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Abstract: The potency, selectivity, and decreased side effects of bioactive peptides have 

propelled these agents to the forefront of pharmacological research. Peptides are especially 

promising for the treatment of neurological disorders and pain. However, delivery of 

peptide therapeutics often requires invasive techniques, which is a major obstacle to their 

widespread application. We have developed a tailored peptide drug delivery system in 

which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer 

for the packaging and controlled release of bioactive peptides. Recent efforts have 

demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and 

translocate them across blood-brain-barrier (BBB) models. However, release of 

encapsulated peptides at their target site remains a challenge. Here a Ring Opening 

Metathesis Polymerization (ROMP) reaction is applied to trigger P22 nanocontainer 
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disassembly under physiological conditions. Specifically, the ROMP substrate norbornene 

(5-Norbornene-2-carboxylic acid) is conjugated to the exterior of a loaded P22 

nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading 

to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the 

ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides 

proof-of-concept for the construction of a triggerable peptide drug delivery system using 

viral nanocontainers. 

Keywords: peptide therapeutics; nanocontainers; drug delivery; P22 bacteriophage; viral 

capsid; ROMP; controlled disassembly; triggered release; Grubbs catalyst; venom peptides 

 

1. Introduction 

For much of the twentieth century, “drug discovery and development” was synonymous with the 

identification and synthesis of biologically active small molecules derived from natural products or 

created through rational-design processes. However, since 1980 the number of new chemical entities 

(NCEs) registered each year with the FDA has remained more or less constant, despite the 

proliferation of newly identified drug targets and the considerable financial and scientific resources 

devoted to drug discovery [1,2]. Bioactive peptides, which are very potent, highly selective, and do not 

produce toxic metabolites upon degradation, are a promising alternative to small molecules for drug 

discovery and development [1,3]. There are numerous natural reservoirs of bioactive peptides, such as 

the venom arsenal of predatory marine snails, spiders, and other organisms, that have yet to be 
thoroughly explored and characterized [4–8]. Ziconotide (Prialt®), a peptide drug first identified in the 

venom of the marine snail Conus magus, is the first non-opioid analgesic and is currently used to 

alleviate chronic pain in HIV and cancer patients [8–10]. 

The primary obstacle to the widespread use of bioactive peptides has been their unfavorable 

pharmacokinetic profile. Unstructured peptides are degraded by endogenous proteases and are thus 

relatively unstable in vivo [11]. Additionally, most peptides, with the exception of specialized  

cell-penetrating peptides, cannot cross the blood-brain barrier (BBB) [12]. However, peptide 

therapeutics derived from venomous organisms exhibit improved pharmacokinetic profiles, in part due 

to the structural integrity provided by disulfide bonds. Ziconotide, for example, is stabilized by three 

disulfide bonds that confer increased resistance to endogenous proteases. The structural stability of 

ziconotide ensures prolonged relief when it is administered as a pain therapy [8–10]. However, 

ziconotide does not cross the BBB, and must be administered by intrathecal injection [10].  

An alternative to intrathecal injection for the administration of ziconotide, in which the peptide was 

encapsulated in a viral nanocontainer and delivered across the BBB via a trojan horse strategy, was 

recently described [12].  

Packaging peptides in a nanocontainer delivery system is an effective strategy for improving their 

pharmacokinetic profile, as the nanocontainer can protect the peptide during transport and release at 

the site of its molecular target. The list of macromolecules that have been investigated for their potential 

as delivery vectors is extensive and diverse. It includes polymeric nanoparticles [13], micelles [14], 
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liposomes [15], DNA origami structures [16], and protein cages such as viral capsids (with the 

infectious genome removed) and ferritins [17,18]. Regardless of the type of macromolecule used, 

nanocontainer delivery systems generally consist of three steps: packaging of the pharmacological 

agent, targeting of the loaded nanocontainer to the appropriate site in vivo, and disassembly or release 

of the active compound. While strategies for packaging and targeting nanocontainers have been 

extensively studied, controlled release of the encapsulated drug remains problematic [12,19,20].  

In large part, hurdles to nanocontainer disassembly persist because the release mechanism needs to 

function under physiological conditions of moderate temperature, neutral pH, and aqueous environment. 

Here, we present a strategy for inducing disassembly of a nanocontainer derived from the viral 

capsid of the Salmonella typhimurium bacteriophage P22 under physiological conditions. The P22 

capsid is a T = 7 icosahedral lattice composed of 420 copies of P22 coat protein (CP) that  

self-assemble in the presence of approximately 300 copies of the P22 scaffold protein (SP) [21].  

A truncated version of the SP, consisting of the last 66 C-terminal residues, is sufficient for  

self-assembly of the procapsid [22]. The Douglas group recently developed a system for packaging 

arbitrary gene products into the P22 capsid shell by using standard recombinant methods to create a 

fusion protein consisting of an arbitrary cargo protein joined to the P22-SP C-terminus by a thrombin 

cleavage site [23]. Various gene products have been loaded into the P22 capsid in this manner, 

including the fluorescent proteins EGFP and mCherry, the enzyme alcohol dehydrogenase D,  

and ziconotide [12,23,24].  

 

Figure 1. Creating a dissociative viral nanocontainer for peptide drug delivery. A viral 

nanocontainer is conjugated to strained olefins that undergo a ring opening polymerization 

reaction (ROMP) in the presence of Grubbs II Catalyst. The ROMP reaction disrupts the 

architecture of the nanocontainer, resulting in disassembly and release of the encapsulated 

peptide cargo. 

Our strategy for triggered disassembly of the P22 nanocontainer employs Ring Opening Metathesis 

Polymerization (ROMP), an olefin metathesis reaction that is known to proceed under physiological 

conditions in the presence of a ruthenium catalyst (Grubbs Catalyst) [25,26]. The ROMP disassembly 

strategy is desirable as it can be triggered to release the cargo in response to a defined stimulus,  
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which will provide temporal control over the pharmacokinetics of the encapsulated drug [27]. 

Specifically, we conjugated the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid) to the 

exterior of loaded P22 nanocontainers and used a 2nd Generation Grubbs Catalyst (Grubbs II catalyst) 

to trigger the ROMP reaction. Our results indicate that the ROMP reaction disrupts the P22 

nanocontainer architecture, which could lead to release of the encapsulated cargo (Figure 1). 

2. Materials and Methods 

2.1. Construction of P22-GFP Nanocontainers  

P22-GFP nanocontainers were constructed as described in O’Neil et al. [23] (Figure 2A). Briefly, 

BL21 E. coli were transformed with a plasmid containing the genes for the P22 coat protein and an 

engineered GFP-scaffold protein fusion. Transformed E. coli were grown to OD600 = 0.6 and induced 

with isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested and lysed, and clarified 

lysates were subject to ultracentrifugation over a 35% sucrose cushion. Viral pellets were further 

purified over a sephacryl (S-500) size-exclusion column (GE Healthcare). Detection of GFP protein 

was achieved by electrospray ionization mass spectrometry (45,515 Da for EGFP-SP141 fusions) to 

confirm successful encapsulation inside P22 nanocontainers. 

 

 

Figure 2. Construction of the P22-GFP Nanocontainer. (A) Incorporation of cargo protein 

into P22 capsid. When the P22 coat protein (green circles) is co-expressed with an 

engineered scaffold protein-cargo protein construct (orange squares and purple circles, 

respectively), the nanocontainer self-assembles with the coat protein on the exterior and the 

scaffold and fusion proteins on the interior. Here, the cargo protein is GFP. (B) Dynamic 

Light Scattering (DLS) of unconjugated P22-GFP nanocontainers reveals spherical entities 

with a mean diameter of 49.8 nm. (C) TEM (Transmission Electron Microscopy) image of 

P22 nanocontainers. The assembled capsids are homogeneous in size, shape, and packaging. 

Scale bar = 100 nm. (D) Confocal fluorescence microscope image of P22-GFP at 100× 

magnification confirms the presence of GFP.  
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2.2. Confocal Fluorescence Microscopy Characterization of P22-GFP Nanocontainers 

Spinning disc confocal microscopy was carried out on a Perkin Elmer UltraView ERS instrument 

using a GFP filter. Samples of P22-GFP were diluted 16x with nanopure water, mounted onto a slide, 

and examined at 100× magnification. Images were produced with Volocity 3D Image analysis software. 

2.3. Conjugation of Norbornene to P22-GFP Nanocontainers  

To conjugate norbornene to surface-exposed lysine residues on the P22 bacteriophage capsid,  

1.4 mg of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and 1.6 mg N-hydroxysuccinimide 

(sulfo-NHS) were added to 1 mL of a (1 mg/mL) solution of 5-norbornene-2-carboxylic acid in 0.1M 

phosphate buffer (pH 6.0) (all reagents were purchased from Sigma-Aldrich). The solution was 

allowed to react at room temperature with intermittent vortexing. After 30 minutes, 0.1 M dibasic 

phosphate stock was added dropwise to raise the pH to 7.5. To this activated 5-Norbornene-2-carboxylic 

acid solution was added 250 μL of (13.2 mg/mL) P22-GFP in PBS. After reacting at room temperature 

overnight on a shaker at 250 rpm, the product was concentrated by means of a 10 KDa MWCO 

centrifugal filter device (Amplicon) and resuspended in pH 7.0 phosphate buffer.  

2.4. MS Characterization of P22-GFP-Norbornene Nanocontainers 

Mass Spectrometry (MS) analyses were carried out on a 6520 Accurate Mass QTOF LC/MS system 

(Agilent Technologies). P22 nanocontainers conjugated with 5-Norbornene-2-carboxylic acid (1 μL, 

1.0 mg/mL) were injected into an Agilent Eclipse Plus C18 column and eluted with 99.9% ACN, 0.1% 

formic acid. Spectra were produced using Agilent MassHunter Qualitative Analysis software.   

2.5. Ring Opening Metathesis Polymerization (ROMP) of P22-GFP-Norbornene Nanocontainers  

Two samples of (2 mg/mL) P22-GFP-Norbornene were transferred to microfuge tubes in aliquots of 

20 μL. To the first (control) sample was added 1.7 μL of nanopure H2O. To the second (experimental) 

sample was added 1.7 μL of 0.01% (w/v) (10 mol%) Grubbs II Catalyst (Sigma-Aldrich). Samples 

were vortexed and allowed to react 24 hours at room temperature. 

2.6. Transmission Electron Microscopy (TEM) Characterization of P22-GFP Nanocontainers and 

Post-ROMP P22-GFP-Norbornene Nanocontainers 

TEM images were produced on a JEOL JEM 2100 instrument with an acceleration voltage of  

200 kV. Samples were applied to a carbon-coated copper grid and stained with uranyl acetate solution, 

then dried at room temperature. Images were processed and analyzed using ImageJ software. 

2.7. DLS Characterization of P22-GFP Nanocontainers 

Dynamic light scattering (DLS) measurements were recorded using a PD2000DLS instrument 

(PDDLS/Cool Batch 90T, Precision Detectors). Nanocontainers at a concentration of 1 mg/mL in pH 7.2 

PBS were filtered through a 0.2 μm syringe filter and transferred to a 0.5 × 0.5 mm glass cuvette for 

DLS analysis.  
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2.8. P22-GFP Heat-Activated Disassembly Monitored by Native Agarose Gels 

P22-GFP-Norbornene samples were divided into eight aliquots of 15 μL each and heated for  

10 minutes under a thermal gradient. Specifically, the first aliquot was heated at 50 °C, with 5 degrees 

added for each subsequent aliquot, so that the final aliquot was heated at 85 °C. Samples were allowed 

to cool, mixed with loading buffer (40% glycerol, bromophenol blue) and loaded into the wells of a 

1.0% native agarose gel with unheated P22-GFP and P22-GFP-Norborne controls. Gels were run at 65 V 

for 2.5 hours in TAE buffer (40 mM tris, 20 mM acetic acid, 1 mM EDTA), then stained with 

coomassie blue and destained with acetic acid and methanol. Images were produced using a 

Foto/Analyst FX imaging system (Fotodyne). 

3. Results 

3.1. Characterization of P22-GFP Nanocontainers 

The integrity of P22-GFP nanocontainers was determined using dynamic light scattering (DLS), 

TEM, and spinning disk confocal fluorescence microscopy. DLS analysis detected spherical 

nanocontainers with a mean diameter of 49.8 nm (expected mean diameter 50.0 nm) [23]. TEM  

images revealed capsids that are homogeneous in size and shape (Figure 2B and 2C). Spinning disk 

confocal fluorescence microscopy at 100× magnification and 16× dilution revealed a field of bright 

green dots, indicating the successful encapsulation of GFP. DLS, TEM, and confocal fluorescence 

microscopy characterization, together with prior MS data [23] confirmed the construction of P22-GFP 

nanocontainers.  

3.2. Characterization of Norbornene-Conjugated P22-GFP Nanocontainers  

The P22-GFP-norbornene conjugation reaction was monitored by MS analysis. Compounds with 

masses corresponding to that of the P22 coat protein (expected mass 46,596 Da, observed mass 47,192 Da) 

plus an integral number (between 2 and 6) of 120 Da adducts was detected (Table 1). The 120 Da mass 

corresponds to a 5-norbornene-2-carboxylic acid moiety conjugated to a free amine to form an amide 

bond (Figure 3). A weighted average of the number of norbornene adducts per coat protein monomer 

(with the weight determined by the relative abundance by volume of each compound cited in  

Table 1) suggests there are slightly more than four norbornene moieties per coat protein monomer,  

or approximately (4 norbornene adducts per monomer) × (420 coat protein monomers per  

nanocontainer) equates to 1700 norbornenes per nanocontainer. Although the P22 coat protein  

contains 19 lysine residues that could potentially couple with an activated 5-Norbornene-2-carboxylic 

ester, not all of these are surface-exposed, which would explain why not all 19 lysines are conjugated 

with norbornene.  
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Table 1. Compounds detected through MS analysis of norbornene-conjugated P22-GFP 

nanocontainers. Seven P22-Norbornene compounds were detected by MS analyses.  

The unconjugated coat protein had a baseline observed mass of 47,192 Da  

(expected mass = 46,596 Da). Each additional conjugated norbornene adds an average of 

120 Da. to the baseline mass. The volume-weighted average is 4.12 norbornenes per coat 

protein monomer.  

Compound Mass Vol % No. of Norbornenes 

5 47,792.2998 26.8 5 
4 47,672.4353 24.17 4 
3 47,552.3638 20.9 3 
2 47,672.0044 12.43 4 
6 47,911.832 5.81 6 
1 47,432.2401 5.24 2 
7 47,911.4899 3.95 6 

   

Figure 3. Conjugation of Norbornene-COOH to the Capsid Surface. (A) Norbornene-COOH 

is activated with EDC and sulfo-NHS, leading to the formation of an amide bond with the 

ε-NH2 of surface-exposed lysine residues. (B) Mass spectrum of unmodified capsid coat 

protein (m/z = 47,192). (C) Mass spectrum of coat protein subunit conjugated with five 

norbornene subunits (m/z = 47,792).  

3.3. TEM Characterization of P22-GFP-Norbornene ROMP Reaction 

The integrity of the P22 nanocontainers before and after conjugation with norbornene and treatment 

with Grubbs II catalyst was monitored by TEM. TEM revealed that P22-GFP-Norbornene capsids 

treated with 10 mol% Grubbs II catalyst exhibited strained and distorted morphologies when compared 

with untreated P22-GFP-Norbornene (Figure 4). Treated capsids also exhibited robust bridge 

structures at inter-capsid interfaces. The ROMP reaction was functional under experimental conditions.  
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Figure 4. Disassembly of P22 nanocontainer using Grubbs Catalyst-activated ROMP.  

(A) Reaction scheme of ROMP (Ring Opening Metathesis Polymerization) reaction. P22 

nanocontainers conjugated with norbornene are treated at room temperature under 

physiological conditions with Grubbs II Catalyst, which triggers polymerization of 

norbornene and disruption of nanocontainer conformation. TEM of nanocontainers before 

ROMP reaction (B), and after ROMP (C), illustrate the morphological change.  

P22-norbornene nanocontainers treated with 10 mol% Grubbs II catalyst exhibit strained 

and distorted morphologies when compared with untreated P22-GFP-Norbornene 

nanocontainers. Treated nanocontainers also exhibit robust bridge structures, suggesting 

that the ROMP reaction is occurring at both intra- and inter-nanocontainer interfaces.  

Scale bar = 50 nm.  

3.4. Characterization of Heat-Induced Dissociation of P22 Nanocontainer 

P22 nanocontainers are known to undergo morphogenesis when heated. The nanocontainers expand 

to a diameter of 64 nm when heated at 65 °C and shed the coat protein pentons at each of the 12 fivefold 

axes of symmetry when heated at 75 °C. Heating above these temperatures causes disassembly [23,28]. 

Native agarose gel characterization illustrated that P22-GFP-Norbornene nanocontainers begin to 

dissociate after 10 minutes in the 60–70 °C range, as indicated by the disappearance of the 30 MDa band 

(Figure 5). The streaking towards the top of the gel in lanes, corresponding to temperatures of  

B C 
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65 °C and above, is likely due to the formation of large amorphous aggregates, which are visible in the 

background of TEM images of samples of P22-GFP-Norbornene heated for 10 minutes at 65 °C 

(Figure 5A). Significantly, TEM images of P22-GFP-Norbornene treated with 10 mol% Grubbs II 

catalyst and TEM images of P22-GFP-Norbornene heated for 10 minutes at 65 °C show similar 

patterns of morphological distortion, suggesting dissociation of the nanocontainers (Figure 5A).  

 

Figure 5. Heat-induced disassembly of P22 nanocontainers vs. ROMP-triggered 

morphological distortion of P22-GFP-norbornene nanocontainers. (A) Heating of P22-GFP 

nanocontainers at 65 °C for 10 m results in a rough, distorted texture that indicates the 

beginning of capsid dissolution. P22-GFP-Norb nanocontainers treated with 10 mol% 

Grubbs II catalyst exhibit a similar pattern of distortion. (B) Native 1% agarose gel of 

heated P22-GFP-Norb nanocontainers shows the onset of disassembly after 10 m at 65 °C. 

All TEM images at 20k magnification. 

4. Conclusions 

Delivering peptide drugs to their site of action in a controlled manner remains a significant 

challenge. Here we describe a drug delivery system that encapsulates a peptide cargo within a viral 

nanocontainer and employs a catalyst-driven ROMP reaction to trigger release of the encapsulated 

cargo. Specifically, activated 5-Norbornene-2-carboxylic acid was conjugated to surface-exposed 

lysine residues on the P22 bacteriophage procapsid in a yield of approximately four norbornene 

moieties per P22 coat protein monomer. Treatment of the P22-GFP-Norbornene nanocontainer with 

Grubbs II catalyst precipitated a ROMP reaction that distorts the morphologies of individual 

nanocontainers. These results illustrate a method for inducing conformational changes in engineered 

P22 bacteriophage nanocontainers that will enable the controlled release of loaded peptide cargos. 

Recent studies have illustrated that viral capsid nanoplatforms, such as the P22 capsid used in this 

study, are not toxic in cell lines, nor when administered to mice [12,29]. In particular, the Kaiser et al. 

study provided a baseline for protein nanoplatform degradation and clearance in vivo. The Kaiser study 
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found that single injections of naïve and immunized mice with representative protein cage nanoplatforms 

derived from the Cowpea chlorotic mottle virus (CCMV) and the heat shock protein (Hsp) of the 

hyperthermophilic archaeon Methanococcus jannaschii did not lead to overt toxicity. Protein cages 

were broadly distributed throughout most tissues and organs, were rapidly excreted within 24 hours, 

and did not exhibit long-term persistence in tissue or organs. While a comprehensive analysis has yet 

to be performed on the P22 capsid, these results suggest that the protein cage of P22 capsid may also 

be safe for biomedical applications. In addition, preliminary reports indicate that the polynorbornene 

produced by the ROMP disassembly reaction is not cytotoxic [30]. 

The Grubbs catalyzed ROMP strategy for nanocontainer disassembly that we have pursued here is 

novel. Previous strategies for nanocontainer disassembly have required the manipulation of environmental 

conditions such as pH and temperature that cannot be readily controlled in vivo [11]. Our ROMP-based 

method builds upon the resurgence in material and natural product chemistry applications that 

followed the introduction of solvent-tolerable catalysts such as the ruthenium-based Grubbs catalyst in 

the 1990s and 2000s. The Grubbs catalyst not only accelerated metathesis reactions to a physiologically 

relevant timescale (in many cases a matter of minutes), but also allowed for the use of water-based 

solvents and proved effective at initiating metathesis reactions in minimal concentrations [31]. In addition, 

the water-compatible properties of the ROMP reaction suggests that the catalyst could be administered 

to patients via intravenous drip therapy, similar to saline. 

While we have successfully demonstrated the ROMP reaction, there are several questions that need 

to be addressed to make this a viable method in vivo. For example, the Grubbs II catalyst applied is 

ruthenium-based, and ruthenium (Ru) is mildly toxic [32,33]. However, the amount of Grubbs II 

catalyst needed to initiate a ROMP reaction is relatively small. Here we applied 10 mol% Grubbs II 

catalyst, however, other studies report effective catalysis in water with amounts as low as 2 mol% [34]. 

Additionally, there have been efforts to produce ROMP catalysts based on elements with reduced 

toxicity, such as molybdenum (Mo) and tungsten (W) [35,36]. Replacing Ru with Mo or W would 

extend the potential application of in vivo ROMP nanocontainer dissociation.  

Finally, more recent iterations of ROMP catalysts allow for photoactivated reactions that are initiated 

when ROMP monomers are exposed to UV-visible light (~365–420 nm) in the presence of a photolabile 

catalyst [37]. One recent study used light at similar wavelengths (380–500 nm) to trigger a photoswitchable 

affinity tag targeting potassium channels in cultured cerebral cells. Results from the same study indicated 

that brain tissue did not significantly impede light penetration using 380–500 nm [38]. An alternative 

strategy for triggering a photoactivated ROMP reaction within the CNS would be to use a red-shifted 

photoswitchable catalyst, since near-IR radiation can more effectively penetrate tissue. Photoactivated 

ROMP could thus provide a trigger mechanism for exerting precise spatial and temporal control over 

the release of encapsulated drug cargoes. Together with our findings, these recent studies pave the way 

for the development of a ROMP-triggered P22-based nanocontainer system for the controlled delivery 

of peptide therapeutics. 
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