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Since organism development and many critical cell biology processes are organized in modular patterns, many algorithms have
been proposed to detect modules. In this study, a new method, MOfinder, was developed to detect overlapping modules in a
protein-protein interaction (PPI) network. We demonstrate that our method is more accurate than other 5 methods. Then, we
applied MOfinder to yeast and human PPI network and explored the overlapping information. Using the overlapping modules
of human PPI network, we constructed the module-module communication network. Functional annotation showed that the
immune-related and cancer-related proteins were always together and present in the same modules, which offer some clues for
immune therapy for cancer. Our study around overlapping modules suggests a new perspective on the analysis of PPI network and

improves our understanding of disease.

1. Introduction

PPI networks have been widely used to understand biology at
the system level [1-3]. However, PPI data sets suffer from
high false positive and false negative rates [4]. Network mod-
ule, a group of proteins that are connected with each other to
carry out a function [5], will be more accurate because a loss
or gain of interaction will not break down the module struc-
ture. Modules have been applied to predict protein function
[6] and disease genes [7] and trace the evolutionary history of
networks [8-10].

To perform complex biochemical or developmental func-
tions, modules have to work together. Thus several proteins
are used to pass information from one module to another.
For example, three modules in S. cerevisiae—the Set3C com-
plex, protein phosphatase type 2A (PP2A) complex, and cell
polarity budding—share a protein: Zds1 [11]. Zds1 can bind
PP2A to control mitotic progression [12], and it also partici-
pates in Set3C complex during budding processes and repress
meiotic process [13], so Zds1 may serve as a bridge between

mitosis and meiosis. Here we define these three modules as
overlapping modules and define the shared protein as the
overlapping nodes. The overlapping modules can form a
module-module communication network. Construction of
such network can be helpful for understanding the coordi-
nated relationship between different biological processes.
The problem of identifying modules has been studied
by bioinformatics, applied mathematics, and physics [14].
Many methods have been developed to identify modules
within a network, and they have been reviewed and evaluated
[15-19]. We thought these approaches can be classified into
two types. (1) Local seed-based methods which start from a
node or clique (fully connected subgraph) and follow by an
expanding search strategy. MCODE [20] is the first method
for module detecting, and it expands highly scoring seed
nodes by a local search procedure. But this method only
detects a few modules. CFinder [11] is the first algorithm for
overlapping communities detection, and it develops a Clique
Percolation Method (CPM) where k-cliques are explored by
rotating about its component (k-1)-cliques. CFinder is too
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slow when applied to dense PPI networks, and particular-ly
it cannot detect spoken-like module (noncliques). To over-
come this problem, Zhang et al. [21] combines the Line
Graph Transformation (LGT) and CPM to detect overlap-
ping network modules and builds the overlapping modules
network. Wu et al. [22] proposes COACH (core-attachment
based method) to predict complexes by detecting protein-
complex core and then adding attachments. The Local Pro-
tein Community Finder [23], LPCF for short, uses two
local clustering algorithms to find a community close to a
queried protein. (2) Global cluster methods. (NeMo)
[14] combine a neighbour-sharing score with hierarchical
agglomerative clustering to identify both dense network and
dense bipartite network structures in a single approach. Rei-
chardt and Bornholdt [24] propose a method to detect over-
lapping (fuzzy) communities that maps the graph onto a
zero-temperature g-Potts model with nearest-neighbor in-
teractions. Zhang et al. [25] combine the idea of modularity
function Q, spectral relaxation, and fuzzy c-means clus-
tering method for detecting overlapping community struc-
ture. Wang et al. [26] propose a BCD (Betweenness-Com-
monality Decomposition) algorithm which uses edge com-
monality and edge-betweenness. Other methods such as
nonnegative matrix factorization (NMF) technique were
also used for uncovering overlapping (fuzzy) communities
[27, 28]. Besides these topological-based methods, Chen and
Yuan [29] integrate 265 microarray datasets to detect func-
tional modules in yeast protein-protein interaction network.

Here we describe MOfinder, an alternative method we
have developed that can effectively identify functional mod-
ules, especially overlapping modules, from a PPI network.
MOfinder allows flexibility and user customization with
adjustable parameters. We compared the performance of
MOfinder with other available methods. We explored the
overlapping information of modules in yeast and human PPI
network. We used all the overlapping modules detected from
human PPI network to generate a graph of module-module
communication, and we analyzed the functional properties
of the overlapping modules.

2. Materials and Methods

2.1. Data Sources. The human PPI data sets were down-
loaded from HPRD (release 8) [30]. The yeast PPI data sets
were collected from DIP [31]. Cancer Genes [32] (“Tumor
Suppressor” and “Oncogene”) and Immunome [33, 34] were
used to annotate cancer- and immune-related proteins.

2.2. Definition of Clustering Coefficient. Clustering coefficient
of node n is defined as CC(n) = 2S,/K, (K, — 1), where K,
is the degree of n and S, is the number of connected links
between all neighbors of .

2.3. Definition of Functional Module. Given a predicted mod-
ule, the P-value of it with respect to a GO term is computed
by the hypergeometric distribution in (1) and corrected by
Bonferroni correction. The functional module is defined as

Journal of Biomedicine and Biotechnology

a module enriched in at least one GO term (Bonferroni P-
value <0.01):

(O (k

P-value = 7<N . ), (1
(%)

where a predicted complex with size m, k proteins share a GO

term, and in a total of N proteins, n of them have the same

GO term.

2.4. Functional Similarity of Modules. Assuming GO, =
{go,;> 80,5,-..,80,,,} and GO, = {go,,, £0,,,...,g0,,} are
two sets of GO terms that annotate modules A and B,
respectively, the following Jaccard index was used to calculate
the functional similarity between modules A and B:

|G01 N G02|

Sim(A, B) = 21 N8R ]
im(4,8) = 156,0Go,|

(2)

3. Results

3.1. MOfinder Algorithm. MOfinder is based on an AMD
(Approximate Minimum Degree Ordering) algorithm [35,
36] which has been used for network clustering from elec-
trical engineering [37]. AMD algorithm is usually used in
ordering a sparse matrix prior to Cholesky factorization (or
for LU factorization with diagonal pivoting), and it can trans-
form the sparse matrix to make the nonzero elements close
to the diagonal. The approach used by MOfinder is sum-
marized in Figure 1. MOfinder first converts the PPI file into
a sparse matrix, where a nonzero element represents a pro-
tein-protein interaction. It then performs a global AMD of
the sparse matrix in which the densely connected elements
(module) will be clustered along the diagonal. Besides the
global AMD, which produces the global ordering, a local
AMD is performed to give the approximate minimum degree
ordering. MOfinder uses a sliding window along the diagonal
to fetch the local sparse matrix and make the local AMD. The
clustering coefficient (CC) [38] value of the submatrix in the
sliding window is calculated; if the CC value is not less than
the cut-off, MOfinder will save the submatrix as a module.
Then the sliding window moves one step along the diagonal
to find new modules, and the iteration process is repeated
until the sliding window reaches the end. Lastly, MOfinder
removes redundant modules (if module A belongs to module
B, A is removed) and saves results. The pseudocode of MO-
finder algorithm is (see Algorithm 1).

3.2. MOfinder Is a Flexible Method. MOfinder contains two
adjustable parameters: the CC cut-off value and the size of
sliding window. Different parameters will vary the results.
To optimize the parameters, the performance was assessed
in term of accuracy of identified modules with respect to
annotated function. MOfinder was tested over a broad range
of parameters for CC cut-off value (0.2-1) and sliding win-
dow (20-450) using PPI data from yeast and human.

First, the percentage of functional modules was plotted
against a range of CC cut-off values, and for each CC cut-
off value, all sizes of sliding window (20-450, step = 10) were
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Input: The PPI network G = (V, E);
Cluster coefficient threshold CC;
Sliding window s.

Output: modules.

(2) foreach e € E do

(4) end for
(5) Mg = global AMD(M);
(6) While a+s < V do// a = 1, as start
(7) mg=Mg (a:a+s,a:a+s);
(8) ml = local AMD(mg);
(9) ifcc(ml) > CCdo
(10) insert ml to modules;
(11)  endif
(12) a=a+1;
(13) end while
(14) for each module A in modules do

(17) end if
(18) end for

(1) M = zeros (V,V); // initialization of network matrix

(3) M(el,e2) = 1;// build sparse matrix,el € V, e2 € V

(15) if module A € module B do // module B in modules and module A # module B
(16) discard module A from modules; // delete redundancy

ALGORITHM 1

TaBLE 1: Statistics for the major module size and other features when applied six methods to the yeast PPI data.

Methods Major module Size Predicted modules Covered proteins Functional percentage
MCODE 3 21 64 85.7%
CFinder 4 53 184 81.1%
COACH 3 382 861 46.6%
NeMo 4 121 485 38.0%
LPCF 10 1601 4549 49.5%
MOfinder 5 125 335 90.4%

tested and the resulting percentages of functional modules
were plotted as a group of points. As shown in Figure 2, the
percentage of functional modules increases with the increase
of CC cut-off value, and it is observed to have 4 distinct and
stable ranges for values of CC cut-off, [0.2,0.5), [0.5,0.67),
[0.67,0.84), and [0.84, 1], respectively. Although the highest
percentage of functional modules is achieved in the last range
(CC cut-off value € [0.84, 1]), using CC cut-off value of this
range will identify densely connected complex and ignore
other modules. Additionally in this range, MOfinder only
generates a small number of modules (e.g., it predicts, on
average, 36 modules from human PPI network when CC cut-
off=0.84). Since the purpose is to detect modules instead
of complex, we recommended that the suitable setting of
threshold would be in the third range (CC cut-off value
€ [0.67,0.84)). The best choice for CC cut-off value is 0.67
because the number of predicted modules decrease with CC
cut-off value (data not shown).

Second, we investigate how the variation of sliding win-
dow affects the performance. Figure 3 shows the number of
functional modules matched for the 0.67 cut-off value
over all tried sizes of sliding window (20-450, step =10).

The curve of the resulting number of functional modules first
increases and then decreases. So the sliding window should
be set to 350 which maximized the number of functional
modules. To achieve best performance, we recommended
that the parameter set was CC cut-off value =0.67 and size
of sliding window = 350.

3.3. Performance Evaluation. MOfinder was tested using PPI
data from yeast and human and compared with the perform-
ance of other five software available algorithms: MCODE
(default parameters), CFinder (k = 4, as suggested), COACH
(default parameters) NeMo (default parame-ters), and LPCF
(community size was set to 3—11 which was comparable
to MOfinder). The percentage of functional modules was
used to indicate accuracy, and MOfinder was the top
performing algorithm with respect to accuracy in yeast
(93.9%) (Figure 4(a)) and human (81.5%) (Figure 4(b)).
Also, we compared the major module size of six meth-
ods in yeast (Table 1) and in human (See supplementary
Table 1 in Supplementary Material availa-ble online at
doi:10./155/2011/103702). Most of the modules detected by
MCODE are of size 3, size 4 for CFinder, size 3 for COACH,
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F1GUure 1: The flowchart of the MOfinder. MOfinder first converts the PPI file into a sparse matrix and then performs the global AMD.
Next, the MOfinder fetches the local submatrix using a sliding window and also performs the local AMD. The CC value of the submatrix is
calculated. At last, submatrixes with CC value < cut-off are filtered and redundant modules are removed; others are saved as modules.
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FIGURE 2: Performance of MOfinder in terms of various cut-off values for yeast and human network. Each point represents the functional
percentage of modules observed for a cut-off value and a slide window. (a) Yeast PPI network. (b) Human PPI network.
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FIGURE 3: Performance of MOfinder in terms of various sliding window sizes for yeast and human network. The y-axis represents the number
of functional modules. The threshold of 350 gives the best performance which can detect the maximum functional modules. (a) Yeast PPI
network. (b) Human PPI network.
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F1GURE 4: Comparative performances of MOfinder and the other five methods. The y-axis represents the proportion of functional modules

of detected modules, according to GO annotation (Bonferroni P-value < 0.01).

size 4 for NeMo, size 10 for LPCE and size 5 for MOfinder.
Although the number of modules and the number of
proteins assigned to modules were smaller for MOfinder
than some of these methods, the percentage of functional
modules was highest for MOfinder.

3.4. Overall Overlapping Properties in Yeast and Human. We
applied MOfinder to the yeast and human PPI network
with default parameters (CC cut-off = 0.67, sliding window =
350). Then we explored the distribution of overlapping size.
As shown in Figure 5, the overlapping size distribution is
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FiGure 5: Overlapping size distribution of yeast and human PPI network. The x-axis represents the overlapping size. The y-axis is the
percentage of each size. (a) Yeast PPI network. (b) Human PPI network.
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FIGURE 6: Overlapping size distribution of yeast and human PPI network after removing repeats. The x-axis represents the overlapping size.
The y-axis is the percentage of each size. (a) Yeast PPI network. (b) Human PPI network.

different between yeast and human. Most of the modules
in yeast PPI network share one protein (Figure 5(a)), but in
human PPI network the most common overlapping size is 4
(Figure 5(b)). Some overlapping parts might be overcounted.
For example, three modules (A, B, and C) share a protein D,
so protein D is counted 3 times (A-B, A-C, B-C). To avoid
the overcount problem, we deleted the repeats, so protein
D is only counted once. Figure 6(a) shows that the resulting
distribution of overlapping size in yeast is obviously changed,
and the most common overlapping size changes into 4 which
is similar to human (Figure 6(b)). These observations suggest
that although modules in yeast tend to share less proteins
than modules in human, the small overlapping parts (size 1
and size 2) are more repeatedly used in yeast than human,

and thus the distribution of overlapping size becomes similar
in yeast and human after removing repeats.

Since proteins in one module work together to perform
functions, a similar function is expected to appear if two
modules are overlapping with each other. And the larger the
overlapping size, the more likely the same function. To verify
this, we used the GO annotation similarity to represent the
functional similarity. Figure 7 shows that the average func-
tional similarity is increased with the increase of overlap-
ping size. Such a trend has been observed in both yeast
(Figure 7(a)) and human (Figure 7(b)).

3.5. Overlapping Modules in the Human Interactome. MO-
finder identified 221 modules, of which 152 were overlapped
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F1GUre 7: Modules with larger overlapping size confer more similar GO annotation. The x-axis represents the overlapping size. The y-axis is
the mean value of GO similarity. (a) Yeast PPI network. (b) Human PPI network.

with at least one other module. These overlapped modules
were used to construct a module-module communication
network (Figure 8(a)). In the communication network, each
node is a module, two modules being connected if they share
atleast one protein. To explore the functional of this network,
we used DAVID 6.7 [40, 41] to search for enrichment of
Gene Ontology (GO) terms and the KEGG pathways. We
found that GO terms and pathways related to cancer and
immune response were enriched in the network proteins,
so we mapped the cancer and immune-related proteins to
the modules. As shown in Figure 8(a), of the 47 modules
containing immune-related proteins, 33 included cancer-
related proteins, and the ratio (33/47) was greater than
expected by chance (62 of 152 modules have cancer-related
proteins, Binomial test, P < 0.01). Therefore, the modules
containing immune-related proteins always included cancer-
related proteins and vice versa (33/62 was greater than
expected 47/152, Binomial test, P < 0.01).

To explore the communication between functional mod-
ules, we map the functional annotation to each module and
evaluate the functional similarity between two overlapping
modules. The functional similarity is shown as edge color
in Figure 8: the values between 0 and 1 are painted with
a pink/blue color gradient, and modules without GO anno-
tation have gray edges. Figure 8(b) gives the functional
annotation of modules from the largest cluster in Figure 8(a).
Some overlapping modules have the same function, such
as the three modules involve in the acetylation of peptidyl-
lysine, while several overlapping modules have distinctfunc-
tion, for instance, a module involved in the change of mast
cell is overlapping with another module which takes part in
the reactions mediated by protein kinases. Figure 9 shows an
example of two overlapping modules. One module function
is in B-cell activation processes and it contains five proteins:
Q15464, 075791, 043561, Q13094, and P08575. The other
module (P08575, P20963, P06729, and P06127)involves in
T-cell activation. These two Modules share a protein: P08575

(receptor-type tyrosine-protein phosphatase C, CD45),
which plays a critical role in receptor-mediated signalling in
both B and T-cells [42, 43]. The shared node between two
modules suggests a pathway crosstalk between them. Con-
sistent with this hypothesis, several studies have illustrated
T-cell-dependent B-cell activation [44].

The module-module communication network included
341 overlapping nodes (nodes belonging to two or more
modules). Several studies showed that modular overlaps are
potential drug targets because they are key determinants of
cooperation between network modules [45]. So we investi-
gated the potential druggability of overlapping nodes: 56 of
them were established drug targets and another 43 proteins
were from druggable family [46], which were 99 druggable
proteins in all. The ratio of druggable proteins (99/341)
was significantly higher than expected (2000-3000 druggable
proteins in human [46], Binomial test, P < 0.01).

4. Discussion

For both yeast and human interactomes, MOfinder surpasses
the other five methods in accuracy. Furthermore, MOfinder
is fast in practice for large networks. For example, when ap-
plied to a yeast network including nearly 40,000 interactions
(from 12D [47]), the running time of MOfinder was only
15 seconds. Since the size of biological networks continues
to grow, MOfinder is likely to meet the needs of biological
analysis. However, MOfinder has two possible limitations.
One is that MOfinder specifically detects small-sized mod-
ules (less than 12), but the major module size (5) is close
to the average size of MIPS complexes (6) [20]. MOfinder
detects 125 modules from the yeast PPI network, which is less
than COACH and LPCE. From the perspective of the covered
proteins of predicted modules, MOfinder is rank 4. These
observations suggest another limitation: MOfinder is of too
strict to detect loosely connected modules, partly because the
CC cut-off value is set to 0.67. We suppose that setting the
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CC cut-off value to a small value can increase the number
of detected modules especially loosely connected modules
(including pathways). But what is the biological significance
of the different clustering coefficient thresholds is still an
open question.

Yeast is a simple single-celled eukaryote, so the overlap-
ping modules in yeast generally use one protein for commu-
nication. On the contrary, human, a multicellular organism,

employs more complex system, and thus the overlapping size
of human is larger than that of yeast. We also found the over-
all distribution of overlapping size is similar between yeast
and human after removing repeats. And in Figure 2 the func-
tional steps occur at similar places between yeast and human.
These observations reflect the evolutionary conservation
across eukaryotes. Although overlaps may lead to redundant
modules which overlap with each other heavily, excluding
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FiGUure 9: Two overlapping modules shared one protein P08575.
The yellow module works on T cell activation and the pink module
take part in B cell activation.

the overlapping size 4 (a heavily overlap because the major
module size is 5) from Figures 5, 6, and 7 does not change the
overall pattern of results.

Overlapping modules will work together to carry out sev-
eral complicated jobs, such as signal transduction. So con-
structing a module-module communication network to ex-
plore how these modules communicate with each other can
help to understand biological complexity. Although we just
built such a network in human, similar approach can be
applied to other species. We found that the immune- and
cancer-related proteins are always in the same modules. The
association between immune cells and cancer has been dis-
cussed [48], and several clinical studies and experiment have
proven that the immune system is a new weapon against
cancer [49]. Antitumor adaptive immune responses can sup-
press tumor growth [50], and several immunotherapy drugs
could cure cancers [51]. We provided the evidence for their
close relationship on the system level.

5. Conclusions

In this paper, we describe a novel algorithm for the identifi-
cation of overlapping modules in PPI networks. MOfinder
performs competitively with other methods and uses two
adjustable parameters that enable it to identify modules flex-
ibly. MOfinder is a cross-platform package which is imple-
mented as a C/C++ script, and it can be downloaded and
installed free of charge (http://bsb.kiz.ac.cn/mofinder/). The
application of MOfinder to human PPI gives clues for

fighting against cancer using immune system. And the
overlapping nodes, which are in charge of intermodule cross-
talk, could help to identify potential drug targets.
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