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Temperature is a critical environmental factor that affect most biological and
physiological processes in fish. The caudal neurosecretory system (CNSS) is unique
to fish and is proved to maintain homeostasis during seasonal alterations. However,
the dynamic expression and secretion pattern of its major hormones, corticotrophin-
releasing hormone (CRH), urotensin I (UI), and urotensin II (UII), and their response to
thermal stress has not been studied. CRH, UII and cortisol in plasma, gene expression
levels of CRH, UI, and UII in the CNSS of olive flounder (Paralichthys olivaceus) were
therefore characterized. UI- and UII-positive Dahlgren cells, as well as cell proliferation in
the CNSS, were also quantified. The results showed that plasma cortisol and CRH were
increased in both low temperature (LT) and high temperature (HT) groups. However,
there was no difference in plasma UI and UII during thermal stress. In CNSS, CRH,
UI, and UII mRNA levels were all significantly elevated in response to acute hypothermal
stress and recovered back to the control (normal) level after 8 days of adaptation. During
hyperthermal challenge, gene expression of CRH and UI only significantly increased
after 8-days of transfer but no change in UII was observed. We also demonstrated an
increasing percent of UI-positive Dahlgren cells in the CNSS of 8-days hyperthermal
stressed fish. However, no BrdU-labeled Dahlgren cells were found among the three
treatment groups. Collectively, our results demonstrate that the CNSS is subjected to
dynamic responses under thermal stress and expands upon the role of the CNSS in
thermoregulation. The dynamic responses of hormone levels and the gene expression
of CRH, UI and UII in CNSS are all involved in the process of hyper- or hypo-thermal
stress and adaptation.

Keywords: caudal neurosecretory system, corticotrophin-releasing hormone, urotensin I, urotensin II, thermal
stress, fish

INTRODUCTION

Temperature is one of the critical abiotic factors that would affect many aspects of animals.
Active thermoregulation inherent in homeothermic animals is important to preserve molecular
and cellular functions critical for life (Nakamura and Morrison, 2010). In addition, almost all fish,
with the exception of a few large pelagic fish (e.g., tuna, mako sharks), lack the ability to retain
endogenous heat because the gills and body surface consistently and rapidly exchanges heat with the
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surrounding environment (Stevens and Sutterlin, 1976).
Therefore, fish cannot maintain a constant body temperature
that is different from the external environment meaning that
temperature is a critical abiotic factor that affects most biological
and physiological processes, including growth, reproduction,
digestive ability, and immune function (Hazel and Prosser,
1974; Marley et al., 2008). When fish encounter an acute or
long-term change inoptimal temperature, homeostatic responses
and energetic reorganization are needed for survival in allostatic
conditions (Juriaan et al., 2003; McEwen and Wingfield, 2003). In
fish, neuroendocrine signaling affects and becomes regulated by
the onset of immune responses, due to the peculiar organization
of the head kidney, a hematopoietic tissue made from a mixture
of endocrine, hematopoietic and immune cell populations.
Besides that, responses could also be mediated by the activation
of two hormonal axes in fish, the Sympatho-Chromaffin (SC)
axis and the Hypothalamic-Pituitary-Interrenal (HPI) axis
(Carles Balasch and Tort, 2019).

Cortisol, a common global marker of the stress, acts as
a regulatory component of neuro-immuno-endocrine circuitry
by binding to glucocorticoid (GR) or mineralocorticoid (MR)
receptors, eliciting stress-induced immunosuppression and
allostatic imbalances (Benitez-Dorta et al., 2017). Plasma
cortisol is traditionally regulated by a signal pathway of
corticotrophin-releasing hormone (CRH), adenocorticotropin
hormone (ACTH), within the HPI axis (Nesan and Vijayan,
2016). However, there is an additional set of neuroendocrine
cells in the caudal neurosecretory system (CNSS), which
can release CRH into the circulation of fish. The CNSS is
located in the terminal segments of the spinal cord, including
magnocellular peptide-synthesizing neuroendocrine neurons
(Dahlgren cells) and a neurohemal organ (the urophysis), in
which synthesized peptides can be stored and released into
circulation from the capillaries of the caudal vein (Winter et al.,
2000; Lu et al., 2004, 2006).

The CNSS is the major circulating source of CRH, Urotensin I
(UI), and Urotensin II (UII) in fish (Lu et al., 2004,
2006). UI is a 41-amino acid peptide (Lederis et al., 1982)
belonging to the superfamily of CRH, which also includes
the mammalian UI ortholog, urocortin (Lovejoy and Balment,
1999; Lu et al., 2004). UII is a cyclic peptide formed by a
disulfide bond at the C terminus, in which the “-Cys-Phe-
Trp-Lys-Tyr-Cys-” sequence is fully conserved across vertebrate
species (Lu et al., 2006). CRH and UI are known to regulate
and integrate the neuroendocrine, autonomic, immune, and
behavioral response of fish to stressors by affecting stress-
related cortisol production (Kelsall and Balment, 1998; Craig
et al., 2005). Additionally, UII is found to maintain body fluid
homeostasis by regulating water and ion transport (Lu et al.,
2006). Therefore, the CNSS is proposed to play a role in
many aspects of adaptive physiology, including osmoregulation,
reproduction, nutrition and stress-related responses (Winter
et al., 2000; Lu et al., 2004, 2006). Previous studies have found
that the CNSS might be functionally reprogramed to cope with
changes in physiological challenge during seasonal alternation
(Lu et al., 2007; Chen and Mu, 2008). As temperature is
arguably the most critical seasonal factor, the role that the

CNSS plays in thermal stress and adaptation should be resolved
(Mccrohan and Bernier, 2007).

The olive flounder (Paralichthys olivaceus) is a marine
demersal species found along the coasts of Japan, Korea, and
China (Sabate et al., 2008; Tomiyama et al., 2008). This flounder
migrates from deep (cold) seas to shallow (warm) areas for
reproduction, so thermoregulation is an important way to
keep their internal environment steady. In order to better
understand the physiological roles of CNSS in thermoregulation,
we investigated the dynamic changes in CRH, UI and UII
peptides, gene expression levels, as well as the cellular level
in CNSS during thermal stress. We hypothesized that the
adaptability of the olive flounder to thermal stress is associated
with the dynamic response of CRH, UI, and UII in the CNSS.

MATERIALS AND METHODS

Fish and Ethics Approval
The gynogenetic olive flounder is a very popular fish for
aquaculture in China. Sexual dimorphisms are potentially seen
when fish are subject to stress so gynogenetic fish were used in this
study. Gynogenetic olive flounder were produced as previously
described (Liu et al., 2012) and reared in recirculating aquaculture
systems at the Central Experimental Station of Chinese Academy
of Fisheries Sciences (Beidaihe, China). The experiment was
conducted in September, 2016. A total of 108 gynogenetic olive
flounders (body weights: 500 ± 50 g) were randomly allocated
to 24 tanks with flow-through, filtered seawater (30h) systems at
18± 1◦C for more than 2 weeks. Black plastic light-proof curtains
surrounded each set of tanks and artificial illumination was
provided with white fluorescent lamps. Mean light intensity was
approximately 40 lux measured centrally at the bottom of each
seawater tank. Fish were not fed during the experiment in order
to reduce the influence of feeding. The experimental protocol was
approved by the Institutional Animal Care and Use Committee
(IACUC) of Shanghai Ocean University (SHOU), Shanghai,
China, and abides by the Guidelines on Ethical Treatment of
Experimental Animals established by the Ministry of Science and
Technology, China.

Thermal Stress Experiments
Fish were divided into six treatment groups: (1) low temperature
group (LT, 12◦C; n = 24), (2) normal temperature group
(NT, 18◦C; n = 24), (3) high temperature group (HT, 24◦C;
n = 24), (4) low temperature group injected with 5′-bromo-2′-
deoxyuridine, BrdU (LT + BrdU, 12◦C; n = 12), (5) normal
temperature group injected with BrdU (NT + BrdU, 18◦C;
n = 12), (6) high temperature group injected with BrdU
(HT + BrdU, 24◦C; n = 12). In the BrdU treatment groups, fish
were injected intraperitoneally with a single dose of saline-BrdU
(Sigma, Germany; 0.2 mg/g body weight) solution within 30 s
before the fish were transferred into the corresponding tank. All
fish were acclimated in each experimental condition for 8 days
and sampled during daytime from 10 am to 3 pm at 2 h, 1, 2,
and 8 days after transfer. Fish were removed from each time
point tank and, without using anesthetic, blood samples (3–5 ml)
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were collected within 90 s into ammonium-heparinized syringes
by caudal venepuncture. Blood was aliquoted into ammonium-
heparinized tubes and plasma separated by centrifugation for
5 min at 13,000 × g and stored at −80◦C until the measurement
of plasma hormones by ELISA. Fish were then humanely killed
using spinal cord severance and brain excision. The CNSS of
the fish from the LT, NT and HT groups were removed and
instantly frozen in liquid nitrogen for subsequent analysis of
gene expression. The CNSS from BrdU treatment groups were
removed and stored in 4% paraformaldehyde (PFA) at 4◦C. All
samples were taken during daylight hours.

Plasma Measurements
Plasma levels of CRH, cortisol (COR), and UII were quantified
by ELISA commercially (Qiyi Biotechnology Co., Ltd., Shanghai,
China). According to the manufacturer’s instructions, the
circulating level range of COR was detected between 100 and
1800 ng/L, CRH was detected between 15 and 900 ng/L and UII
was detected between 3 and 120 ng/L. In detail, −80◦C stored
plasma supernatant fractions were naturally warmed in an ice
box. Samples were then diluted to the appropriate concentration.
Commercially available ELISA kits (Qiyi Biotechnology Co., Ltd.,
Shanghai, China) were subsequently used to measure serum
COR, CRH, and UII levels in duplicate as per manufacturer
instructions (Mechesso et al., 2019).

Relative Quantitative RT-PCR
The CNSS mRNA expression levels were analyzed by quantitative
real-time PCR on ABI 7500 Real-Time PCR System (Applied
Biosystems, Singapore). Relative quantification of the target gene
transcripts was analyzed using β-actin gene expression as the
reference gene (Yuan et al., 2017). Sequences of CRH, UI, UII
were obtained from GeneBank. The primers were designed using
Primer Premier 5 software (PREMIER Biosoft International,
Palo Alto, CA, United States), and synthesized commercially
(Sangon Biotech, Shanghai, China) (Table 1). The optimization
and validation of primers and probes were performed using
standard ABI protocols.

Total RNA was extracted from the tissues of each individual
by RNAiso Plus (TaKaRa, Japan). One microgram of total
RNA was treated by PrimeScriptTM RT reagent kit with gDNA
Eraser. Briefly, quantitative real-time PCR assays were run
using FastStart Universal SYBR Green Master kit (Roche,

TABLE 1 | Gene specific primers for β-actin, CRH, UI, and UII of olive flounder
P. olivaceus.

Gene GeneBank Primers (5′–3′)

β-actin HQ386788.1 F: GGAAATCGTGCGTGACATTAAG

R: CCTCTGGACAACGGAACCTCT

CRH XM_020087578.1 F: AAAGGAGGTGAAGGAGGA

R: AAGAAGGCAACAAGCAGA

UI XM_020105024.1 F: GACCTGCTGAGCGACAA

R: TCATCCTCGGCTATCTGG

UII XM_020096040.1 F: ATCTGCTGAGATGCCCTATC

R: CTGTTGTTCTCCACCGTCTC

United States), in 20 µl reaction volume, under a standard
amplification procedure (2 min at 50◦C, 10 min at 95◦C and then
40 cycles of the following process: 15 s at 95◦C and 30 s at 60◦C).

UI, UII, and BrdU Immunofluorescence
Chemistry
Paraformaldehyde-fixed CNSS were dehydrated in ethanol,
cleared in xylene and embedded in paraplast. Every section
(5-µM-thick) was cut on a microtome and mounted on glass
slides with a positive charge. Briefly, tissue sections were dewaxed
in xylene and rehydrated in gradient alcohol. Endogenous
peroxidase activity was blocked with 3% H2O2 in methanol
before slides were placed in 0.01M citrate buffer and heated in
a water bath for 20 min at 95◦C. After cooling, sections were
rinsed in PBS. For UI and UII immunofluorescence chemistry,
sections were treated with fetal bovine serum (FBS) blocking
solution (1% blocking, dissolved in MABT, and 5% FBS in PBST,
PBS with 0.1% Triton X-100) for 1 h at room temperature (RT)
to reduce non-specific staining and incubated with 1:500/1:1000
rabbit anti-UI/UII antibodies [produced by Lu et al. (2004, 2006)]
diluted with PBS in a moist chamber at 4◦C overnight. The
moist chamber was transferred into an air oven at 37◦C for
45 min, then washed six times at RT in PBST for 15 min each
time and incubated with 1:100 DAPI and 1:500 goat anti-rabbit
IgG (H + L) highly cross-adsorbed secondary antibody, Alexa
Fluor Plus 488 (Thermo Fisher Scientific, United States), diluted
with PBS for 1 h in dark. The slides were washed six times in
5% FBS (in PBST) for 90 min. For BrdU immunofluorescence,
sections were incubated in 2 N HCl for 30 min at RT, followed
by thorough washing in PBS and blocked with 5% FBS in PBST
for 1 h at RT. Sections were incubated with 1:100 mouse anti-
BrdU antibody (Sigma-Aldrich, Germany) diluted with PBS in
a moist chamber at 4◦C overnight. After thorough buffer rinses,
the sections were incubated with 1:100 DAPI (Sangon Biotech,
Shanghai, China) and 1:500 goat anti-mouse IgG (H + L)
highly cross-absorbed secondary antibody, Alexa Fluor Plus 568
(Thermo Fisher Scientific, United States), diluted with PBS for
1 h in dark. Then the sections were washed three times in PBST.
Control experiments were carried out by omission of the primary
antibody and preabsorption of the antibody with an excess of
antigenic peptide.

Quantification of Labeled Cells
Single-labeling UI/UII and BrdU experiments of short and long
term thermal stress were used for quantification of protein
secretion and cell proliferation. Cell counts of UI/UII and BrdU
labeling were obtained within each CNSS in every 20 sections
from all sections sampled (5 µm-spaced serial sections parallel to
the entire central canal axis of the CNSS) at 400× magnification
with a fluorescence microscope (Nikon ECLIPSE 55i, Nikon
Corporation, Japan). The UI-/UII- and BrdU-positive cells, as
well as all Dahlgren cells, were counted. The numbers of UI-/UII-
positive Dahlgren cells were expressed as the proportion of total
Dahlgren cells, while the numbers of BrdU-positive cells were
counted as the fraction of BrdU-positive cells per unit area of
the CNSS. Size and luminosity of the figures were modified
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with NIS-Elements Version 4.0 (Nikon, Japan). The graphs and
drawings were prepared using Adobe PhotoshopCS 6 (Adobe
System, United States).

Statistics
The 2−11Ct method was used to analyze the real-time PCR data
(Livak and Schmittgen, 2001), and amplified transcripts were
expressed as the fold change relative to the mean value of the
standard sample. Data were tested for normality by the Shapiro–
Wilk’s test and homogeneity of variance by Levene’s test, and
expressed as means ± SEM. Significant analyses were conducted
by two-way ANOVA with treatment and time as independent
variables, followed by the Tukey’s multiple comparison test
when changes in data were assessed for each treatment or time.
Significant effects of temperature treatment in BrdU positive
cells were conducted by one-way ANOVA with Dunnett’s test.
Results were considered significantly different when P < 0.05. All
analyses were conducted using a computer program, GraphPad
Prism 5.0 (San Diego, CA, United States).

RESULTS

Plasma Hormones
Significant interactions between temperature and time were only
detected for cortisol concentrations in plasma [two-way ANOVA,

F(6,30) = 6.677, P = 0.0027], indicating that stress hormone
responses were different among the temperature treatments at
different time points. After 2 h thermal stress, plasma cortisol
was significantly increased to the highest level in both LT
(P = 0.0075) and HT (P = 0.0036) groups. Subsequently, cortisol
levels declined significantly with time in both HT (Tukey’s test,
2 h vs. 1 day: P = 0.0036; 2 h vs. 2 days: P < 0.0001; 2 h vs. 8 days:
P < 0.0001; 1 day vs. 2 days: P = 0.0042) and LT (Tukey’s test, 2 h
vs. 1 day: P = 0.0075; 2 h vs. 2 days: P = 0.0009; 2 h vs. 8 days:
P < 0.0001; 1 day vs. 8 days: P = 0.0472) treatments (Figure 1A).
Plasma CRH level increased but not significantly more than the
NT group in both LT and HT groups during thermal stress
treatments. A statistically significant increase of CRH level was
only found in LT group at 1 day (P = 0.0058, Figure 1B).
There was no remarkable difference with time or temperature
treatments for plasma UII during the experiment (Figure 1C).

CRH, UI, and UII Gene Expression in
CNSS
Significant interactions between temperature and time were
observed for CRH [two-way ANOVA, F(6,30) = 3.51, P = 0.0123],
UI [two-way ANOVA, F(6,30) = 6.045, P = 0.0006] and UII
[two-way ANOVA, F(6,30) = 13.08, P < 0.0001] gene expression
in CNSS, indicating that gene expression of CRH, UI and UII
in CNSS was different among the temperature treatments at

FIGURE 1 | Dynamic changes in plasma cortisol (A), CRH (B), and UII (C) after transfer of olive flounder from NT to LT (•) or HT (N). Mean ± SEM (n = 6). Control
fish were maintained in NT and sampled across the same time course (�). Significant analyses were conducted by two-way ANOVA with treatment and time as
independent variables, followed by the Tukey’s test. Results were considered significantly different when P < 0.05. Symbol “∗” or “#” was used to represent the
significant difference between NT and LT or HT within a time point. Different small letters were used to represent a significant difference across time points within a
treatment group.
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different time points. The expression of these three genes was
therefore compared between the different thermal stress and
control treatments at each sampling time, and changes in gene
expression were assessed for each thermal stress.

Two hours after hypothermia, the gene expression of CRH
and UII in CNSS was significantly higher than the control group,
but UI did not show a statistically significant increase (Tukey’s
test, CRH: P = 0.0054, UII: P < 0.0001). Subsequently, gene
expression of CRH (Tukey’s test, 8 days vs. 2 h: P = 0.0058;
8 days vs. 1 day: P = 0.0127) and UII (Tukey’s test, 2 h vs. 1 day:
P < 0.0001; 2 h vs. 2 days: P < 0.0001 2 h vs. 8 days: P < 0.0001;
2 days vs. 8 days: P = 0.0272) declined significantly with time
(Figures 2A–C). In contrast, the gene expression of UI showed a
remarkable increase in CNSS 8 days after hyperthermia (Tukey’s
test, P = 0.0001) with a significant increase with time (Tukey’s
test, 8 days vs. 2 h: P = 0.0004, 8 days vs. 1 days: P = 0.0007
8 days vs. 2 days: P = 0.003; Figure 2B). There was no significant
difference with time in CRH and UII mRNA expression during
the experiment (Figures 2A,C).

Count of UI and UII Positive Dahlgren
Cells in CNSS
Since UI and UII were produced by Dahlgren cells in CNSS,
a count of UI and UII positive Dahlgren cells could represent
the storage and secretion level of these two hormones in the
CNSS. Dahlgren cells were distributed in the spinal cord dorsal
to the 1st–6th preterminal vertebrae and appeared laterally
and ventrolaterally to the central canal in olive flounder
(Figures 3C–H). Significant interactions between temperature
and time were measured for the percent of UI-positive Dahlgren
cells [two-way ANOVA, F(6, 12) = 5.412, P = 0.0064]. The percent
of UI-positive Dahlgren cells showed a remarkable increase in
CNSS after 8 days of hyperthermia (Tukey’s test, P = 0.0017)
with a significant increase over time (Tukey’s test, 8 days vs.
2 h: P = 0.0007; 8 days vs. 1 day: P = 0.0032; 8 days vs.
2 days: P = 0.0173; Figure 3A). For the LT group, the percent
of UI-positive Dahlgren cells did not show any difference with
time. Meanwhile, the percent of UII-positive Dahlgren cells
increased. But, it had no significant effect of temperature or
time (Figure 3B).

Count of BrdU Positive Cells in CNSS
According to the changes of UI and UII positive Dahlgren cells
in CNSS, BrdU positive cells in CNSS were counted after 8 days
of thermal stress. However, no BrdU-positive Dahlgren cells were
observed in either LT or HT treatment groups. BrdU-labeled cells
were found near the central canal (Figures 4B–D). Compared to
the NT group a significant decrease in BrdU-positive cells was
found in both LT (Dunnett’s test, P = 0.0491) and HT (Dunnett’s
test, P = 0.0244) groups (Figure 4A).

DISCUSSION

When fish encounter an acute thermal stress, as with many other
stressors, stress-related physiological responses are immediately
activated. For instance, the stimulation of the HPI axis elicits

C
R

H
m

R
N

A
e

x
p

re
s

s
io

n
in

C
N

S
S

2 h 1 d 2 d 8 d
0

1

2

3

4
NT

LT

HT

a * a *
a b*

b

U
I

m
R

N
A

e
x

p
re

s
s

io
n

in
C

N
S

S

2 h 1 d 2 d 8 d
0 .0

0 .5

1 .0

1 .5

2 .0

2 .5 a #

b b
b

U
II

m
R

N
A

e
x

p
re

s
s

io
n

in
C

N
S

S

2 h 1 d 2 d 8 d
0

2

4

6

8 a *

a

a b

b

A

B

C

FIGURE 2 | Dynamic changes in gene expression of CRH (A), UI (B), and UII
(C) after transfer of Olive flounder from NT to LT (•) or HT (N) in CNSS.
Mean ± SEM (n = 6). Control fish were maintained in NT and sampled across
the same time course (�). Significant analyses were conducted by two-way
ANOVA with treatment and time as independent variables, followed by the
Tukey’s test. Results were considered significantly different when P < 0.05.
Symbol “∗” or “#” was used to represent the significant difference between NT
and LT or HT within a time point. Different small letters were used to represent
a significant difference across time points within a treatment group.
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FIGURE 3 | Dynamic changes in percent of UI- (A) and UII- (B) positive
Dahlgren cells after transfer of olive flounder from NT to LT (•) or HT (N) in
CNSS. Mean ± SEM (n = 3). Control fish were maintained in NT and sampled
across the same time course (�). Sagittal paraffin sections of CNSS after
treatment with anti-UI (D) and UII (G), revealed by FITC. Nucleus were stained
by DAPI (C,F). The superimposition of two labeled signals was conducted by
computer (E,H). Green and White arrows pointed out the labeled and
unlabeled Dahlgren cells, respectively. Significant analyses were conducted by
two-way ANOVA with treatment and time as independent variables, followed
by the Tukey’s test. Results were considered significantly different when
P < 0.05. Symbol “∗” or “#” was used to represent the significant difference
between NT and LT or HT within a time point. Different small letters were used
to represent a significant difference across time points within a treatment
group.

an increase in plasma cortisol. Therefore, previous studies had
generally put more attention on stress-related regulation of CRH
and UI in the brain (Pepels et al., 2004; Pinkel et al., 2007).
However, there is an additional area in central nervous system

FIGURE 4 | Changes in BrdU positive cells after 8-days transfer of Olive
flounder from NT to LT or HT in CNSS (A). Mean ± SEM (n = 3). Sagittal
paraffin sections of CNSS after treatment with anti-BrdU (B), revealed by
TRITC. Nucleus were stained by DAPI (C). The superimposition of two labeled
signals was conducted by computer (D). Control fish were maintained in NT
and sampled across the same time course. Differences among groups were
evaluated by one-way ANOVA with Dunnett’s test. Symbol “∗” was used to
represent a significant difference between NT group (P < 0.05).

(CNS) which is an important source of CRH, UI and UII in
fish, the CNSS, but its function still remains unclear. In this
study, we elaborated the dynamic changes of cortisol, CRH and
UII in plasma, as well as their expression, changes in UI:UII
Dahlgren cell ratio and the rate of cell proliferation in the CNSS
during thermal stress. Overall, our results confirmed that there
was a dynamic response of hormone levels and gene expression
of CRH, UI and UII in CNSS associated with hyper- and hypo-
thermal stress and thermal adaptation.

Using the ELISA kits to analyze the plasma cortisol in olive
flounder, previous study showed that the plasma cortisol level
in control group was around 5 ng/mL which was similar with
our results (around 4 ng/mL) (Mechesso et al., 2019). Comparing
with the results of RIA, the control level of cortisol was around
8 ng/mL (Zou et al., 2018). It had also been found that acute
stress elevated plasma cortisol levels within minutes to hours
(Pavlidis et al., 2015) but plasma cortisol declined back to pre-
stress levels after long-term acclimation (Hosoya et al., 2007).
Our results showed that plasma cortisol in both LT and HT
group were dramatically elevated about 65–69% after 2 h thermal
stress and declined with time to the control level at 8 d. Previous
evidence showed that CRH played a key role in regulating the
secretion of cortisol (Flik et al., 2006). However, UI and UII were
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also shown to stimulate the secretion of cortisol from isolated
interrenal/head kidney preparations of seawater (SW)-adapted
flounder (Kelsall and Balment, 1998), and UI also appeared to
potentiate the steroidogenic actions of ACTH in vitro (Arnold-
Reed and Balment, 1994). Therefore, plasma CRH and UII
concentration were measured in the current study and it was
found that the profile of plasma CRH matched closely with
the trend in cortisol secretion but plasma UII did not respond
to thermal stress. Studies pointed out that changes in CRH-
related peptide secretion from the preoptic area (POA) and CNSS
could impact upon the activity of the HPI axis (Huising et al.,
2004; Bernier et al., 2008). As the CNSS is the major source of
circulating CRH, UI and UII, we therefore, investigated the gene
expression and secretion of these hormones from the CNSS.

Previous studies had found that thermal stress significantly
changed CRH, UI, and UII expression at early developmental
stage in zebrafish (Luo et al., 2014). In adult rainbow trout,
salinity challenge produced a remarkable elevation in CRH and
UI mRNA expression in CNSS (Craig et al., 2005). However,
in this study, we found that CRH, UI, and UII mRNA levels
exhibited different expression profiles not only as a result of the
thermal conditions but also as a result of exposure time. Previous
studies showed that additional UI and UII directly stimulate
interrenal cortisol secretion in fish (Kelsall and Balment, 1998;
Craig et al., 2005). The mRNA expression of CRH, UI and
UII in CNSS was elevated after a 2 h period of hypothermal
acclimation and returned back to the control level at 8 days. In
contrast, gene expression of CRH, UI, and UII did not increase
at the beginning under hyperthermal condition in CNSS. An
increasing expression of CRH and UI was observed at 8 days
hyperthermal treatment and a similar trend was seen in rainbow
trout subject to a hyperammonemia condition (Bernier et al.,
2008). The current mRNA expression results supported the
view that CRH-, UI- and UII-expressing neurons in the CNSS
could be recruited differentially and only in response to specific
stimuli. From the expression profiles of these three genes, it
is plausible that CRH, UI and UII in CNSS respond to acute
hypothermal stress. By contrast, CRH and UI in CNSS did
not respond to acute hyperthermal stress, but appeared to play
an important role in hyperthermal adaptation, although the
functional mechanism is less clear.

The number of Dahlgren cell were altered across seasons
(Chen and Mu, 2008). However, until now, it was not known
whether alterations in temperature would affect the number of
Dahlgren cells and their associated secretions. Morphology and
immunohistochemistry studies of the CNSS suggested that CRH,
UI and UII were produced and secreted from the Dahlgren
cells in the CNSS (Cioni and Bordieri, 2003; Lu et al., 2004).
Therefore, the number of CRH-, UI- and UII-positive Dahlgren
cells could represent the required secretory level of these genes
in CNSS. In this study, we calculated the changes in UI:UII
Dahlgren cell ratio and our results demonstrated that the percent
of UI-positive Dahlgren cells increased after 8 d of hyperthermal
treatment, and significantly higher than the NT group, with an
additional match to the mRNA expression profile of UI in CNSS.
No changes on percent of UI- or UII- positive Dahlgren cells
were observed in the other treatment groups. To find out where

the increasing percent of UI-positive Dahlgren cells came from,
we used BrdU to label the new cells after thermal treatment
and calculated the BrdU-labeled cells in CNSS. However, the
number of BrdU-labeled cells in both LT and HT group were
significantly lower than the NT group after 8 days thermal
treatment. Additionally, no BrdU-labeled Dahlgren cells were
observed in the CNSS (Figures 4B–D). Previous studies found
that the neuroblasts lateral to the central canal were the precursor
cells of Dahlgren cells (Fridberg, 1962). Therefore, the BrdU-
labeled cells might partially be the regenerative neuroblasts,
and the increased UI-positive Dahlgren cells might not be
differentiated from newly regenerative neuroblast cells. Previous
morphology and immunohistochemistry studies of the CNSS
have found that CRH and UI were co-expressed (Cioni and
Bordieri, 2003; Lu et al., 2004). Meanwhile, UI and UII could
also be co-expressed in a fraction of Dahlgren cells (Parmentier
et al., 2006). Therefore, the increased UI-positive cells might be
recruited from the Dahlgren cells that expressed UII peptides. In
brief, our results found that the percent of UI-positive Dahlgren
cells increased after 8 days of hyperthermal treatment and the
increasing percent of UI-positive Dahlgren cells might be due
to the increased number of Dahlgren cells that co-expressed
both UI and UII.

CONCLUSION

In summary, this study demonstrates that the dynamic responses
of hormone levels and the gene expression of CRH, UI and
UII in the CNSS are associated with the whole process of
hyper- or hypo-thermal stress response and adaptation. However,
CRH-, UI- and UII-expressing neurons of the CNSS are
recruited differentially and only in response to specific stimuli.
Specifically, CRH, UI and UII in CNSS respond to acute
hypothermal stress. By contrast, CRH and UI do not respond
to acute hyperthermal stress, but appear to play a currently
unknown role in hyperthermal adaptation. Our results indicate
that the increase of UI-positive cells might originate from the
increased Dahlgren cells that co-expressed both UI and UII
during long-term hyperthermal adaptation in CNSS. Overall,
our results supplements evidence that CNSS plays an important
physiological role in thermal stress. Further research should focus
on the specific thermal neural inputs that trigger the recruitment
of CRH-, UI-, and UII-expressing cells in the CNSS.
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