0.82991 (18)0.74731 (16)0.0174 (6)C40.8919 (2)0.7204 (2)0.84831 (16)0.0253 (7)	C1	0.6479 (2)	0.59694 (18)	0.79693 (14)	0.0171 (6)
C010.5566 (2)0.91066 (19)0.86140 (14)0.0170 (6)C20.7475 (2)0.62159 (19)0.81179 (14)0.0198 (6)H20.79870.57640.80520.024*C30.7799 (2)0.70650 (19)0.83555 (14)0.0186 (6)C030.5822 (2)0.82991 (18)0.74731 (16)0.0174 (6)C40.8919 (2)0.7204 (2)0.84831 (16)0.0253 (7)	C02	0.4190 (2)	0.79609 (18)	0.82159 (14)	0.0178 (6)
C20.7475 (2)0.62159 (19)0.81179 (14)0.0198 (6)H20.79870.57640.80520.024*C30.7799 (2)0.70650 (19)0.83555 (14)0.0186 (6)C030.5822 (2)0.82991 (18)0.74731 (16)0.0174 (6)C40.8919 (2)0.7204 (2)0.84831 (16)0.0253 (7)	C01	0.5566 (2)	0.91066 (19)	0.86140 (14)	0.0170 (6)
H20.79870.57640.80520.024*C30.7799 (2)0.70650 (19)0.83555 (14)0.0186 (6)C030.5822 (2)0.82991 (18)0.74731 (16)0.0174 (6)C40.8919 (2)0.7204 (2)0.84831 (16)0.0253 (7)	C2	0.7475 (2)	0.62159 (19)	0.81179 (14)	0.0198 (6)
C30.7799 (2)0.70650 (19)0.83555 (14)0.0186 (6)C030.5822 (2)0.82991 (18)0.74731 (16)0.0174 (6)C40.8919 (2)0.7204 (2)0.84831 (16)0.0253 (7)	H2	0.7987	0.5764	0.8052	0.024*
C030.5822 (2)0.82991 (18)0.74731 (16)0.0174 (6)C40.8919 (2)0.7204 (2)0.84831 (16)0.0253 (7)	C3	0.7799 (2)	0.70650 (19)	0.83555 (14)	0.0186 (6)
C4 0.8919 (2) 0.7204 (2) 0.84831 (16) 0.0253 (7)	C03	0.5822 (2)	0.82991 (18)	0.74731 (16)	0.0174 (6)
	C4	0.8919 (2)	0.7204 (2)	0.84831 (16)	0.0253 (7)
H4A 0.9119 0.7822 0.8349 0.038*	H4A	0.9119	0.7822	0.8349	0.038*
H4B 0.9315 0.675 0.8242 0.038*	H4B	0.9315	0.675	0.8242	0.038*
H4C 0.9054 0.713 0.8942 0.038*	H4C	0.9054	0.713	0.8942	0.038*
C5 0.6255 (2) 0.50244 (18) 0.77154 (16) 0.0231 (7)	C5	0.6255 (2)	0.50244 (18)	0.77154 (16)	0.0231 (7)
H5A 0.5809 0.4699 0.8016 0.035*	H5A	0.5809	0.4699	0.8016	0.035*
H5B 0.6896 0.4685 0.7666 0.035*	H5B	0.6896	0.4685	0.7666	0.035*
H5C 0.5915 0.5074 0.7299 0.035*	H5C	0.5915	0.5074	0.7299	0.035*
C31 0.3312 (2) 0.9931 (2) 0.97904 (15) 0.0247 (7)	C31	0.3312 (2)	0.9931 (2)	0.97904 (15)	0.0247 (7)
H31A 0.3463 1.0204 1.0214 0.03*	H31A	0.3463	1.0204	1.0214	0.03*
H31B 0.391 1.0043 0.9511 0.03*	H31B	0.391	1.0043	0.9511	0.03*
C32 0.3183 (3) 0.88969 (19) 0.98731 (17) 0.0318 (8)	C32	0.3183 (3)	0.88969 (19)	0.98731 (17)	0.0318 (8)
H32A 0.2625 0.8776 1.0175 0.048*	H32A	0.2625	0.8776	1.0175	0.048*
H32B 0.3818 0.8633 1.004 0.048*	H32B	0.3818	0.8633	1.004	0.048*
H32C 0.3022 0.8618 0.9458 0.048*	H32C	0.3022	0.8618	0.9458	0.048*
C33 0.2623 (2) 1.14451 (18) 0.94940 (15) 0.0214 (6)	C33	0.2623 (2)	1.14451 (18)	0.94940 (15)	0.0214 (6)
H33A 0.1989 1.1775 0.9377 0.026*	H33A	0.1989	1.1775	0.9377	0.026*
H33B 0.2816 1.1642 0.9931 0.026*	H33B	0.2816	1.1642	0.9931	0.026*
C340.3465 (2)1.1732 (2)0.90338 (17)0.0304 (8)	C34	0.3465 (2)	1.1732 (2)	0.90338 (17)	0.0304 (8)

H34A	0.4098	1.141	0.9144	0.046*
H34B	0.3574	1.2395	0.9066	0.046*
H34C	0.3265	1.1576	0.8595	0.046*
C35	0.2202 (2)	1.00610 (19)	0.88378 (14)	0.0191 (6)
H35A	0.2853	1.0071	0.8597	0.023*
H35B	0.1979	0.9414	0.887	0.023*
C36	0.1410 (3)	1.0589 (2)	0.84595 (15)	0.0273 (7)
H36A	0.0767	1.0606	0.87	0.041*
H36B	0.1297	1.0286	0.8046	0.041*
H36C	0.1652	1.1216	0.8387	0.041*
C37	0.1443 (2)	1.02603 (19)	0.99096 (14)	0.0190 (6)
H37A	0.0881	1.0637	0.9733	0.023*
H37B	0.1242	0.9609	0.9868	0.023*
C38	0.1560 (3)	1.0482 (2)	1.06086 (15)	0.0302 (8)
H38A	0.2073	1.0075	1.0799	0.045*
H38B	0.0904	1.0394	1.0826	0.045*
H38C	0.1779	1.1121	1.0656	0.045*
N1	0.23955 (16)	1.04213 (14)	0.95068 (11)	0.0148 (5)
O1	0.56968 (13)	0.64852 (12)	0.80201 (11)	0.0186 (4)
O02	0.33086 (15)	0.80287 (13)	0.81550 (11)	0.0234 (5)
O2	0.72326 (14)	0.77461 (13)	0.84811 (10)	0.0201 (5)
O01	0.54896 (15)	0.98593 (13)	0.87843 (11)	0.0240 (5)
O03	0.59154 (15)	0.85547 (14)	0.69515 (11)	0.0240 (5)
Re1	0.563458 (8)	0.787480 (7)	0.832299 (6)	0.01437 (4)
Br1	0.54691 (2)	0.718131 (18)	0.948917 (14)	0.01961 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0202 (15)	0.0158 (14)	0.0154 (16)	-0.0001 (11)	0.0013 (12)	0.0039 (11)
C02	0.0237 (16)	0.0141 (14)	0.0155 (16)	-0.0029 (11)	0.0002 (12)	0.0010 (11)
C01	0.0139 (14)	0.0209 (15)	0.0162 (15)	-0.0023 (12)	-0.0018 (12)	0.0059 (12)
C2	0.0169 (14)	0.0190 (14)	0.0235 (17)	0.0062 (12)	0.0028 (13)	0.0006 (12)
C3	0.0140 (13)	0.0214 (15)	0.0206 (16)	-0.0013 (11)	0.0009 (12)	0.0064 (13)
C03	0.0118 (14)	0.0137 (13)	0.0267 (18)	0.0000 (11)	-0.0001 (12)	-0.0026 (13)
C4	0.0136 (14)	0.0275 (17)	0.035 (2)	0.0016 (13)	-0.0001 (13)	0.0016 (14)
C5	0.0241 (16)	0.0174 (15)	0.0277 (18)	0.0004 (12)	0.0030 (13)	-0.0031 (13)
C31	0.0179 (15)	0.0329 (17)	0.0233 (18)	0.0056 (13)	-0.0029 (13)	0.0012 (13)
C32	0.0355 (19)	0.0301 (17)	0.0298 (19)	0.0142 (15)	-0.0017 (16)	0.0071 (14)
C33	0.0214 (15)	0.0176 (14)	0.0253 (18)	-0.0068 (12)	0.0006 (13)	-0.0039 (13)
C34	0.0313 (19)	0.0287 (17)	0.031 (2)	-0.0122 (14)	0.0023 (15)	0.0035 (14)
C35	0.0246 (15)	0.0176 (14)	0.0152 (16)	0.0018 (12)	-0.0013 (13)	-0.0023 (12)
C36	0.0371 (19)	0.0215 (16)	0.0233 (19)	-0.0005 (14)	-0.0082 (14)	0.0029 (13)
C37	0.0164 (14)	0.0196 (14)	0.0210 (16)	-0.0005 (11)	0.0043 (12)	0.0015 (12)
C38	0.0336 (19)	0.0355 (19)	0.0213 (19)	0.0006 (15)	0.0078 (14)	0.0000 (14)
N1	0.0144 (12)	0.0151 (11)	0.0148 (13)	-0.0007 (9)	-0.0016 (10)	0.0001 (10)
01	0.0115 (10)	0.0127 (9)	0.0317 (12)	-0.0014 (8)	-0.0013 (9)	-0.0057 (9)
O02	0.0139 (11)	0.0205 (11)	0.0360 (14)	0.0040 (8)	-0.0083 (9)	-0.0017 (9)

O2	0.0102 (9)	0.0186 (10)	0.0316 (13)	-0.0001 (8)	-0.0021 (8)	-0.0019 (9)
O01	0.0265 (12)	0.0162 (10)	0.0294 (13)	-0.0013 (9)	-0.0042 (10)	-0.0018 (9)
O03	0.0256 (11)	0.0230 (11)	0.0236 (12)	-0.0028 (9)	0.0054 (10)	-0.0003 (10)
Re1	0.01154 (6)	0.01270 (6)	0.01887 (7)	-0.00035 (4)	-0.00109 (4)	-0.00012 (5)
Br1	0.02132 (15)	0.01855 (13)	0.01895 (16)	-0.00067 (12)	-0.00405 (11)	0.00209 (12)
Geometric para	meters (Å, °)					
C1 01		1 275 (3)	C32	H32C	0.08	
C1 = C1		1.273(3)	C32—	C34	0.98	1 (4)
C1 - C2		1.588 (4)	C33—	-C34 -N1	1.52	3(3)
C02-002		1.165 (3)	C33-	.H33A	0.99	5 (5)
C02—Be1		1.105 (3)	C33—	-H33R	0.99	
C02 - Rc1		1.158 (3)	C34—	H34A	0.99	
C01 - 001		1.158(3)	C34—	-H34B	0.98	
C01—Re1		1 899 (3)	C34—	-H34C	0.98	
$C^2 - C^3$		1 400 (4)	C35—	-C36	1 51	3 (4)
C2—H2		0.95	C35—	-N1	1.51	3 (4)
C3—O2		1.267 (3)	C35—	-H35A	0.99	
C3—C4		1.504 (4)	C35—	-H35B	0.99	
C03—O03		1.157 (4)	C36—	-H36A	0.98	
C03—Re1		1.895 (3)	C36—	-H36B	0.98	
C4—H4A		0.98	C36—	-H36C	0.98	
C4—H4B		0.98	C37—	-C38	1.50	2 (4)
C4—H4C		0.98	C37—	-N1	1.52	2 (3)
С5—Н5А		0.98	C37—	H37A	0.99	
С5—Н5В		0.98	C37—	-H37B	0.99	
С5—Н5С		0.98	C38—	-H38A	0.98	
C31—N1		1.517 (3)	C38—	-H38B	0.98	
C31—C32		1.528 (4)	C38—	-H38C	0.98	
C31—H31A		0.99	01—I	Re1	2.12	48 (18)
C31—H31B		0.99	O2—I	Re1	2.12	65 (19)
C32—H32A		0.98	Re1—	Br1	2.64	48 (3)
С32—Н32В		0.98				
O1—C1—C2		125.7 (3)	H34B	—С34—Н34С	109.	5
O1—C1—C5		114.4 (2)	C36—	-C35—N1	114.	8 (2)
C2—C1—C5		119.9 (3)	C36—	-C35—H35A	108.	6
O02-C02-Re1		178.8 (2)	N1—0	С35—Н35А	108.	6
O01-C01-Re1		177.7 (2)	C36—	-C35—H35B	108.	6
O01-C01-Re1		177.7 (2)	N1—0	С35—Н35В	108.	6
C1—C2—C3		126.4 (3)	H35A	—С35—Н35В	107.	5
C1—C2—H2		116.8	C35—	-C36—H36A	109.	5
С3—С2—Н2		116.8	C35—	-С36—Н36В	109.	5
O2—C3—C2		126.1 (3)	H36A	—С36—Н36В	109.	5
O2—C3—C4		115.4 (2)	C35—	-С36—Н36С	109.	5
C2—C3—C4		118.5 (3)	H36A	—С36—Н36С	109.	5
003—C03—Re1		178.6 (3)	H36B	—С36—Н36С	109.	5
C3—C4—H4A		109.5	C38—	-C37—N1	114.	8 (2)
C3—C4—H4B		109.5	C38—	-С37—Н37А	108.	6

H4A—C4—H4B	109.5	N1—C37—H37A	108.6
C3—C4—H4C	109.5	С38—С37—Н37В	108.6
H4A—C4—H4C	109.5	N1—C37—H37B	108.6
H4B—C4—H4C	109.5	Н37А—С37—Н37В	107.5
C1—C5—H5A	109.5	С37—С38—Н38А	109.5
C1—C5—H5B	109.5	C37—C38—H38B	109.5
H5A—C5—H5B	109.5	H38A—C38—H38B	109.5
C1—C5—H5C	109.5	С37—С38—Н38С	109.5
H5A—C5—H5C	109.5	H38A—C38—H38C	109.5
H5B—C5—H5C	109.5	H38B—C38—H38C	109.5
N1—C31—C32	115.0 (2)	C35—N1—C31	109.2 (2)
N1—C31—H31A	108.5	C35—N1—C37	108.6 (2)
C32—C31—H31A	108.5	C31—N1—C37	111.1 (2)
N1—C31—H31B	108.5	C35—N1—C33	110.9 (2)
С32—С31—Н31В	108.5	C31—N1—C33	108.3 (2)
H31A—C31—H31B	107.5	C37—N1—C33	108.7 (2)
С31—С32—Н32А	109.5	C1—O1—Re1	128.19 (17)
С31—С32—Н32В	109.5	C3—O2—Re1	127.81 (18)
H32A—C32—H32B	109.5	C03—Re1—C01	89.80 (12)
C31—C32—H32C	109.5	C03—Re1—C02	89.85 (12)
H32A—C32—H32C	109.5	C01—Re1—C02	85.88 (11)
H32B—C32—H32C	109.5	C03—Re1—O1	91.61 (10)
C34—C33—N1	115.0 (2)	C01—Re1—O1	178.54 (10)
С34—С33—Н33А	108.5	C02—Re1—O1	93.78 (9)
N1—C33—H33A	108.5	C03—Re1—O2	92.67 (10)
С34—С33—Н33В	108.5	C01—Re1—O2	94.63 (9)
N1—C33—H33B	108.5	C02—Re1—O2	177.43 (10)
H33A—C33—H33B	107.5	O1—Re1—O2	85.66 (7)
С33—С34—Н34А	109.5	C03—Re1—Br1	175.69 (8)
С33—С34—Н34В	109.5	C01—Re1—Br1	93.65 (9)
H34A—C34—H34B	109.5	C02—Re1—Br1	92.97 (9)
С33—С34—Н34С	109.5	O1—Re1—Br1	84.96 (6)
H34A—C34—H34C	109.5	O2—Re1—Br1	84.49 (6)
O1—C1—C2—C3	0.8 (5)	C34—C33—N1—C31	67.4 (3)
C5—C1—C2—C3	179.9 (3)	C34—C33—N1—C37	-171.7 (2)
C1—C2—C3—O2	0.9 (5)	C2-C1-O1-Re1	1.3 (4)
C1—C2—C3—C4	-179.5 (3)	C5-C1-O1-Re1	-177.82 (19)
C36—C35—N1—C31	-171.2 (2)	C2—C3—O2—Re1	-4.3 (4)
C36—C35—N1—C37	67.6 (3)	C4—C3—O2—Re1	176.09 (19)
C36—C35—N1—C33	-51.8 (3)	C1	89.5 (3)
C32—C31—N1—C35	-62.4 (3)	C1-O1-Re1-C02	179.5 (2)
C32—C31—N1—C37	57.3 (3)	C1-O1-Re1-O2	-3.0 (2)
C32—C31—N1—C33	176.6 (2)	C1—O1—Re1—Br1	-87.9 (2)
C38—C37—N1—C35	173.2 (2)	C3—O2—Re1—C03	-86.9 (2)
C38—C37—N1—C31	53.1 (3)	C3—O2—Re1—C01	-177.0 (2)
C38—C37—N1—C33	-66.1 (3)	C3—O2—Re1—O1	4.5 (2)
C34—C33—N1—C35	-52.4 (3)	C3—O2—Re1—Br1	89.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C31—H31A…O01 ⁱ	0.99	2.5	3.378 (4)	147
C31—H31B…O01	0.99	2.58	3.543 (4)	165
C35—H35B…O03 ⁱⁱ	0.99	2.54	3.221 (3)	126
C36—H36B…O03 ⁱⁱ	0.98	2.57	3.155 (4)	118
C37—H37A···Br1 ⁱⁱⁱ	0.99	2.91	3.859 (3)	161
		. 1 /0		

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x-1/2, y, -z+3/2; (iii) -x+1/2, y+1/2, z.

Fig. 1

Fig. 2