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Evaluation of AlphaFold2 structures as docking targets
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Abstract

AlphaFold2 is a promising new tool for researchers to predict protein struc-

tures and generate high-quality models, with low backbone and global root-

mean-square deviation (RMSD) when compared with experimental structures.

However, it is unclear if the structures predicted by AlphaFold2 will be valu-

able targets of docking. To address this question, we redocked ligands in the

PDBbind datasets against the experimental co-crystallized receptor structures

and against the AlphaFold2 structures using AutoDock-GPU. We find that the

quality measure provided during structure prediction is not a good predictor of

docking performance, despite accurately reflecting the quality of the alpha car-

bon alignment with experimental structures. Removing low-confidence regions

of the predicted structure and making side chains flexible improves the dock-

ing outcomes. Overall, despite high-quality prediction of backbone conforma-

tion, fine structural details limit the naive application of AlphaFold2 models as

docking targets.
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1 | INTRODUCTION

Computer-aided design is an essential component of
modern drug discovery and development. As presented
in a recent literature review (Sabe et al., 2021), computa-
tional methods have been acknowledged in the discovery
process for at least 70 commercialized drugs. The study
documents the use of �80 methods for virtual screening,
with programs of the AutoDock suite (Forli et al., 2016;
Morris et al., 2009) as the most used. The use of these vir-
tual screening methods with homology modeling as

targets is less clear—in the review of these 70 drugs,
homology modeling was only noted in four. However,
docking experiments with computationally derived target
models have a long history.

Template-based homology models have long been
used in docking experiments with some significant suc-
cesses. Several survey studies have provided a few guide-
lines (Bordogna et al., 2011; Fan et al., 2009;
McGovern & Shoichet, 2003). As might be expected,
docking results are only as good as the model, and in par-
ticular, the exact conformation of the active site, so in
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general, structure of holo complexes provide better results
than apo target structures, which are in turn generally
better than modeled structures. Modeling some degree of
receptor flexibility can provide some respite for small
problems with active site geometry. A full review of dock-
ing with homology models is beyond the scope of this
report, but an overall rule-of-thumb has emerged that
homology models based on templates with >50%
sequence identity can be expected to be accurate enough
for docking and screening (Bordogna et al., 2011). The
emergence of machine-learning methods for protein
structure prediction promises to lift this limitation.

The recent advance in structure prediction with
AlphaFold2 (AF2) expanded the scope of protein struc-
tures available for docking to cover the entire human
proteome (Jumper et al., 2021). Recently these predic-
tions were expanded to cover virtually every known pro-
tein sequence (Callaway, 2022; Varadi et al., 2022). This
will enable molecular biology and medicinal chemistry
programs to apply structure-based methods, such as vir-
tual screening, to otherwise uncharacterized targets.
However, it remains an open question whether the met-
rics used to validate structures generated to ensure they
will be high-quality targets for docking.

Use of computationally derived models of proteins in
docking simulations poses multiple challenges. Perhaps
most importantly, docking methods are typically quite
sensitive to the local details of loop flexibility and side-
chain conformation. A variety of methods are used to
address this challenge, including docking approaches
that include target flexibility within the docking experi-
ment and methods that dock to an ensemble of confor-
mations derived from molecular dynamics of the target.
Additionally, methods such as AF2 are currently most
effective for monomeric proteins that have defined,
folded native structures. We might expect that this limita-
tion will be lifted as the method is improved to predict
functional oligomeric assemblies.

In this study, we seek to benchmark the performance
of AutoDock using AF2-determined structures relative to
experimentally resolved structures in redocking exercises.
We are adopting the structure and standards of the CASF
competition (Su et al., 2019), in which comparisons
between docking methodologies are usually made, to
instead evaluate the source of the target structure.

2 | RESULTS

2.1 | Docking using PDBbind structures
and AlphaFold2 models

To assess the performance of AutoDock simulations
using AlphaFold2 structures, we started with the refined

set of protein-ligand complexes in the PDBbind database
(Wang et al., 2005). For docking calculations, we used
AutoDock-GPU v1.5.3 (Santos-Martins et al., 2021), the
current version of AutoDock that leverages acceleration
by Graphics Processing Units. Of the 5316 complexes in
the refined set of the PDBbind database, 2907 are human
proteins and had structures predicted by AF2 in January
of 2022. Of this set, 2474 were parsed without issues in
ligand valence and protonation states which could not
be resolved by OpenBabel (O'Boyle et al., 2011), and
were used for docking. Redocking against the crystal
structure with AutoDock-GPU led to a 41% success rate,
measured by the RMSD of the highest-ranked
docked pose of less than 2 Å. This is comparable to a
previously published performance of AutoDock 4 of 45%
(Huey et al., 2007). By contrast, docking against the
AF2-predicted structures led to a 17% success rate. The
docking success rate was not substantially impacted by
the oligomeric nature of the complex, and both docking
tasks were hindered by the absence of a cofactor during
docking otherwise present in the crystal complex
(Table 1).

A comparison of the docking RMSD against the pre-
dicted and cocrystal structures shows two lines along
which most of the complexes fall (Figure 1a). In the com-
plexes lying along the diagonal, the docking performance
was comparable on the two sets of structures, indicating
that poor RMSD in this region is due to inherent chal-
lenges in predicting the complex rather than features of
the AF2 predicted structures. By contrast, the group of
complexes lying in the low RMSD region for redocking
against the crystal structure but have varying RMSDs
against the predicted structure reflect complexes where
the use of an AF2 predicted structure introduced a new
challenge in the docking. This increased RMSD in the
AF2 prediction is not reflective of poor alignment
between the structures, which is not predictive of dock-
ing performance (Figure 1b). However, this alignment
was correlated with the “predicted Local Distance Test”
(pLDDT) used as a confidence measure for the AF2 pre-
dictions (Figure 1c). This reflects a disparity between the
structural metrics used to assess prediction quality and
docking performance. There is a bimodal distribution in
the docking RMSDs for both docking tasks, which is
more pronounced for the predicted structures
(Figure 1a). Visual inspection suggests the first peak, cen-
tered at about 1.5 Å in both histograms, is associated with
binding to the correct pocket, in an accurate or nearly
accurate orientation, and the second peak, a broad peak
at about 6 Å in both histograms, is associated with bind-
ing to a nearby pocket, or to the correct pocket with a
highly inaccurate binding mode. The first peak roughly
corresponds to the 2 Å RMSD cutoff defined as a success-
ful docking.
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TABLE 1 Summary of docking results

<2 Å RMSD 2–5 Å RMSD >5 Å RMSD

Structures Number PDB (%) AF2 (%) PDB (%) AF2 (%) PDB (%) AF2 (%)

All 2474 41 17 25 24 34 60

Monomer 1797 40 17 24 24 36 59

Oligomer 677 44 17 28 22 28 60

No cofactor 1821 47 18 24 22 30 60

Cofactor 653 25 15 31 28 44 57

FIGURE 1 Redocking and alignment RMSD statistics. (a) Docking RMSD for first ranked pose for the crystal structure versus the AF2

predicted structure; (b) docking RMSD for first ranked pose against the AF2 predicted structure versus the RMSD between Cα of the aligned

AF2 structure and the crystal structure for pocket residues; (c) pocket alignment RMSD versus mean AF2 predicted confidence for pocket

residues. Points are colored by relative density of the plotted data (blue: low density, yellow: high density). Some data lies off the shown axes.
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2.2 | Flexible receptor docking

AF2 is trained and tested against the accuracy of its Cα

predictions, while side chains are minimized using a for-
cefield and are not considered in the quality of the
model. In light of this, we expected there would be cases
where the secondary structural characteristics of the
pocket were predicted with high fidelity, but that small
variations in side chain conformations would lead to
inaccurate docking results. Indeed, in the cases of PDB
ID 4ufl and 5hz6 the backbone alignment in the binding
pocket was excellent (0.30 and 0.43 Å RMSD respec-
tively), but side chain clashes led to inaccurate redock-
ing (3.00 and 6.29 Å RMSD respectively; Figure 2). In
AutoDock it is possible to simulate specific side chains
as flexible by modeling all bonds as rotatable from the
Cα on (Morris et al., 2009). Improved RMSD docking
results (0.48 and 1.86 Å respectively) were obtained by
making selected clashing side chains flexible during the
docking.

2.3 | Low-confidence strands

Low-confidence regions of the AF2 predictions may rep-
resent barriers to docking when they are predicted to be
located in close proximity to the binding site. For exam-
ple, the predicted structure of 3qkd includes an alpha-
helical segment that is disordered in the crystallographic
structure, but is placed within the active site by AF2

(Figure 3). The active site pocket was well aligned (0.69 Å
RMSD) but the docking result was inaccurate (9.70 Å
RMSD). Deleting the interfering low-confidence alpha
helix and making two residues flexible led to a substan-
tially improved result (2.89 Å RMSD). While this docking
RMSD would not be low enough to be counted as a suc-
cess in our above statistics, the pseudosymmetry of multi-
ple motifs in the ligand means this docked model still
contains substantial information regarding the position
and orientation of the ligand in the pocket.

In some cases, AF2 regions with low confidence may
add additional information that can be employed when
interpreting docking results. For example, in the case of
5hcy the alignment of pocket Cα positions was accurate
(0.92 Å RMSD) but the docking result was inaccurate
(9.85 Å RMSD). A low-confidence strand was predicted
to be in the pocket, and perhaps surprisingly the tyrosine
predicted to sit in the pocket by AF2 overlays very well
with the crystal structure of the ligand (Figure 4). Dele-
tion of this strand gives a structure for which flexible
docking can predict the correct pose (1.20 Å RMSD),
albeit in the fifth-ranked cluster by energy. However, this
is the lowest energy pose which matches the pharmaco-
phoric information given by the highlighted tyrosine,
potentially allowing the identification of its relevance in
a prospective study. It is worth noting that in the case of
3qkd, no side chains match pharmacophoric information
of the bound ligand. This does not, however, exclude the
possibility that this strand could be used to inform ligand
design.

FIGURE 2 Flexible receptor docking examples (blue: ligand crystal structure, red: ligand docked to AF2 predicted receptor structure,

cyan: receptor crystal structure, yellow: AF2 predicted receptor structure). (a, d) Crystal structures of complexes from PDB ID 4ufl and 5hz6;

(b, e) best energy result docking against AF2 predicted structures of 4ufl and 5hz6; (c, f) best energy result docking against AF2 predicted

structures of 4ufl and 5hz6 with flexible side chains. Minimal structural information of the receptor is included to give context to the flexible

side chain, other secondary structure is omitted. Only side chains treated as flexible in the dockings for panels (c) and (f) are shown.
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2.4 | Comparison with apo structures

A reasonable point of comparison for the success rate
against AF2-predicted structures might be apo structures,
which also lack a ligand to induce conformational
changes. Structures were extracted from the APOBind
dataset which correspond to the structures examined
here (Aggarwal et al., 2021), totaling 1764 of the 2474
structures included in the results above. Among this set,
no significant difference was observed in performance for
either the crystallographic or AF2 redocking tasks, indi-
cating no bias was introduced by limiting the analysis to
this overlap (Figure 5e). Perhaps surprisingly, the dock-
ing against apo structures performed significantly worse
than against AF2 structures (10% vs. 16%). On inspecting
these results, AF2 produced models that aligned better
with the holo than the apo structure in many cases. For
example, in the case of 1c83 a loop is in an open position
in the apo structure, and closed in both holo and AF2

predicted (Figure 5a,b). The case of 1rpj is more extreme,
with multiple loops and helices opening rearranged
between apo and holo, with AF2 again matching the holo
(Figure 5c,d). This suggests AF2 and apo structures may
be complementary in docking tasks. In fact, the consider-
ation of both, selecting the best energy pose across the
two targets, leads to a comparable success rate to the AF2
alone (17%), and considering the best pose of each leads
to substantially improved performance (22%; Figure 5e).

3 | DISCUSSION

In this work, we used AutoDock-GPU to evaluate struc-
tures predicted by AF2 as targets for docking. We found
that the vast majority of predicted structures aligned well
with the cocrystal structures, and that the pLDDTs, a
measure of confidence of an AF2 model, for residues in
the pocket correlated with this alignment (Figure 1c).

FIGURE 4 An example of a low-confidence strand with potential pharmacophoric information. (a) Crystal structure from PDB ID 5hcy

(gray) and AF2 predicted structure (colored by confidence measure, blue: pLDDT > 90, green: 90 > pLDDT > 70, yellow: 70 > pLDDT > 50,

red: pLDDT < 50). A tyrosine with good pharmacophoric agreement with the crystallized ligand is shown; (b) docked ligand with best

agreement to crystal (yellow) and side chains made flexible shown. (c) The overlap of the tyrosine in the low-confidence strand with the

ligand. The pose in panel (b) is the best pose in the fifth-ranked cluster. Minimal structural information of the receptor is included to give

context to the flexible side chain, other secondary structure is omitted. Only side chains treated as flexible in the docking are shown.

FIGURE 3 An example of a low-confidence region interfering with docking. (a) Crystal structure from PDB ID 3qkd (gray); (b) AF2

predicted structure (colored by confidence measure, blue: pLDDT > 90, green: 90 > pLDDT > 70, yellow: 70 > pLDDT > 50, red:

pLDDT < 50) highlighting overlap between low-confidence region and ligand crystal structure; (c) docked pose with best score (yellow).

Phe105 and Tyr195 were treated flexibly in the AF2 model but are hidden for visual clarity.
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This may be due to the fact that the PDBbind is enriched
for well-folded proteins, which would be expected to per-
form well with AF2. As such, this work may represent an
upper bound on the ability to naively apply
AF2-predicted structures to computer-aided drug design.
However, as well-folded proteins are generally regarded
as more “druggable,” this is still an important set of pro-
teins to examine.

The loss in docking accuracy compared to redocking
against the crystal structure was substantial (17% vs. 41%)
and not predicted by the quality of the alignment

(Table 1, Figure 1b). This indicates both that the differ-
ence in docking accuracy is not explained by poor align-
ment leading to inflated RMSD, and that high-quality
predictions as measured by the RMSD metric used in
evaluating AF2 at CASP is not indicative of the ability to
use these structures for docking.

We were surprised that oligomerization played very
little role in the success of the docking experiments,
showing a success rate of 17% both for monomeric and
oligomeric proteins in AF2 dockings. Cofactors, on the
other hand, had a stronger impact on docking success,

FIGURE 5 Comparison performance on AF2 predicted structures and apo structures. (a, c) Crystal structures (gray) from PDB ID 1c83

and 1rpj respectively and docking results against AF2 predicted structure (red). (b, d) Crystal structures as in (a) and (c) and docking results

against apo structures (green). (e) Comparison of docking success rates against holo, AF2 predicted structures, and a mixture of AF2

predicted structures and apo structures. “AF2 and apo” refers to cases where the best-scored ligand across both docking targets is within 2 Å

of the crystal structure; “AF2 or apo” refers to cases where the best-scored ligand for either target is within 2 Å. “Full set” refers to the 2474

complexes with AF2 structures, “constrained set” refers to the 1764 complexes also present in the APOBind dataset. Minimal structural

information is shown for clarity.
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both in the experimental redockings and in docking to
AF2 structures. This is to be expected, since interactions
with cofactors, and metals in particular, often play a cen-
tral role in specificity of docking.

We found that AF2 models are comparable and com-
plementary to apo structures for use in docking. Success
rate for docking against AF2 predictions exceeds that for
docking against apo structures, and AutoDock-GPU is
capable of identifying to correct model by docked pose
energy such that these two structures may be considered
jointly and still lead to an improved success rate over
apo. While the score is sufficiently accurate such that suc-
cess rate is not sacrificed to take the best pose from both
models, it is not perfect for this discrimination and there
is a higher still success rate when considering the best
pose from each. In light of these results, we recommend
and will adopt as best practice the use of AF2 structures
alongside apo structures when predicting binding modes.
This is in broad agreement with the findings of a study
on the screening power of AF2-predicted structures in
the context of a smaller set of 38 proteins (Zhang
et al., 2022), and with a study that suggests AF2 has a
tendency to predict holo structures (Saldaño et al., 2022),
and in the case of GPCRs can be biased to produce the
desired conformation (Heo & Feig, 2022).

We did find that in some systems where naive dock-
ing against the AF2 predicted structure was unsuccessful,
the docking results can be substantially improved by
straightforward manipulations of the receptor. Flexible
docking was capable of resolving side chain clashes that
disrupted ligand binding, and removing low-confidence
regions of the predicted structure cleared occluded bind-
ing sites. While these are challenging to address in a sys-
tematic way that would mimic a prospective screen, it
suggests that researchers working on an individual target,
or small set, may be capable of improving on our initial
performance estimation. This could include special treat-
ment of residues in the binding site that have been identi-
fied as important in biochemical studies, and careful
attention to the possible contributions of cofactors, which
would be expected to reduce success rates in docking to
AF2 structures.

4 | CONCLUSIONS

Docking as part of computer-guided drug design is
emerging as one of the major potential applications of
computed structural models like those predicted by AF2.
This study reveals that naive docking to AF2 structures is
currently expected to have limited success, due to chal-
lenges with local sidechain conformation and potential
presence of cofactors. These challenges, however, may be
ameliorated through careful application of refinements in

the docking, such as addition of flexibility to key side-
chains or careful manual curation of regions of low confi-
dence in the predicted structures. Even absent these fixes,
AF2 structures outperform apo structures as docking tar-
gets, and can serve as complements to them in determin-
ing binding modes. We expect that, while we did this
analysis using AutoDock, the general principles are
transferable to other docking programs, and more gener-
ally, to other molecular modeling tools.

4.1 | Availability

The AutoDock suite is freely available at autodock.
scripps.edu.

5 | METHODS

The refined set of structures in the PDBbind database for
year 2020 was downloaded (http://www.pdbbind.org.cn).
Structures were retained for which corresponding AF2
structures were available from the EMBL database in
January 2022, which at the time were all human proteins,
based on Uniprot ID (https://alphafold.ebi.ac.uk). The
predicted structures were aligned to the crystallographic
reference structures using a pairwise alignment between
Cα atoms in the binding pocket, as deposited in the
PDBbind, using Biopython v1.79 (Cock et al., 2009). To
correct for gaps in the sequence, a sequence alignment
was performed using the pairwise2 module in Biopython.
Two points were assigned for matched residues, one
point deducted for misaligned residues, half a point
deducted for opening new gaps, and two tenths of a point
deducted for extending a gap. The alignment RMSDs
were calculated using Biopython (Cock et al., 2009).

Waters and nonpolar hydrogens were removed. Both
the crystallographic and predicted structures were pro-
cessed by pdb4amber (Case et al., 2022) to correct proton-
ation states and replace any missing atoms. Partial charges
were assigned using prepare_receptor4.py within Auto-
DockTools (Forli et al., 2016; Morris et al., 2009). Ligands
were prepared using OpenBabel v2.4.1 (O'Boyle
et al., 2011) to assign protonation states and Meeko v0.3.2
(Meeko, n.d.) to assign partial charges and rotatable bonds.

AutoDock maps were generated using AutoGrid4,
with 8 Å of padding around the crystallographic ligand.
Docking was performed using AutoDock-GPU v1.5.3
(Santos-Martins et al., 2021) with default parameters.
Briefly, for each complex 20 genetic algorithm runs were
run, with the resulting conformations clustered using a
soft RMSD tolerance of 2 Å. The number of evaluations
was capped using a built-in heuristic based on the num-
ber of rotatable bonds (Solis-Vasquez et al., 2022), with

HOLCOMB ET AL. 7 of 8

http://autodock.scripps.edu
http://autodock.scripps.edu
http://www.pdbbind.org.cn
https://alphafold.ebi.ac.uk


an asymptotic limit at 12 million evaluations. Conver-
gence was automatically assessed by the AutoStop crite-
rion based on the standard deviation of the energy
evaluations (Solis-Vasquez et al., 2022). Default settings
for AutoStop of a five-generation test rate and an energy
standard deviation of 0.15 kcal/mol were used.

RMSDs relative to the crystallographic ligand position
were calculated using the CalcRMS function available in
rdkit v2022.03.4 (Rdkit, n.d.), which accounts for ligand
symmetry.
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