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Abstract: Repairs of bone defects caused by osteoporosis have always relied on bone tissue engineer-
ing. However, the preparation of composite tissue engineering scaffolds with a three-dimensional
(3D) macroporous structure poses huge challenges in achieving osteoconduction and osteoinduction
for repairing bone defects caused by osteoporosis. In the current study, a three-dimensional macrop-
orous (150–300 µm) reduced graphene oxide/polypyrrole composite scaffold modified by strontium
(Sr) (3D rGO/PPY/Sr) was successfully prepared using the oxygen plasma technology-assisted
method, which is simple, safe, and inexpensive. The findings of the MTT assay and AO/EB fluo-
rescence double staining showed that 3D rGO/PPY/Sr has a good biocompatibility and effectively
promoted MC3T3-E1 cell proliferation. Furthermore, the ALP assay and alizarin red staining showed
that 3D rGO/PPY/Sr increased the expression levels of ALP activity and the formation of calcified
nodules. The desirable biocompatibility, osteoconduction, and osteoinduction abilities, assure that
the 3D macroporous rGO/PPY/Sr composite scaffold offers promising potential for use in the repair
of bone defects caused by osteoporosis in bone tissue engineering.

Keywords: strontium (Sr); three-dimensional (3D); scaffold; bone defect; tissue engineering;
oxygen plasma technology

1. Introduction

Previous studies have reported a gradual increase in the incidence of bone defects
caused by osteoporosis due to the aging of the population. More than 200 million people
are estimated to suffer from osteoporosis worldwide [1]. Furthermore, previous studies
have reported that about 50% of people aged 65 suffer from osteoporotic fractures [2].
However, the repair of bone defects caused by osteoporosis has been a challenge for clinical
diagnosis and treatment. Previous studies have demonstrated that osteoporosis delays
the natural healing process of bone fractures and reduces the formation rate and quality
of new bone [3]. Current efforts for the improvement of bone defect repairs for osteo-
porotic fractures entail the improvement of physical and chemical properties as well as
the physiological activity of implant materials to improve osteogenic activity or inhibit
osteoclast activity in situ. For instance, Liu et al. [4] injected calcium sulfate into the os-
teoporotic vertebrae of sheep, which led to a significant improvement in the local bone
mineral density and the biomechanical properties of the vertebrae after three months
compared with the control group. Moreover, Yang et al. [5] demonstrated improved osteo-
genesis in osteoporotic rats upon the implantation of strontium-containing calcium sulfate
hemihydrate. However, these repair materials lacked the morphology of a natural bone
macroporous structure and sufficient biological activity. Scaffolds with three-dimensional
(3-D) porous networks provide effective matrix conditions for bone tissue engineering [6].
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Previous studies have reported that 3D hierarchical scaffolds with a large pore size of
200–500 um and porous bioactive materials deposited on the backbone of the scaffold
could effectively favor tissue growth and capillary formation [7]. Macro-sized pores in
scaffolds benefit the transport of nutrients and simultaneously provide a large specific
area for tissue growth [8]. A porous nanocomposite coating on the skeleton of the scaffold
could markedly enhance the adhesion of osteoblast at early stages of implantation and
stimulate the proliferation and differentiation of osteoblast at subsequent stages of implant
assimilation [9]. Therefore, there is an urgent need to develop new composite scaffold
materials with a macroporous structure and confirm their bioactivity for the repair of bone
defects in osteoporotic fractures.

Strontium (Sr), an essential trace element, has been shown to effectively stimulate bone
formation and inhibit osteoclast activity [10–12]. Previous studies have reported that Sr can
regulate the differentiation ability of bone marrow mesenchymal stem cells and enhance
their osteogenic differentiation ability, thereby playing an important role in regulating the
balance of bone metabolism [13]. In addition, previous studies have reported that Sr can
also inhibit the activity of osteoclasts via interference with the mechanism of the closed area
of osteoclasts [10]. Consequently, strontium-based anti-osteoporosis drugs such as stron-
tium ranelate have been widely recognized by clinicians and patients [14,15]. However, Sr
alone cannot fix and play a role in the repair of bone defects. Several previous studies have
reported different composite materials modified by Sr that could be used to repair bone
defects caused by osteoporosis. For instance, previous studies have demonstrated the use of
strontium-doped hydroxyapatite/silk fibroin (SrHA/SF) biological composite nanospheres
as biomaterials for inducing the repair of bone defects [16]. Strontium-modified hydrox-
yapatite (cSrHA) was also prepared in a previous study, where it was established that Sr
has a positive effect on the repair of bone defects caused by osteoporosis [17]. However,
these substrate materials lack regular three-dimensional macroporous structures similar
to those of natural bone. In a previous study, a three-dimensional macroporous reduced
graphene oxide/polypyrrole (3D rGO/PPY) composite scaffold, with a similar structure
and morphology to natural bone, was successfully prepared through the layer by layer
self-assembly (LBL) method [18]. This scaffold was shown to have good biocompatibility
with osteoblasts.

Graphene exhibits several unique properties, including high electron mobility at room
temperature, exceptional thermal conductivity, the highest theoretical specific surface area,
and superior mechanical properties with a Young’s modulus of 1 TPa. These properties
make graphene an ideal material for several applications. In addition, graphene is the
material of choice for future applications in the electronics and composites industry [19,20].
Furthermore, graphene has shown good performance in medical applications, such as for
cancer treatments [21], disease diagnosis [22], microbiological detection and drug/gene
delivery [23], antibacterial materials [24], and biosensors and biological imaging [25]. Many
previous studies have shown that graphene and its derivatives can induce the adhesion,
proliferation, and differentiation of bone marrow stromal cells (BMSCs) on implants and
biological scaffolds [26,27]. Hence, graphene is an excellent potential biocompatible mate-
rial for medical applications, particularly as a coating for the layers of scaffolds to improve
their bioactivity. Polypyrrole (PPy), an electrically conductive polymer, has a good biocom-
patibility. A previous study reported that extracts of PPy-silicone tubes bridging sciatic
nerve gaps in rats showed no evidence of acute or subacute toxicity, pyrogenicity, hemol-
ysis, allergenicity, or mutagenesis, even after 24 weeks of operation in rats [28]. Notably,
polypyrrole has also been shown to enhance the adhesion of osteoblasts [29]. Therefore, in
addition to being biocompatible, a composite scaffold comprising GO and PPY scaffolds
also promotes the proliferation and adhesion of osteoblasts, which has been confirmed in
previous studies [18].

Plasma etching is the most common approach used in semiconductor processing for
the fabrication of electronic devices. Plasma etching with oxygen is a particularly common
tool used to modify the surface properties of materials, such as surface energy, morphology,
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and resistivity [30]. In addition, oxygen plasma treatment with a high chemical reactivity
to carbon is an effective strategy for the modification of carbon-based materials to alter
their nano-structures and properties [31]. A previous study reported that oxygen plasma
etching on multilayer graphene is isotropic (particles attack water from all angles) [32], and
oxygen exposure to graphene and graphite proceeds with the formation of epoxide groups
at bridge or top sites on the graphene basal plane by oxygen adsorption [33]. Therefore,
oxygen plasma etching provides many active sites for the modification of strontium ions to
graphene-based scaffolds after oxygen plasma treatment.

In the current study, oxygen plasma technology was used to fabricate Sr-modified
3D rGO/PPY composite scaffolds. In addition, the morphology, structure, and chemical
composition of Sr-modified 3D rGO/PPY composite scaffolds (3D rGO/PPY/Sr) were
characterized by SEM, EDS, FTIR, and XRD. Biocompatibility was evaluated by MTT and
acridine orange/ethidium bromide (AO/EB) double staining assays in vitro. Osteogenic
activity was evaluated by alkaline phosphatase (ALP) activity assays and alizarin red
staining experiments in vitro, respectively.

2. Results and Discussion
2.1. Preparation and Characterization

Scaffold material for tissue engineering with regular, three-dimensional macroporous
structure morphology is beneficial for osteogenesis. The SEM results of the 3D rGO/PPY
composite scaffold are shown in Figure 1b–d. The scaffold pore size of 150–300 µm is similar
to the optimal pore size (200 µm) for osteoblast growth, which could provide mechanical
support for cell growth and tissue regeneration [34]. At higher magnification, the scaffold
surface presented small ball-like protrusions, which were PPY particles that formed on the
surface of the 3D rGO/PPY scaffold by electrochemical deposition (Figure 1c,d). Moreover,
particles were “fused” with each other, thereby increasing the mechanical properties of the
base scaffold. The particles can be used as a scaffold material that is easy to maneuver. On
the other hand, the rough surface formed by PPY particles has a good biocompatibility and
promotes the adhesion and proliferation of osteoblasts. The EDX findings showed that,
besides the main C, N, and O elements of the 3D rGO/PPY modified by the Sr scaffold
itself, the increased Sr element was uniformly deposited on the skeleton surface of the
scaffold (Figure 1e–h). This finding indicated that Sr was successfully modified on the
skeleton surface of the 3D rGO/PPY scaffold.

The chemical construction of the scaffolds was characterized by XRD and FTIR. As
shown in Figure 1i, a wide diffraction peak can be observed at 21.4◦ in the 3D rGO/PPY
spectra, which is attributed to graphene. This is because the GO had a low crystallinity for
its irregular arrays of atoms in the three-dimensional structure. After being modified by
Sr, several new peaks appeared, and the peaks at 2θ = 11.2◦, 19.6◦, 26.8◦, 28.8◦ and 44.3◦,
corresponded to strontium salt [35,36]. The characterization diffraction peaks of GO were
not clearly shown in the 3D rGO/PPY/Sr; this is because the amount of GO is relatively low
compared to that of strontium salt. In the FTIR spectra (Figure 1j), the peaks at 3438 cm−1,
1543 cm−1 and 1032 cm−1 indicate that -OH, C=C, and C-O bonds. Vibrational stretching
at 2815 cm−1 indicates the C–H stretching of the aliphatic alkyl group. These are attributed
to graphene oxide [37]. The vibrational stretching at 1458 cm−1 indicated the presence of
the carboxylate group. The peaks at 894cm−1, 660 cm−1 and 606 cm−1 corresponding to
the carbonates (CO3

−2) of the reacted SrCO3 were observed [36,38]. It was indicated that
Sr was successfully modified on the surface of the 3D rGO/PPY scaffold [39].
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Figure 1. (a) Flow diagram of experiment process. (b–d) SEM images of the 3D rGO/PPY scaffold, (e–h) the EDX
results of the 3D rGO/PPY/Sr scaffold. The XRD (i) and FTIR (j) results of the 3D rGO/PPY before and after Sr
modification, respectively.

2.2. MTT Assay

The cytotoxicity of the 3D rGO/PPY and 3D rGO/PPY/Sr composite scaffolds were
evaluated using MC3T3-E1 cells with MTT assays at 24, 48, and 96 h (Figure 2). MTT
assay findings showed that the OD value of the control group and all experimental groups
increased gradually with the co-culture time increasing from 24 to 96 h (Figure 2). Notably,
the OD values of 3D rGO/PPY and 3D rGO/PPY/Sr scaffold groups were significantly
higher compared with those of the control group (p < 0.05). Moreover, the OD value of
the 3D rGO/PPY/Sr scaffold group was significantly higher compared with that of the
3D rGO/PPY group at the same co-culture time point (p < 0.05). The findings of the MTT
assay also show that both the 3D rGO/PPY and 3D rGO/PPY/Sr composite scaffolds
were not cytotoxic and could promote the proliferation of MC3T3-E1 cells. Notably, the
3D rGO/PPY/Sr composite scaffold had a stronger capacity to promote MC3T3-E1 cell
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proliferation compared with the 3D rGO/PPY scaffold. This finding might be related to
the modification of Sr, which was also reported in previous studies, an indication that Sr
promoted MC3T3-E1 cell proliferation [40].

Figure 2. The results of the MTT assay for 3D rGO/PPY and 3D rGO/PPY/Sr scaffolds after co-culture with MC3T3-E1
cells at 24 h, 48 h, and 96 h, respectively. (## p < 0.05 3D rGO/PPY vs. control group, && p < 0.05 3D rGO/PPY/Sr vs. 3D
rGO/PPY group.).

2.3. Acridine Orange/Ethidium Bromide (AO/EB) Double Staining Assay

The apoptosis, adhesion, and proliferation of MC3T3-E1 cells on 3D rGO/PPY and
3D rGO/PPY/Sr composite scaffolds were further evaluated using the AO/EB double
staining experiment. Representative live/dead fluorescent images showed that almost
all MC3T3-E1 cells, both on the backbone of the 3D rGO/PPY and 3D rGO/PPY/Sr
composite scaffolds, glowed green throughout the culture cycle and no red-stained cells
were detected (Figure 3). This finding may indirectly indicate that both the 3D rGO/PPY
and 3D rGO/PPY/Sr composite scaffolds are not cytotoxic. In addition, with the culture
time shifting from 24 to 96 h, the number of MC3T3-E1 cells, both on the 3D rGO/PPY
and 3D rGO/PPY/Sr composite scaffolds, also increased gradually. Low numbers of cells
were observed in 24 h, whereas more cells were observed in 48 h. High numbers of cells
covered almost the entire backbone of the scaffold in 96 h. The number of cells on the
3D rGO/PPY/Sr scaffold group was consistently higher compared with that in the 3D
rGO/PPY scaffold group at the same point of culture time. The findings of the AO/EB
staining further indicated that both the 3D rGO/PPY and 3D rGO/PPY/Sr composite
scaffolds promoted the adhesion and proliferation of MC3T3-E1 cells, although the ability
of the 3D rGO/PPY/Sr composite scaffold was higher compared with that of the 3D
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rGO/PPY scaffold. These findings are consistent with those of the MTT assay and may be
attributed to Sr incorporation [40].

Figure 3. Fluorescence microscopy images of AO/EB double staining assay of MC3T3-E1 cells after co-culture with 3D
rGO/PPY (a–c) and 3D rGO/PPY/Sr (d–f) composite scaffolds at 24, 48 and 96 h, respectively.

2.4. ALP and Alizarin Red Staining Experimental

Ability to induce the differentiation of MC3T3-E1 preosteoblasts into osteoblasts by
3D rGO/PPY and 3D rGO/PPY/Sr composite scaffolds was also determined in the current
study using ALP activity and the alizarin red staining experiment. Previous studies have
reported that the activity level of ALP and the number of calcified nodules reflect their
osteogenic differentiation ability [41]. Higher activity levels of ALP and a higher number of
calcified nodules correlate with a stronger osteogenic differentiation ability. No significant
differences were observed in the ALP activity levels between the 3D rGO/PPY and the
control groups at both the 7th and 14th days (p > 0.05) (Figure 4). However, ALP activity
levels in the 3D rGO/PPY/Sr group were 2 and 1.7 times higher compared to that in the
3D rGO/PPY group at the 7th and 14th days (p < 0.05). Furthermore, the findings of the
alizarin red staining experiment showed that areas of red dye and numbers of calcified
nodules gradually increased both in the 3D rGO/PPY and 3D rGO/PPY/Sr group as
the co-culture time gradually increased (Figure 5). In contrast, the areas of red dye and
numbers of calcified nodules of the 3D rGO/PPY/Sr group were higher compared with
those of the 3D rGO/PPY group at the same point of co-culture time.

The findings of the current study established that the 3D rGO/PPY composite scaffold
modified by Sr promotes the expression of ALP activity levels and the formation of calcified
nodules. In addition, the current study findings showed that 3D rGO/PPY modified by Sr
can potentially improve the osteogenic properties of biomaterials, which may be attributed
to the possibility that Sr2+ can activate calcium sensing receptors (CaR) and increase
osteoprotegerin (OPG) production [42,43].
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Figure 4. Results of the ALP assay. (&& p < 0.05 vs. control group, @@ p < 0.05 vs. 3D rGO/PPY group).

Figure 5. Results of the alizarin red staining assay for MC3T3-E1 cells after co-culturing with 3D
rGO/PPY (a–c) and 3D rGO/PPY/Sr (d–f) composite scaffolds at 7, 14, and 21 d, respectively.

2.5. Morphological Observation

SEM images indicated that MC3T3-E1 had a good morphology and spreading on scaf-
folds (Figure 6). After 48 (a) and 96 (b) hours of co-culture, the cells on 3D rGO/PPY/PDA/Sr
scaffolds were well developed and spread over the surface with prominent
lamellipodia extension.
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Figure 6. SEM images of MC3T3-E1 on the surfaces of 3D rGO/PPY/Sr scaffolds at 48 (a) and 96 h (b), respectively.

2.6. Mechanically Robust Performance

The findings of the current study indicated that the 3D rGO/PPY/Sr scaffold was
loaded with a compression strain up to 90% (Figure 7a); the strain vs. stress curve presented
a non-linear elastic deforming mechanism during compression. The highly loaded 3D
rGO/PPY/Sr scaffold was compressed into a thin ‘pancake’, with a maximum strength of
up to 2.61 kPa corresponding to a compressive strain of 90% (Figure 6a). The compacted
3D rGO/PPY/Sr scaffold then reverted to its original porous status, indicating excellent
robustness for a structure undergoing a large-scale deformation. Moreover, as promising
bioscaffolds for cell attaching and creeping, 3D rGO/PPY/Sr scaffolds are supposed to
have good mechanical elasticity and tough capability to maintain structural stability during
cultivation-transfer processes. The original dry and stiff 3D rGO/PPY/Sr scaffolds were
moistened in culture solvent and then transferred with the structure remaining tough and
robust (Figure 7b). Such superior performance of 3D rGO/PPY/Sr scaffolds in resisting
large deformation and tension force-induced shrinkage enables them to be used widely
as biocompatible scaffolds. Arbitrary configurations such as the O-ring and other shaped
rGO/PPY films can also be easily fabricated using the corresponding shapes of the template
(Figure 7c), implying that the configuration of 3D rGO/PPY full-carbon foam only depends
on the shape of the template. This ensures the precise design of the preferred configuration
of rGO/PPY scaffolds based on the requirement of bone defects, without complicated
subsequent reprocessing.

2.7. Sr Release Determination

The 0.0015g 3D rGO/PPY/Sr scaffolds were immersed in 5 mL of PBS at 37 ◦C, and
PBS was collected after 1, 2, 4, 8, 12, 24, 48, 72, 96, and 120 h, respectively. PBS containing
released Sr was analyzed using ICP−OES. As shown in Figure 8, the cumulative release
of Sr2+ gradually released from the 3D rGO/PPY/Sr scaffold to almost constant and slow
release after 24 h. This is preferable for bone regeneration, as the scaffold can maintain the
moderate concentration of Sr2+ ions for a long time.
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Figure 7. (a) Comparative mechanical compression test of 3D rGO/PPY/Sr scaffold with a maximum
strain of up to 90%. Insets are the snapshots during compression. (b) Validation of mechanical
robustness of 3D rGO/PPY/Sr scaffold during operation in solvent conditions. (c) Optical image of
prepared 3D rGO/PPY/Sr scaffold with O-ring.

Figure 8. Optical image of 3D rGO/PPY/Sr scaffolds were immersed in 5 mL of PBS (the first row).
Release of the Sr ions from the 3D rGO/PPY/Sr (the second row) scaffolds.
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3. Materials and Methods
3.1. Fabrication and Characterization of the 3D rGO/PPY/Sr

The 3D rGO/PPY scaffold was prepared based on the previously reported method [18].
Three-dimensional rGO/PPY samples measuring 1 × 2 cm were treated with oxygen
plasma for 20 min and immersed in 0.2 M strontium chloride solution for 1 h. The treated
3D rGO/PPY samples were then thoroughly rinsed with deionized water to obtain ultimate
composite scaffolds (3D rGO/PPY/Sr). The surface morphology and chemical compo-
sition of composite scaffolds were characterized through scanning electron microscopes
(SEM, JSM-5601LV) equipped with an Energy Dispersive X-ray spectrometer (EDX), an
X-ray powder diffractometer (XRD, D/max-2400, Rigaku, Cu Kα), and a Fourier infrared
spectrometer (FT-IR, IFS66V/S, Karlsruhe, Switzerland). Mechanical compressibility was
measured using an electronic universal testing machine (AGS-x, Shimadzu, Kyoto City,
Japan) with a loading rate of 50 mm min−1. The release property of Sr ions from the
scaffolds was analyzed using inductively coupled plasma optical emission spectrometry
(ICP−OES, Varian, San Diego, CA, USA).

3.2. MTT Assay

Osteoblast-like MC3T3-E1 cells (clonal mouse osteoblastic cell line, ATCC, Rockville,
MD, USA) were cultured in Dulbecco′s Modified Eagle Medium (DMEM, Gibco, Waltham,
Massachusetts, USA) containing 10% fetal bovine serum (FBS, Gibco, Waltham, Mas-
sachusetts, USA) at 37 ◦C, with the medium being changed every two days. The cyto-
toxicity of the 3D rGO/PPY and 3D rGO/PPY/Sr composite scaffolds were examined
using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT, St. Louis,
MO, USA) assay, and the absorbance of the solution in each well was determined at a
wavelength of 490 nm using a microplate reader (Bio-Rad iMark, Hercules, CA, USA).

3.3. Acridine Orange/Ethidium Bromide (AO/EB) Double Staining

Reagents AO and EB were purchased from Sigma (St. Louis, MO, USA). Living
and apoptotic cells were determined morphologically after AO/EB staining, followed
by fluorescence microscopy inspection. Briefly, MC3T3-E1 cells were seeded at a density
of 106 cell/mL concentration in a 24-well plate incubated with the 3D rGO/PPY and 3D
rGO/PPY/Sr composite scaffolds. After 24, 48, and 96 h, all cultured scaffolds were har-
vested, washed thrice with PBS, and dehydrated with 4% paraformaldehyde. The scaffolds
were then stained with AO/EB solution (1:1 mixture of 1 mg/mL ethidium bromide (EB)
and 1 mg/mL acridine orange (AO)) in the dark for 3 min. Cellular morphology was
evaluated using a fluorescence microscope (Olympus BX53, Tokyo, Japan).

3.4. Alkaline Phosphatase (ALP) Activity

The differentiation of MC3T3-E1 cells was determined by ALP activity, which was
assayed using an Alkaline Phosphatase Assay Kit (Nanjing Jiancheng Bioengineering
Institute, Jiangsu, China) based on the manufacturer’s protocol. Briefly, MC3T3-E1 cells
were seeded onto samples in 6-well plates at a density of 104 cell/mL concentration. After
co-culturing for 7 and 14 days, scaffolds were washed thrice with PBS and lysed with 0.01%
Triton-X 100 to dissolve cells. The mixture was centrifuged at 2000 rpm for 15 min. The
supernatant was transferred to an EP tube and the ALP working solution was added. After
incubation at 37 ◦C for 15 min, 1 M NaOH was added to terminate the reaction. Absorbance
at 520 nm was determined using a microplate absorbance reader (Bio-Rad iMark). All
experiments were undertaken in triplicate.

3.5. Alizarin Red Staining

The ECM mineralization of MC3T3-E1 co-cultured with the 3D rGO/PPY and 3D
rGO/PPY/Sr composite scaffolds were tested through alizarin red staining. MC3T3-E1
cells were seeded onto samples in 6-well plates at a density of 104 cell/mL concentration.
After 3 days, the cultured solution was replaced with the osteogenic medium (DMEM



Molecules 2021, 26, 4451 11 of 13

supplemented with 10% PBS, 10 mM β-glycerophosphate, and 50 µg/mL ascorbic acid).
Cells were rinsed twice with PBS after co-culturing for 7, 14, and 21 days and fixed in
4% paraformaldehyde for 10 to 20 min at room temperature. Cells were stained with
alizarin red for 30 min and washed thrice with PBS. The formation of calcium nodules was
observed using an inverted microscope.

3.6. Morphological Observation

MC3T3-E1 were cultured, grown on scaffolds for 24 and 48 h, and fixed (4% paraformalde-
hyde) for 15 min. Samples were then rinsed with PBS and dehydrated, followed by drying
for 1 min and gold sputtering, before observation using a scanning electron microscope
(SEM, JSM-5601LV)

3.7. Statistical Analysis

Statistical analyses were performed using SPSS version 12.0. One-way analysis of
variance (ANOVA) with Bonferroni post hoc tests was undertaken to examine differences
among groups. Values of p < 0.05 were considered statistically significant.

4. Conclusions

The current study developed a simple and effective modification method to fabricate
a 3D rGO/PPY/Sr scaffold using oxygen plasma-assisted strategy. The 3D rGO/PPY/Sr
scaffold showed an outstanding biocompatibility and a prominent ability to promote the
proliferation of MC3T3-E1 cells. By co-culturing with MC3T3-E1 cells, the 3D rGO/PPY/Sr
scaffold showed higher levels of ALP activity and an ability to promote the formation of
calcified nodules. To the best of our knowledge, 3D rGO/PPY/Sr composite scaffolds are
potential materials for the repair of bone defects caused by osteoporosis in the future.
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