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Abstract: Background: There is sufficient evidence that interference of dopaminergic neurotrans-
mission contributes to the therapeutic effects of antidepressants in unipolar and bipolar depression.
Methods: Hamilton depression rating scale (HAMD 17) scores of 163 at least moderately ill patients
with major depressive disorders were used to establish treatment response. HAMD 17 score status
was measured before initiation, after two weeks, and after four weeks of treatment with various
antidepressants. The possible association between response and genotype in a total of 14 variants
of dopamine neurotransmission-related proteins was investigated. Results: DRD4 rs11246226 CA
heterozygous patients were found with a greater improvement of HAMD 17 score when compared to
homozygous C patients during 0–2 weeks and 0–4 weeks. Patients with MAOB rs1799836 heterozy-
gous GA and homozygous A also demonstrated improved scores during 2–4 weeks and 0–4 weeks.
Conclusions: The results are preliminary due to the limited population size and the small num-
ber of variants. Further research into the involvement of habenular dopamine D4 receptors in the
antidepressant response is desirable.

Keywords: dopaminergic pathway; depression; antidepressants; mood disorders; dopamine;
pharmacogenetics

1. Introduction

Depression, a leading cause of disability worldwide, can be treated with antidepres-
sant drugs with a variety of pharmacological activities [1]. Antidepressants increase the
extracellular concentration of monoamines within the brain by inhibiting their reuptake
transporters (e.g., tricyclic antidepressants) or by catabolizing enzyme monoamine oxidase
(e.g., MAO inhibitors). Targeting this etiological pathway derives from the monoamine
hypothesis of depression, where depression stems from the deficiency in transmissions
in monoamine systems [2]. Two of the monoamines, serotonin and norepinephrine,
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have been the main focus for antidepressant drug development, whereas dopamine has
been somewhat neglected in this regard [3]. By focusing on dopaminergic neurotransmis-
sion, it may provide further insight into the personalised management of antidepressant
medication [4,5].

Midbrain dopaminergic neurons stimulate fibres running through to the ventral stria-
tum (accumbens nucleus), where the activity of ‘circuits regulating pleasure and happiness’
is modified [6]. Previously, these circuits been hypothesised to have a major role in causing
core symptoms of unipolar and bipolar depressive disorders [7–9]. Pharmacological treat-
ment with direct and indirect acting dopamine agonists has demonstrated therapeutic
effects, especially in refractory or bipolar depression [10]. Direct agonists (bromocriptine,
pramipexole, aripiprazole, cariprazine) are known to bind to dopamine (DA) receptors
and activate them [11,12]. Oppositely, indirect agonists (bupropion, modafinil, tranyl-
cypromine, entacapone) activate DA receptors by increasing the DA concentration [13,14].
These considerations lead to the expectation that genetic variation of the activity of DA
structures may affect the effects of antidepressant drugs. Since the different monoaminergic
systems interact to a great extent, this may well also apply to non-dopaminergic active
antidepressants [5,15].

Five distinct but closely related DA receptor types can be distinguished, all five
belonging to G protein-coupled receptors (GPCRs) and are divided into two major groups:
the D1 type (DRD1, DRD5) and D2 type (DRD2, DRD3, DRD4) classes of dopamine
receptors [16]. Particularly DRD1, DRD2, and DRD3 may be of interest for antidepressant
effects as these are highly expressed in limbic cortical areas and the ventral striatum.
Monoamine transporters, including dopamine transporters (DAT), the serotonin (SERT),
and norepinephrine transporters (NET), are part of the solute carrier 6 (SLC6) family,
which also includes the glycine transporter, GABA transporter, and neutral amino acid
transporters [17]. SLC6A3, located on chromosome 5, encodes the DAT protein and plays a
dominant DA regulatory role in the (ventral) striatum [18]. However, in the frontal cortex,
the activity is lower than that of NET, which can transport dopamine as effectively as
norepinephrine. This implies that altered catechol-O-methyltransferase (COMT) activity
has much less influence in the (ventral) striatum than in the frontal cortex.

An antidepressant target, the MAO enzyme exists in two isoforms, both of which occur
in the brain and for which two different X-bound genes encode (MAOA and MAOB) [19].
MAO-A has the most affinity for serotonin and norepinephrine, while MAO-B catabolizes
phenylethylamine and benzylamine especially readily. Dopamine is broken down by both
isoforms in humans, but it has relatively low affinity implying the influence of functional
polymorphisms of MAOA cannot be considered specific for dopamine.

Pharmacogenetic investigations of the dopaminergic pathway have found associations
in patients with Parkinson’s disease and schizophrenia, among other psychiatric disor-
ders [20,21]. However, for depression, contradictory findings have greyed the landscape to
determine whether polymorphisms impact antidepressant efficacy [22–24].

In this paper, we investigated single nucleotide polymorphisms (SNPs) in genes within
the mesolimbic dopaminergic pathway against antidepressant response within the Tomsk
cohort. We previously studied a possible relationship between genetic variants involved in
serotonergic neurotransmission and the response to antidepressants in depressed patients
who were free of treatment for at least six months. Our investigation explores the possible
relationship between dopaminergic neurotransmission-related genes and antidepressive
response in the cohort patients.

2. Materials and Methods
2.1. Patient Characteristics

The study design and patient characteristics have been described in an earlier study
conduct with the cohort [25]. Newly admitted patients with a depressive episode according
to the criteria of ICD-10 (F32 or F33) who had not been on antidepressant medication
for at least 6 months were recruited [26]. More than half of them had never been treated
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with antidepressant drugs during their entire life. An increased number of patients were
genotyped compared to previous studies, as an additional expansion of the scope of
the study. As patients were seen by psychiatrists, the information pertaining to patient
characteristics was limited to the depression scoring and basic information.

The patients’ depression was of at least moderate severity as measured by the Hamil-
ton’s depression rating scale (HAMD 17) [27,28]. After this initial examination, an antide-
pressant treatment of at least four weeks was initiated and patients were re-examined with
HAMD 17 after two and four weeks. For details on the inclusion and exclusion criteria
of the patients, please refer to the earlier study in Ochi et al. [25]. The medication taken
by patients consisted of mainly selective serotonin reuptake inhibitors (SSRIs) (Supple-
mentary Table S1). The study complied with the Declaration of Helsinki (1975, revised
in Fortaleza, Brazil, 2013) and was submitted and authorized by the Ethics Committee
of the Mental Health Research Institute, Tomsk National Research Medical Center of the
Russian Academy of Sciences (protocol 49 from 23.04.12). All patients were recruited from
psychiatric departments of this institute and provided written informed consent.

2.2. Genotyping

Blood samples were drawn from antecubital venepuncture in evacuated EDTA tubes
and aliquots were stored at −20 ◦C. DNA was isolated from leucocytes using the standard
phenol-chloroform micro method. Polymorphisms in genes pertaining to the dopaminergic
pathway were genotyped in the Laboratory of Genetics of the University of Groningen
with the MassARRAY® System (Agena Bioscience™, San Diego, CA, USA) and in the
Laboratory of Molecular Genetics and Biochemistry of the Mental Health Research Institute
with ‘StepOnePlus’ (Applied Biosystems, Waltham, MA, USA).

2.3. Selection of Genotypes

Due to the number of patients in the study, a post hoc power calculation was con-
ducted to determine the number of investigated SNPs. From the total of 53 available
variants of genes involved in dopaminergic neurotransmission, 14 candidate SNPs were
selected. The selected SNPS met the Hardy–Weinberg equilibrium, had a minor al-
lele frequency (MAF) of >5%, and had been reported to be associated with neurologi-
cal or psychiatric disorders (schizophrenia, alcoholism, autism, Parkinson’s disease) for
further analysis. These polymorphisms were localised within DRD1 (rs4532), DRD2
(rs6275, rs1801028, rs6277, rs1076560), DRD3 (rs3773678, rs324035, rs167771, rs6280), DRD4
(rs3758653, rs11246226), MAOB (rs1799836), and SLC6A3 (rs464049, rs40184) genes.

2.4. Statistical Analysis

To determine the effect of dopaminergic pathway genes to antidepressant response,
the outcome was measured by the difference in HAMD 17 score between entry and
two weeks of treatment (∆HAMD 17, 0–2 weeks) after two and four weeks of treatment
(∆HAMD 17, 2–4 weeks) and entry and four weeks of treatment (∆HAMD 17, 0–4 weeks).
A higher ∆HAMD 17 score demonstrated better clinical outcome. Normal distribution was
tested utilizing the P-P plot.

Patients characteristics, including age, sex, and HAMD 17 scores across the different
study periods, were emphasized using descriptive statistics (Table 1). Univariate linear
regression was conducted to determine the SNPs to include in the multiple linear re-
gression. Multiple linear regression was conducted to identify the independent factors
associated with ∆HAMD 17 between the three time periods, including age, sex, depres-
sion diagnosis, type of antidepressant taken, and selected SNPs (Table 2; Supplementary
Tables S2 and S3). To factor in the different categories in antidepressants taken and SNP
genotypes, dummy variables were generated to establish the effect in each variable. Statis-
tical analysis was conducted with SPSS software (release 25.0). The significance level for
descriptive statistics and univariate statistical tests were p < 0.05. Factoring in Bonferroni
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correction, the significance level for multiple linear regression was p < 0.0031. Power
analysis was conducted post hoc utilizing G*Power.

Table 1. Patient characteristics.

Characteristics Depressed Cohort (n = 163)

Total Number of Patients (%)
Male 22 (13.5%)

Female 141 (86.5%)
Age in Years (Mean ± S.D.) 49.5 ± 10.9

Male 49.3 ± 9.3
Female 49.5 ± 11.1

HAMD 17 score (Mean ± S.D.)
At entry 24.1 ± 4.9

At 2 weeks 12.9 ± 5.0
At 4 weeks 5.1 ± 3.9

Type of Depressive Episode (%)
Single 92 (56.4%)

Recurrent 71 (43.6%)

Table 2. Multiple linear regression of total depression cohort covariates (age, gender, diagnosis, type of antidepressant,
selected dopaminergic genotypes) for the whole study period (0 to 4 weeks).

Baseline Predictors B 95% CI p-Value Baseline Predictors B 95% CI p-Value

(Constant) 17.57 9.33, 25.82
Age −0.44 −2.72, 1.85 0.71

Gender −0.02 −0.09, 0.05 0.58
Diagnosis −0.80 −2.31, 0.71 0.295

DRD1 SNPs DRD4 SNPs
rs4532 CT 1.38 −3.52, 0.6 0.20 rs3758653 TC 0.55 −3.16, 3.37 0.54
s4532 TT 1.46 −0.71, 3.47 0.18 rs3758653 CC −9.22 −1.21, 2.32 0.004 *

rs11246226 CA −2.54 −15.53,
−2.92 0.007 *

DRD2 SNPs rs11246226 AC −1.46 −4.39,
−0.69 0.16

rs6275 TC 0.61 −1.04, 4.48 0.52
rs6275 CC 1.19 −1.28, 2.5 0.20 MAOB Receptor SNPs

rs1801028 CG −1.67 −0.62, 3 0.27 rs1799836 GA 0.09 −0.7, 3.63 0.92
rs6277 CT 0.46 −4.63, 1.3 0.66 rs1799836 AC 0.25 −1.82, 2.01 0.80
rs6277 TC −0.67 −1.59, 2.51 0.61

rs1076560 CA −1.32 −3.27, 1.93 0.21 SLC6A3 Receptor SNPs
rs1076560 AA 0.76 −3.39, 0.75 0.78 rs464049 CT 0.12 −1.72, 2.21 0.90

rs464049 TT −0.08 −1.66, 1.9 0.94
DRD3 SNPs rs40184 GA −0.59 −2.16, 2 0.49

rs3773678 CT 0.46 −4.67, 6.19 0.77 rs40184 AA −2.01 −2.3, 1.12 0.08
rs3773678 TT 0.35 −2.68, 3.61 0.92
rs324035 CA −2.09 −6.33, 7.03 0.41 Treatment (compared to SSRIs)
rs324035 AA −6.78 −7.09, 2.91 0.10 TCAs 2.70 0.62, 4.79 0.012 *
rs167771 GA −3.86 −14.96, 1.4 0.36 SNRIs 0.41 −2.16, 2.98 0.75
rs167771 AA −4.08 −12.1, 4.38 0.31 NaSSAs 1.08 −1.92, 4.09 0.48

rs6280 CT 0.51 −11.94,
3.77 0.62 Agomelatine 1.72 −1.04, 4.48 0.22

rs6280 CC 0.11 −1.5, 2.53 0.95
R-squared

0.26

Data are presented as regression coefficients (B), 95% confidence intervals (CI) and total explained variance (r2); * p < 0.05; significance for p
values after correction: ** p < 0.0031; *** p < 0.001; HAMD, Hamilton depression score rating difference; TCAs, tricyclic antidepressants;
SNRIs, serotonin–norepinephrine reuptake inhibitors; NaSSAs, noradrenergic and specific serotonergic antidepressants.
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3. Results
3.1. Patients

The depressed patient cohort consisted of 163 patients, 22 male and 141 female,
aged 49.5 ± 10.9 (mean ± standard deviation). Summary statistics of the cohort are indi-
cated in Table 1. Majority of patients took selective serotonin reuptake inhibitors (SSRIs).
Over the course of four weeks, HAMD 17 scores were measured at initiation (24.1 ± 4.9),
at two weeks (12.9 ± 5.0) and at four weeks (5.1 ± 3.9) for each patient. For the cohort,
a difference in HAMD 17 scores was found to be 11.2 ± 4.4 between initiation and week
two, 7.8 ± 5.3 between week two and week four, and 19.0 ± 5.3 throughout the entire study.

3.2. Response to Treatment

Of the three time period analyses, ∆HAMD 17 signified improvement in patients
taking tricyclic antidepressants (mainly clomipramine) in comparison to SSRIs between
0–2 weeks and 0–4 weeks (B = 4.4, p = 0.001; B = 2.7, p = 0.012; B = 4.4, p = 0.001, respectively).
DRD4 rs11246226 CA heterozygous patients were found with a decrease in ∆HAMD score
compared to homozygous C patients in 0–2 weeks and 0–4 weeks (B = −2.5, p = 0.07;
B = −3.5, p = 0.002). Patients with MAOB rs1799836 heterozygous GA and homozygous A
demonstrated improvement in ∆HAMD score at 2–4 weeks and 0–4 weeks (GA: B = 2.22,
p = 0.022; B = 2.3, p = 0.01 | AA: B = 2.8, p = 0.005; B = 3.0, p = 0.01). At 0–2 weeks, patients
who were homozygous C for DRD4 rs3758653 had decreased ∆HAMD in comparison
to homozygous T (B = −9.2, p = 0.004). However, at 2–4 weeks, the effect on ∆HAMD
was reversed (B = 7.6, p = 0.016). A negative effect on ∆HAMD was found with DRD2
rs6275 homozygous C patients in relation to homozygous T patients at 2–4 weeks (B = −2.2,
p = 0.017). At 0–2 weeks, SLC6A3 rs40184 homozygous A patients were associated with a
decreased ∆HAMD (B = −3.7, p = 0.006). No other significant associations were determined.

4. Discussion

In this study, we investigated possible associations between dopaminergic neuro-
transmission genetic variants and antidepressant treatment response in treatment-free
patients with a major depressive episode. We limited our investigations to select variants
which may influence the functioning of these pathways, as associations with diseases were
previously described [18,22,23]. Our cohort consisted mainly of women (86.5%) but no
associations were determined that gender played a role in antidepressant response for
our study. Furthermore, the major depression diagnosis (e.g., whether it is recurrent or
not) did not impact the outcome of our study. This may stem from the patient popula-
tion, as patients had not received antidepressant treatment in the previous six months,
minimizing the impact of previous antidepressant treatment.

Our investigation found significant associations for variants of the DRD2, DRD4,
MAOB, and SLC6A3 gene across the different study period. The impact of DRD4 rs11246226
and MAOB rs1799836 appears to be consistent across different study periods in our study.
On the other hand, the associations between DRD2 rs6275 and SLC6A3 rs40184 were
identified in one study period. Surprisingly, the influence of DRD4 rs3758653 was opposite
in consecutive study periods. The associations found in SNPs in genes encoding MAO-B
and DAT are in line with the indications that dopaminergic transmission plays a role in
the antidepressant response. These aforementioned enzymes are believed to influence the
concentration of dopamine in the synaptic cleft.

From our results, SNPs in DRD4 have been indicative of playing a role in antide-
pressant response. The dopamine D4 receptor is best known for the relative specificity of
the atypical antipsychotic clozapine for this receptor and their relative lack in the ventral
and dorsal striatum [29,30]. The D4 receptor is less expressed in the mammalian brain
than the D2 and D3 receptors and is mainly found in the frontal cortex, the amygdala,
the hippocampus, the globus pallidus, the hypothalamus, the thalamus, and the substantia
nigra pars reticulata [16,31]. This is different with the lamprey, which is a representative of
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the oldest human vertebrate ancestors, and where the D4 receptor is found in the striatum,
cortex-like structures, and also, in the habenula [32].

We have good reason to believe that the lamprey striatum can be seen as a precursor to
the human nuclear amygdala [33]. Dopamine D4 receptor has been observed in the central
nucleus of the amygdala as well as in other regions of the complex [34]. Significantly,
in the basal nucleus, the expression of D4 receptors and not D1 and D2 receptors is
higher in depressed patients in comparison to healthy subjects. It is also interesting
that the dopamine D4 receptor appears to be involved in relapse to nicotine, cocaine,
and amphetamine use in addiction [35]. This phenomenon is linked to the role of the lateral
habenula in reward-oriented behaviour, which also likely plays a role in depression [6,36].
Norepinephrine released from adrenergic terminals and not dopamine has been suggested
to stimulate these habenular dopamine D4 receptors [37]. This could be the route by which
antidepressants with noradrenaline reuptake inhibiting activity could mediate certain
antidepressant effects.

While our findings may shed light on the dopaminergic neurotransmission pathways,
our research has some limitations. As the study lacked a control group, we were unable to
conduct a case-control study for the associations and determine if the SNPs also played a
role in depression. In addition, the diversity of antidepressants taken may have impacted
the response seen in our patient cohort. As the patients were seen by psychiatrists and not
by physicians, the patient records are focused on the depression score and improvement
of the study period, rather than providing a comprehensive medical report. Building on
our results, we would suggest to further investigate, include more clinically relevant
information, and consider the contribution of dopamine D4 receptors to the response
to antidepressants. As we hypothesize the habenuloid complex playing a role in the
dopaminergic neurotransmission response, we would highlight a special focus in this
interaction when expanding the scope of the study.

5. Conclusions

In this cohort study, we investigated the possible existence of associations between
genotypes of variants of genes encoding dopaminergic neurotransmission proteins and the
response to antidepressant treatment of patients with major depressive disorder who had
for at least 6 months been off treatment. The results of this study are suggestive to explore
further the impact DRD4 rs11246226 has on antidepressant response. The associations
found in DRD2 rs6275, MAOB rs1799836, and SLC6A3 rs40184 are also worth investigating
further. Our findings add to our hypothesis that dopamine D4 receptors in the amygdala
and in the habenula may play a role in the response to antidepressants.
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.3390/jpm11080731/s1, Table S1: Antidepressant medication taken by patients; Table S2: Multiple lin-
ear regression of total depression cohort covariates (age, gender, diagnosis, type of antidepressant, se-
lected dopaminergic genotypes) for the first two-week study period (0 to 2 weeks); Table S3: Multiple
linear regression of total depression cohort covariates (age, gender, diagnosis, type of antidepressant,
selected dopaminergic genotypes) for the second two-week study period (2 to 4 weeks).
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