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Abstract: Stem rust is one wheat’s most dangerous fungal diseases. Yield losses caused by stem rust
have been significant enough to cause famine in the past. Some races of stem rust are considered to
be a threat to food security even nowadays. Resistance genes are considered to be the most rational
environment-friendly and widely used way to control the spread of stem rust and prevent yield losses.
More than 60 genes conferring resistance against stem rust have been discovered so far (so-called Sr
genes). The majority of the Sr genes discovered have lost their effectiveness due to the emergence of
new races of stem rust. There are some known resistance genes that have been used for over 50 years
and are still effective against most known races of stem rust. The goal of this article is to outline
the different types of resistance against stem rust as well as the effective and noneffective genes,
conferring each type of resistance with a brief overview of their origin and usage.
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1. Introduction

Biotrophic phytopathogenic fungi are obligate parasites of plants that during evolution
developed the ability to penetrate host cells without destruction for obtaining nutrients
and energy [1]. Rust fungi of bread wheat (Triticum aestivum L.) cause diseases such as
leaf rust (caused by Puccinia recondita Dietel and Holw), yellow rust (Puccinia striiformis
var. striiformis Westend), and stem rust (Puccinia graminis Pers.), which may seriously affect
wheat yield worldwide [2]. For instance, yield losses could be up to 100% for especially
pathogenic races of stem rust [3]. Significant yield losses related to epiphytotics of stem rust
were reported in Australia, the USA, Scandinavian countries, Central and South Europe,
India, and Asia in the 20th century [4,5]. The situation became even more dramatic in the
21st century starting with stem rust epidemics in Africa. Furthermore, in the last decade
there have been significant outbreaks of stem rust in Kenya due to the emergence of new
Ug99 races [6], epidemics and devastating yield losses in Ethiopia in 2013 due to the TKTTF
race [3], outbreaks in North Kazakhstan and Siberia in 2015–2017 [7,8], epidemics of stem
rust in Germany in 2013 [9], the first cases of wheat stem rust infection in the United
Kingdom in nearly 60 years [10], an outbreak of stem rust in Southern Italy in durum
wheat [11], and further spread of stem rust in Europe [12].

Losses caused by the disease may be explained by the details of the life cycle and
pathogenesis of P. graminis. The life cycle of the fungus involves five different spore stages
during the asexual reproduction in wheat (the uredinial stage) and sexual reproduction,
which starts at the teliospore stage and continues on an alternate host plant (barberry,
Mahonia). Ascospores complete the P. graminis life cycle infecting cereals [13]. This process
is associated with the formation of urediniospores positioned on the surface of a leaf sheath
or a stem and further development of the complex system of penetration of the plant
cell, which includes appresoria, a penetration peg, hyphae, haustoria, and a substomatal
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vesicle to provide nutrients to the parasite. In areas with mild winters and sufficiently
wet springs, P. graminis can exist in the uredinial (asexual) state in winter cultivated and
wild cereals [4,13]. In the case of significant stem rust infestation of plants, nutrient flow
to kernels can be affected causing shriveled grain. Moreover, stems are weakened by the
disease resulting in wheat lodging, which causes additional yield losses [13].

Another factor that makes stem rust an especially dangerous disease for wheat is
its polymorphism and ability for mutagenesis of the causative agent and the rapid emer-
gence of new P. graminis races, as it is a species with a high-evolutionary potential [14].
Regularly, shortly after the wide implementation of a gene conferring resistance to the
disease, a race virulent to that gene emerges causing significant losses to agriculture in some
countries [15,16]. Only a few stem rust genes have shown durable effectiveness in breeding
history. One of these genes is the stem rust resistance gene on translocation 1BL/1RS from
the Petkus rye (Secale cereale L.), which reliably provided stem rust resistance for about 40
years until the emergence of the first race of the Ug99 group, TTKSK, with virulence to Sr31
in Uganda in 1999, which turned out to be virulent to the majority of other widespread
resistance genes [15]. Despite preventive measures to localize Ug99, it spread to the south-
ern coast of Africa. In addition, the original race TTKSK has been reported in the Middle
East [16]. Moreover, new types (probably mutants) of Ug99 have been detected, which
have gained the status of races. In particular, especially virulent not only to Sr31 but also
to other genes that, according to initial studies, conferred resistance to Ug99, are the races
TTKST, TTTSK, TTKSP, PTKSK, PTKST, TTKSF+, TTKTT, TTKTK, TTHSK, TTHST, PTKTK,
TTKTT+, and TTHTT discovered from 2005 to 2020 in Tanzania, Eritrea, Egypt, Rwanda,
Kenya, Ethiopia, South Africa, Yemen, Mozambique, Zimbabwe, and Uganda [6,15–21]. In
2019, the race TTKTT was reported in Iraq [22]. The last decade is characterized by stem
rust outbreaks in Europe, Asia, and African regions due to the emergence of new stem rust
races with multiple virulences that are distinct from the Ug99 group [3,7–9,12,23–26]. The
Digalu race (TKTTF) caused severe epidemics in southern Ethiopia in 2013–2014 when yield
losses were up to 100% of the wheat cultivar ‘Digalu’ planted in large areas [3]. Among
the currently prevalent European races are TTRTF, TKTTF, and TKKTF. The race TTRTF
caused the outbreak of stem rust in Sicily in 2016 [27]. This race was first described in 2014
in Georgia [23] and became widespread in Europe [12]. TTRTF was also detected in 2016 in
Eritrea [25] and 2019 in Ethiopia [24] and the south of Iran [25]. This race is avirulent to
Sr31 but has virulence to many important genes providing resistance against Ug99 races
such as Sr13b, Sr35, Sr37, and Sr50 [12,23]. Moreover, a number of novel stem rust races
with virulence to Sr31 and other stem rust genes have been recently described including
TKHBK [26] and 22 other races in Spain [12] and the race LTBSK in Western Siberia [12].

Genes conferring resistance against stem rust are referred to as Sr genes [5]. More
than 60 genes have been identified to date. Some of them were detected in bread wheat
(subsequently referred to as wheat own genes) and others were introgressed from related
species. The majority of Sr genes are seedling (all-stage or juvenile) resistance genes. A
small number of genes belong to race-nonspecific adult plants resistance genes (APRs).
The goal of this article is to outline the different types of resistance against stem rust as
well as the effective and noneffective genes, conferring each type of resistance with a brief
overview of their origin and usage.

2. Own Resistance Genes in Bread Wheat

The majority of widespread own stem rust resistance genes of wheat are neither
effective against races of stem rust that are currently common throughout the world,
nor do they confer resistance against the especially dangerous races of the Ug99 group
(Table 1) [5,16–20]. For instance, the resistance gene Sr5 on chromosome 6DS originated
from the cultivar ‘Kanred’ and developed on the basis of the Ukrainian (Crimean) gene pool,
is quite common among modern wheat cultivars [5,28]. Initially the gene conferred race-
specific immunity-like resistance. However, cultivars with this gene had been cultivated in
large areas so subsequently a number of P. graminis races were able to overcome Sr5 [29,30].
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Table 1. Own race-specific stem rust resistance genes in bread wheat.

Gene Allele Resistance Against Ug99 Possible Source Chromosome DNA Marker Available References

Sr5 - No Kanred 6DS No [5,29,30]

Sr6 - No McMurachy 2D No [5,31]

Sr7
a No Ciano-67

4AL No [32–35]
b No Selkirk

Sr8
a No Frontana

6AS No [36,37]
b No Bezostaya 1

Sr9

a No TAM-107

2BL Yes
[38,39]

b No Chinese spring

e No Arrivato

f No Chinese white

h Yes Webster [40,41]

Sr10 - No Marquiz 2B No [40,42]

Sr15 - Maybe Norka 7AL Yes [43–46]

Sr16 - No Reliance 2BL No [38,47]

Sr18 - No Gabo 1DL No [48,49]

Sr19 -
No Marquiz 2B No [50]

Sr20 -

Sr23 - No Myronovskaya 264 2BS Yes [51,52]

Sr28 - Moderate Kota 2BL Yes [53–57]

Sr29 - No Aurora 6D No [58,59]

Sr30 - No Webster 5DL No [60,61]

Sr41 - No Waldron 4D Yes [62,63]

Sr42 - No Norin 40 6DS Yes [64,65]

Sr48 - Moderate Arina 2AL ? [66]

Sr49 - No Mahmoudi 5BL ? [67]

Sr54 No Norin 40 2DL ? [68]

SrCad - Yes Cadillac
6DS

Yes [41,69–71]

SrTmp - Yes Triumph 64 Yes [41,71]

Another wheat own stem rust resistance gene, Sr6 on chromosome 2D, is also quite
common. The gene was identified in the Canadian cultivar ‘McMurachy’ and most likely
derives from the African wheat gene pool [5,21]. The level of resistance conferred by
Sr6 depends on the environmental conditions [31]. Currently many stem rust races are
virulent to the gene [29,30]. The Sr7 gene (with alleles a and b) is located on chromosome
4AL [32]. The allele a of the gene was first found in some cultivars from Kenya [28,32]. The
resistance level conferred by Sr7 is also largely dependent on environmental conditions
and genetic background [33,34] and there are stem rust races with virulence to the allele a
of this gene [29,30]. The allele b of Sr7 was introduced into breeding from Australian wheat
cultivars unintentionally in the 1920s and also originates from African bread wheat cultivars;
the allele confers resistance to the stem rust races that are dominant in Australia [71] but not
to Ug99 races [15], TTRTF [11], TKTTF, TKKTF, TKPTF, PKPTF, TKKTP [9] and some other
races found in Europe [8,9,12] and Western Siberia [8]. The resistance conferred by the gene
Sr8 on chromosome 6AS is associated with the alleles a and b [35–37]. The allele a is widely
represented among modern cultivars while the allele b is rarely encountered [5,28]. Both
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alleles confer a moderate level of stem rust resistance (in case of the allele b, the resistance is
temperature-dependent), which is overcome by stem rust races that are common worldwide
(including by some races that had been reported to be avirulent to it) [29].

The Sr9 gene was localized on chromosome 2BL of wheat [49]. The alleles a and
b of the gene originated from common wheat [39,49], but the allele c was transferred
from Triticum timopheevii Zhuk. and further designated as Sr36, whereas the allele d was
introgressed from T. turgidum subsp. dicoccum (Schrank) Schübl. [72] and g was from
T. turgidum (L.) Thell. ssp. durum (Desf.) Husn. [5]. The bread wheat own allele h was ini-
tially designated as SrWeb as it derives from the Canadian cultivar Webster [41]. Moreover,
it is one of few conferring resistance genes against most Ug99 races, except for TTKSF+ [21],
but some other races of stem rust are virulent to this gene [41,72]. Other alleles of Sr9 are
more or less sensitive to widespread races of stem rust [5]. Xwms47 is a molecular marker
for the allele h of Sr9 [41].

Some of the stem rust resistance genes of wheat are more effective under certain temper-
ature conditions [40,44]. For instance, Sr10, a bread wheat own gene located on chromosome
2B, which was first found in the Kenyan gene pool of bread wheat, is quite common among
cultivars developed in different regions in different periods of time [40,42]. The gene is ef-
fective under lower temperatures and was characterized as an APR gene [42] but it was not
considered to be effective against the currently widespread P. graminis races [73].

The stem rust resistance gene Sr15 was localized on chromosome 7AL, it is race-specific
and not effective at temperatures higher than 26 ◦C [43,44]. Sr15 cosegregates with the leaf
rust resistance gene Lr20 [45,46], the root lesion nematode resistance gene Rlnn1, and is
closely linked to the powdery mildew resistance gene Pm1 [46]. It was first identified in
cv. ‘Norka’ but afterwards was found in cultivars that were not related to it [28,45]. There
are many races with virulence to Sr15 and the virulence level might be quite high [29,30].
Initially the gene was considered to confer no resistance against Ug99, but recent research
has suggested otherwise [56]. The markers wri1–5, which were proposed to detect Rlnn1,
might be also considered as diagnostic markers for Sr15 [46].

The common wheat own gene Sr16 was localized on chromosome 2BL [38,47]. The
main source of Sr16 is considered to be cv. ‘Reliance’, and it probably inherited the gene
from cv. ‘Kanred’ [5,28]. There are not many modern races of stem rust that are avirulent
to this gene [30]. The Sr18 gene is also an ineffective own stem rust resistance gene; it is
located on chromosome 1DL, and its origin is unknown [48,49]. The genes Sr19 and Sr20
originated from cv. ‘Marquiz’ and were localized on chromosome 2B [34]. None of them
provide resistance against most races of P. graminis [29,73].

The Sr23 gene is effective only at high temperatures and with sufficient lighting [51].
The gene is located on chromosome 2BS and cosegregates with the leaf rust resistance
gene Lr16 [51,52]. The sources of this gene are cv. ‘Selkirk’, ‘Exchange’, and ‘Warden’.
The diagnostic markers for Lr16 might also be used to detect the Sr23 gene [28,52]. Sr23
is effective against old races of stem rust from the Australian collection but not against
modern races with few exceptions [29,73].

Some wheat own stem rust resistance genes were tested with races of the Ug99 group
and showed different levels of effectiveness. The Sr28 gene is located on chromosome 2BL
and derives from cv ‘Kota’ [53]. Stem rust races that are virulent to this gene are quite
common [29] and avirulent races mostly originate from Ethiopia and Nepal [30]. However,
the result “moderate resistance–moderate sensitivity” was obtained while testing this gene
against Ug99 in Njoro, Kenya in 2004–2005 [54]. In addition, according to literature, Sr28
might confer moderate APR to the stem rust races BCCBC, TTKSK, and TTKST (the latter
two belong to the Ug99 group) [55]. The markers wPt-7004 and wmc332 are considered to
be diagnostic markers for this gene [56,57].

Sr29 on chromosome 6D is a bread wheat own stem rust resistance gene of European
origin [58,59]. The gene decreases the level of infection with some stem rust races, but races
from Eastern Europe, Asia, Egypt, Ethiopia, and Turkey are virulent to it [29,30]. The source
of the gene Sr30 on chromosome 5DL is Canadian cv. ‘Webster’, which could inherit it from
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the Russian gene pool [60,61]. The gene is considered to confer a high level of resistance
(complete immunity in case of cv. ‘Webster’) against stem rust races that are common in
Europe and North America, but some Australian races are virulent to this gene [29,30]. In
addition, virulence to Sr30 was detected in races from Spain, Ethiopia, Turkey, Pakistan,
and South America [30], namely, TTRTF [11], and Ug99 [15]. The Sr41 gene on chromosome
4D of cv ‘Waldron’ has not been widely employed in breeding programs [62,63]. The gene
confers juvenile and adult resistance but not against Ug99 and other races of stem rust
prevalent in the world [65].

The Sr42 gene was derived from cv. ‘Norin 40′ and mapped on chromosome 6DS [64].
At the same locus, the genes SrCad from cv. ‘Cadillac’ and SrTmp from cv. ‘Triumph 64′

were localized [41]. All three genes proved to confer resistance against the race TTKSK
of the stem rust group Ug99 but among them only SrCad confers resistance against other
deleterious races, as TTRTF and some others are virulent to SrTmp [11,20,41]. On the other
hand, juvenile resistance conferred by SrCad is expressed on a sufficient level only in plants
with the resistance allele of the Lr34/Yr18/Pm38/Bdv1/Sr57 gene [41,70]. Moreover, the SrCad
gene is associated with the Bt10 gene conferring resistance to common bunt caused by
Tilletia tritici (Bjerk.) G. Winter [41,69]. Among the genes, only for SrCad molecular markers
for the resistance allele were developed [69,71].

The Sr48 gene on chromosome 2AL originated from cv. ‘Arina’ [66]. It was considered
to confer moderate but stable juvenile resistance against Ug99 races as well as other stem
rust races [17]. It was revealed that the gene is quite common among Australian wheat
cultivars [66]. Although there are no open sources with molecular markers linked to it, the
linkage of the gene with the yellow rust resistance gene Yr1 and microsatellite markers
sun590 and sun592, being the closest ones, was reported [66,74].

The Sr49 gene was detected in cv. ‘Mahmaudi’ from Tanzania [66]. It confers resistance
against all Australian stem rust races but not against Ug99 [17]. This gene is effective against
the race TTRTF but new Spanish races with virulence to this gene have been recently found [12].
The Sr54 gene was localized on chromosome 2DL of cv. ‘Norin 40′ but was not studied due to
its low effectiveness against Ug99 and other modern races of stem rust [68].

APR genes should be mentioned separately as they confer a moderate but stable level
of resistance against one or several pathogens with low or moderate infection loads and
can increase manifestation of other resistance genes [75] (Table 2). Another benefit of APR
genes is their effectiveness over a long period of time and the fact that there are no races
of the pathogens that completely overcome them [76]. One of the most studied is the
Lr34/Yr18/Pm38/Bdv1/Sr57 gene on chromosome 7DS, which confers moderate resistance
to all rust species, powdery mildew, and barley yellow dwarf virus [76]. In addition, the
Lr34/Yr18/Pm38/Bdv1/Sr57 gene was shown to enhance expression of other known and
unknown factors of resistance against stem rust [70], in particular, Ug99 [15,41]. The gene
was sequenced and shown to code for a pleiotropic drug resistance-like (PDR-like) ATP-
binding cassette (ABC) transporter involved in abscisic acid signaling [77,78]. Codominant
and dominant markers cssfr5, SNP12, and ISBP1 for the resistance-associated allele have
been proposed [77,79].

Table 2. Own race-nonspecific stem rust APR genes of common wheat.

Gene Cosegregating Resistance Factors Resistance Against Ug99 Possible Source Chromosome DNA Marker Available References

Sr55 Lr67/Yr46Pm46 Yes PI250413 4DL Yes [41,80,81]

Sr56 - Yes Arina 5BL Yes [82,83]

Sr57 Lr34/Yr18/Pm38/Bdv1 Yes Bezostaya 1 7DS Yes [77,79,84]

Sr58 Lr46/Yr29/Pm39 Yes Pavon 76 2D Yes [85]

Another APR factor, the Lr67/Yr46/Sr55/Pm46/Ltn3 gene, is located on chromosome
4DL [80]. The gene was first identified in the common wheat line PI250413, and the
line based on cv. ‘Thatcher’ with the gene was developed [41,80]. The gene was shown
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to confer moderate resistance against the stem rust races of the Ug99 group [81]. The
sequencing of the Lr67/Yr46/Sr55/Pm46/Ltn3 gene revealed that it encodes a hexose trans-
porter [86]. The Sr56 gene was discovered in cv. ‘Arina’ and localized on chromosome
5BL [82]. It confers APR that decreases stem rust infection by 12–15% [83]. Another APR
gene, Lr46/Yr29/Pm39/Sr58, was localized on chromosome 1BL of cvs. ‘Pavon 76′ and
‘Lalbahadur’ [85,87].

3. Introgressed Stem Rust Resistance Genes

The diversity of Sr genes in the bread wheat gene pool was substantially enriched
by the transfer of Sr genes from species belonging to its primary, secondary, as well as
tertiary gene pools [88] (Table 3). The Sr11 gene was introgressed from cv. ‘Gaza’ of the
tetraploid wheat T. turgidum ssp. durum [32]. The gene was localized on chromosome
6BL [62]. Stem rust races that are virulent to this gene may be encountered in Australia [89],
South Africa [90], Canada [91], and the USA [92] but the gene is considered to confer
resistance against the races common in Europe and India [29,30]. There were also reports
about a low level of virulence to this gene in the races of P. graminis common in China and
some regions of Africa [90].

Table 3. Introgressed stem rust resistance genes of bread wheat.

Gene
Cosegregating

Resistance Genes, or
Genes on the Same Arm

Resistance
Against Ug99 Source Species Possible Source

Cultivar Chromosome DNA Marker
Available References

Sr2 Lr27 Moderate T. turgidum ssp. dicoccum Hope 3BS Yes [93,94]

Sr9d - No T. turgidum ssp. dicoccum NIL-LMPG-
Sr9d-TR.DR 2BL Yes [93]

Sr9g - No T. turgidum ssp. durum - 2BL Yes [39]

Sr11 - No T. turgidum ssp. durum Gaza 5BL Yes [32,62]

Sr12 - Moderate T. turgidum ssp. durum Marquillo 3BS No [92,95]

Sr13 - Yes T. turgidum ssp. dicoccum
NIL-Marquis-

Sr13,Sr14-
Khapstein

6AL Yes [36,96]

Sr14 - No T. turgidum ssp. dicoccum
NIL-Marquis-

Sr13,Sr14-
Khapstein

1BL Yes [44]

sr17 - No T. turgidum ssp. dicoccum Selkirk 7BL No [93]

Sr21 - Yes T. monococcum Einkorn
C.I.2433 2AL Yes [97,98]

Sr22 - Yes T. monococcum ssp.
boeoticum Schomburgk 7AL Yes [99]

Sr24 - Yes
Thinopyrum ponticum
(Podp.) Z.-W.Liu and

R.-C.Wang
NIL-LMPG-

Sr24 3DL Yes [100]

Sr25 Lr19 Yes Ag. elongatum Host. (Th.
ponticum)

NIL-LMPG-
Sr25 7DL Yes [101,102]

Sr26 - Yes Ag. elongatum Host. (Th.
ponticum)

NIL-LMPG-
Sr26 6A/6Ag Yes [103]

Sr27 - Yes S. cereale NIL-LMPG-
Sr27 3A/3R No [104]

Sr31 Lr26, Yr9 No S. cereale Knyahynia
Olha 1BL/1RS Yes [105]

Sr32 - Yes Aegilops speltoides Tausch - 2A, 2B, 2D Yes [106]

Sr33 Lr21 Yes Ae. tauschii Coss. Lorikeet 1DS Yes [107]

Sr34 Yr8 No Ae. comosa Sibth. and
Sm. Marquillo 2A/2M, 2D/2M Yes [108]

Sr35 - Yes T. monococcum NIL-STEWART-
Sr35-G-2919 3AL Yes

Sr36 - Yes T. timopheevi Songlen 2BS Yes [109]
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Table 3. Cont.

Gene
Cosegregating

Resistance Genes, or
Genes on the Same Arm

Resistance
Against Ug99 Source Species Possible Source

Cultivar Chromosome DNA Marker
Available References

Sr37 - Yes T. timopheevi Boohai 4B Yes [110]

Sr38 Lr37/Yr17 No Ae. ventricosa Tausch Trident 2AS/2NS Yes [111]

Sr39 - Yes Ae. speltoides R.L.5344. RL-6082 2B Yes [112]

Sr40 - Yes T. timopheevii subsp.
armeniacum (Jakubz.) Maris-Fundin 2BS Yes [113,114]

Sr43 - Yes Ag. elongatum Host. (Th.
ponticum) RWG-33 7DS/7el2L Yes [115]

Sr44 - Yes
Th. intermedium (Host)

Barkworth and D.R.
Dewey

Payne 7DL/7J#1S Yes [116]

Sr45 - Yes Ae. tauschii Thornbill 1DS Yes [117]

Sr46 - ? Ae. tauschii var. meyeri AUS-18913 2DS Yes [118]

Sr47 - ? Ae. speltoides 96–90 2BL/2SL·2SS Yes [119,120]

Sr50 - Yes S. cereale cv. Imperial - 1DL.1DS/1R#3S/1DS Yes [121]

Sr51 - Yes Ae. searsii Feldman and
Kislev ex K.Hammer TA-6555

3AL/3SSS,
3BL/3SSS
3DL/3SSS

Yes [122]

Sr52 - Yes D. villosum (L.) Borbas KS-12-WGGRC-
57 6AL/6V.3L Yes [123]

Sr53 - Yes Ae. geniculata Roth KS-12-WGGRC-
58-T1

5M(g)L/5M(g)S
/ 5DL Yes [124]

Sr59 - Yes S. cereale TA5094 T2DS·2RL Yes [125]

Sr60 - No T. monococcum 5AmS [126]

Sr61 - Yes Ag. elongatum Host.(Th.
ponticum) W3757 T6AS.6AL-

6Ae#1 Yes [127]

Sr62 - Ae. sharonensis Eig AS_1644
1SshS·1SshL-

1BL/1SshS·1SshL-
1DL

Yes [128,129]

Sr63 Yes T. turgidum ssp. durum Glossy
Huguenot 2AL Yes [130]

SrAmigo - Yes S. cereale cv. Insave Amigo 1AL/1RS Yes [131]

The Sr12 gene was transferred to cv. ‘Marquillo’ and afterwards ‘Thatcher’ from cv.
‘Iumillo’ of T. turgidum ssp. durum [95]. The gene had been sufficiently effective until 1950
when the especially virulent stem rust race emerged [5]. However, there is evidence that
the resistance level of Sr12 carriers significantly increases in the presence of other resistance
genes, such as Sr9 [92].

The Sr13 gene was introgressed into common wheat cv ‘Khapstein’ from T. turgidum
ssp. dicoccum cv ‘Khapli C.I.4013’ [95] to chromosome 6AL [36]. The gene is temperature-
sensitive (the highest resistance level was observed at 20–28 ◦C) and confers moderate
resistance against stem rust races that are common in Pakistan and India, but the races
found in Europe and North America are highly virulent to this gene [29,30]. The Sr13
gene is considered to confer juvenile resistance against all the races of the Ug99 group [96].
A precise and convenient molecular marker for Sr13 was developed [132]. The cloned
candidate gene encodes the CNL13 protein containing coiled-coil (CC), nucleotide-binding
(NB), and leucine-rich repeat (LRR) domains, which are traditional for juvenile race-specific
gene products. [96]. However, the authors indicated that the Sr13-mediated resistance is
associated with the slower growth of the pathogen at high temperatures but not with the
rapid cell death typical for the hypersensitivity response. In the later research, four different
haplotypes of the gene, R1 (allele Sr13a), R2 (Sr13b), R3 (Sr13c), and R4 (Sr13d, susceptible
to TTKSK and some other races tested) were discovered with use of more precise markers.
The haplotypes provide different levels of resistance to some races of stem rust at different
temperatures [133]. Sr13 alleles differ in reaction to the race TTRTF, which is virulent on
Sr13b and avirulent on Sr13a [23].
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The Sr14 gene was transferred from T. turgidum var. dicoccum cv. ‘Khapli’ to hexaploid
cv. ‘Steinwedel’, and as a result cv. ‘Khapstein’ was obtained [44]. The gene was localized
in the pericentromeric region of chromosome 1BL [134,135]. The resistance associated with
Sr14 manifests at high temperatures and with good lighting [29,44]. The gene does not
confer resistance to the races common in the USA [30]. The gene Sr17 on chromosome 7BL
is one of the few recessive resistance genes and the only such gene that confers resistance
to stem rust [136]. The gene originates from T. turgidum ssp. dicoccum cv. Yaroslav. It
was introgressed into cv. ‘Hope’ and line ‘H-44′ together with other resistance genes [93].
The gene is effective at temperatures lower than 25 ◦C [136]. There are stem rust races
worldwide that are virulent to this gene [29,30,73].

The Sr21 gene can be found in the samples of T. monococcum L. including line ‘Einkorn
C.I.2433′, which is used as a differentiator [97,137]. This gene is more effective at higher
temperatures (20–24 ◦C) than at lower temperatures (16 ◦C) [138]. Sr21 was localized
on chromosome 2AL [138]. The races virulent to Sr21 are often met in North [73] and
South America [30], there are also virulent mutants in Australia [74]. However, the gene
confers resistance to most races of Ug99 [75,138]. To identify Sr21, the molecular markers
FD527726 (0.15 cM distal), EX594406 (0.05 cM, proximal), and microsatellite Xgwm312
can be used [138]. The gene encodes a CC-NB-LRR protein (NLR) and accounts for the
upregulation of multiple pathogenesis related genes at high temperatures [139].

The Sr22 gene was derived from T. monococcum ssp. boeoticum and localized on
chromosome arm 7AL of bread wheat [140]. The gene is temperature-sensitive and effective
at lower temperatures [5], and the Sr22b allele was recently identified [141]. Sr22 is effective
against the Ug99 races but is linked with genes affecting agronomic traits of wheat [75,142].
The markers Xcfa2123, Xwmc633, XcsIH81-BM, and XcsIH81-AG were identified as closely
linked to the gene, the latter is considered to be a diagnostic marker [142]. Sr22 was cloned
and its product was shown to contain typical CC, NB, and LRR regions although the gene
was shown to belong to a small gene family with three homologs [143]. Fourteen orthologs
of the Sr22 gene were later reported both in T. boeoticum and other related species including
T. aestivum although only one of them seemed to confer resistance to P. graminis [144].

The Sr24 gene was transferred to chromosome 3DL of bread wheat from the wild grass
Thinopyrum ponticum (Podp.) Z.-W.Liu and R.-C.Wang (syn. Agropyron elongatum (Host)
P. Beauv.) [100,145]. Although stem rust races with virulence to this gene were detected
in South Africa [90], India [146], and Australia [5], the gene confers resistance against the
majority of widespread P. graminis races [29,30], including the race TTRTF [11]. Moreover,
Sr24 confers resistance against some of the Ug99 races [15,21]. The marker Sr24#12 is
suggested to be completely linked to the gene [147]. Another gene conferring resistance
against Ug99, is Sr25 cosegregating with Lr19 on the chromosomal fragment introgressed
from Th. ponticum to chromosome 7DL [101,102]. The gene is not widely involved in
breeding programs because it is linked with an undesired phenotypic trait, the yellow flour
color [102,148]. The marker BF145935 was validated for the Sr25 gene [149]. Sr26 was also
transferred from Th. ponticum [103]. The translocation is suggested to be full (6A/6Ag) but
there is also evidence for a partial exchange with arms 6AL or 6AS [150]. The Sr26 gene
confers resistance against the Ug99 races [15]. The translocation of the 6AS/6AL-6Ae#1L
segment with the gene may cause a 9% decrease in yield [99]. Nevertheless, this gene is
employed for improving stem rust resistance [151]. A codominant system to detect the gene
was developed. The marker Xsr26#43 produces a 233-bp fragment in case of resistance,
and marker XBE51879 produces a fragment of 328 bp if the gene is absent [152]. The Sr26
gene was cloned and found out to belong to the NLR family such as the majority of cloned
wheat resistance genes [127].

The Sr27 gene originated from rye (S. cereale) cv. ‘Imperial’ and was localized on the
3A-3R translocation [104]. It is effective against Ug99 races [15,54] and virulence to this gene
is quite rare as it can be found among greenhouse mutants of P. graminis, hybrids created
in a laboratory, as well as African races including the ones from the Ug99 group [153].
Since the mid-1950s, the rye 1RS arm carrying the stem rust resistance gene Sr31 has been
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introgressed into many wheat cultivars [105,154]. The gene conferred resistance to all
known races of stem rust at the time [155]. The SCAR markers for the translocation with
the gene were developed [154]. However, TTKSK and other P. graminis races of the Ug99
group are able to infect plants with Sr31 [15]. Nevertheless, this gene proved to be effective
against the race TTRTF. In 2022, a novel Spanish stem rust race TKHBK with virulence to Sr31
was reported [26]. Moreover, Patpour et al. [12] described 22 Spanish races with virulence
to Sr31, of which 14 were found on bread wheat and the others on rye and Elymus repens, in
areas of proximity to barberry, and one race with virulence to Sr31 (LTBSK) in Western Siberia.

The Sr32 gene was introgressed from Aegilops speltoides Tausch independently in sev-
eral cases into all the group 2 chromosomes [106,156]. According to previous research in
the USA, Canada, Mexico, and Southern Africa, no races virulent to the gene were discov-
ered [136] until recently when a race with virulence to Sr32 was detected in Kazakhstan [7].
The gene was not widely used in breeding programs because of the trait adherent glume
and other harmful traits [156]. The markers Xstm773 and Xbarc55 are considered to be
diagnostic markers for this gene [106].

The Sr33 gene was first localized in Ae. tauschii Coss. and then transferred to chro-
mosome 1DS of bread wheat [107,157]. The Sr33 gene is effective against Ug99 races of
stem rust [15]. No race virulent to the Sr33 gene had been discovered during the field
trials of wheat samples with the gene [30,54] until recently in Spain [26]. The gene was
discovered to confer a significantly higher level of resistance when expressing in diploid
plants (Ae. tauschii), while in T. aestivum the level of race-specific resistance was evaluated
as moderate resistance—moderate susceptibility in the case of especially harmful races [54].
The study of expression of the gene revealed that it manifests itself as a common race-
specific R-gene conferring resistance to biotrophic pathogens forcing hypersensitive cell
death to prevent disease spread and feeding [158]. The first molecular markers that were
considered to be effective for detection of the Sr33 gene were Xbarc152 and Xcfd15 [159].
The Sr33 gene and other closely linked genes AetRGA1a-d, AetRGA2a, and AetRGA3a were
further cloned; the gene was found to contain six exons and the protein had the structure
common for factors of juvenile resistance including a nucleotide binding site, an N-terminal
CC, and a C-terminal LRR [160]. In further studies of the CC domain of SR33, additional
similarity of its spatial structure to other proteins associated with race-specific resistance
was discovered, and hypotheses of hypersensitive response triggered by this, and other
proteins were confirmed [161]. Furthermore, the SR33 protein is homologous to MLA34
of barley conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei)
and TmMLA, an MLA-like protein of T. monococcum (the homology level in both cases is
up to 86%), while the homology level for earlier discovered resistance associated proteins
of wheat LR1, LR10 and LR21 was fairly low [160]. The SR33 protein, unlike proteins
analogues, does not need chaperone proteins [161].

The Sr34 gene was transferred from the wild relative Ae. comosa Sibth. and Sm. to
chromosome 2A (the 2A-2M translocation) and 2D (the 2D-2M translocation) together with
the yellow rust resistance gene Yr8 [93]. Sr34 is considered to be more effective at lower
temperatures. Avirulence to this gene is not common in Australia but more intrinsic for
stem rust races from Southern Asia, China, Ethiopia, Kenya, and South America [29,30,152].
However, the gene does not confer resistance against Ug99 races [54].

The resistance gene Sr35 was transferred from T. monococcum to chromosome 3AL of
common wheat [162] and confers resistance against the race TTKSK (Ug99) of stem rust and
its variants TTKST and TTTSK [15,21,54]. The gene proved to confer resistance to moderate
resistance under the infection background with a comparatively mild course of the disease
during the field trials in Kenya in 2005–2006 [54]. Sr35 confers resistance to P. graminis
races common in Australia and North America but there are races virulent to the gene
in Ethiopia, Kenya, Malaysia, Nepal, Brazil, Chile, Argentina, and China [30]. The races
TTRTF and TTKTF of clade IV-E2, which are currently found in Europe, are also virulent
to this gene [12,23]. The markers XAK335187 and Xcfa2170 are considered to be closely
linked with this gene [163]. Sr35 was sequenced and identified as identical to the CNL9
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gene candidate having a 196 bp 5′UTR and a 1526 bp 3′UTR that includes three introns.
Orthologs for the gene as well as for Sr13 were identified based of DNA sequences from
related species [163].

The Sr36 gene was introgressed from T. timopheevi on chromosome 2BS and first
designated as the allele Sr9c [109]. It confers resistance against the original Ug99 race
of P. graminis but virulence of other races from the Ug99 group was reported [15–19,21].
Furthermore, cases of serious infestation with stem rust of cultivars with this gene in
Australia and North America were reported, and other isolates virulent to Sr36 were also
revealed [30]. Sr37 is another gene that is transferred from T. timopheevi [110]. The translo-
cation with the gene and other potential resistance factors was localized on chromosome
4B but it has not gained major distribution [5]. According to the literature, races of stem
rust virulent to the gene are quite common [29,30] and include TTRTF [23]. However, this
gene is effective against Ug99 races [164].

The Sr38 gene was localized on a 2AS-2NS translocation from Ae. ventricosa Tausch to-
gether with the leaf rust resistance gene Lr37 and the yellow rust resistance gene Yr17 [111].
Virulence to Sr38 was first detected in 2000–2001 in South Africa and since then, in addition
to the Ug99 group, it has been defeated by many stem rust races in European and Asian
regions [12,165].

The Sr39 gene was localized on arm 2S introgressed into chromosome 2B of wheat
from Ae. speltoides [112]. On the same arm at a distance of 3 cM, the leaf rust resistance
gene Lr35 was localized [166]. The Sr39 gene confers juvenile and adult plant resistance at
a level of resistance to moderate resistance to all races of stem rust known at the moment,
including Ug99 [15,54]. RL6082 and other wheat lines obtained as a result of introgression
showed a significant increase in flour water absorption and significant degradation of flour
quality and other agronomic traits [112,163]. Therefore, attempts to decrease the size of the
introgressed fragment keeping the Sr39 and Lr35 genes were made [167,168]. In particular,
based on line RL5711 with the 2B-2S translocation, lines #220 and #247 were developed with
the gene and the markers Sr39#50s and Sr39#22r for the Sr39 gene were developed [167].
Line #247 was used in breeding programs in Australia [167]. Other authors took RL6082 as
a basis and with the use of the improved scheme for chromosome engineering obtained
red wheat lines RWG1, RWG2, and RWG3 with reportedly small parts of the chromosome
2S. The authors proposed the markers Xrwgs27, Xrwgs28, and Xrwgs29 as more convenient
for breeding [167]. Further validation of the markers for the Sr39 gene was carried out with
use of a large amount of cultivars and lines. Based on this, Sr39#50s and Sr39#22r were
considered precise and convenient but Xrwgs27, Xrwgs28 and Xrwgs29 were not precise
enough or produced amplified fragments that were hard to distinguish with electrophoresis.
Addtionally, the marker Xwmc474 was described and considered to be a diagnostic marker
for the Sr39 gene [169].

The Sr40 gene was introduced from T. timopheevii subsp. armeniacum (Jakubz.) Slageren
on translocation 2B-2G#2S [113]. The resulting line RL6088 was considered to be resistant
against all the races of stem rust, including Ug99 [15,54]. However, a unique race with
virulence on Sr32 and Sr40 was recently reported in Kazakhstan [7]. The line RL6088
was used to map the introgressed arm and the markers Xgwm319, Xwmc344, Xwmc474,
Xwmc477, Xgwm374, and Xwmc661 were discovered to be linked to the gene of interest [114].
None of the markers were validated by other authors although it was claimed that the
marker Xsr39#22r could detect the Sr40 gene in the breeding material that does not carry
the Sr39 gene [169]. The fragment of the chromosome with the Sr40 gene also carries traits
affecting flour quality and other agronomic traits [114].

The Sr43 gene was first discovered in Th. ponticum due to its effectiveness against stem
rust and then successfully transferred to common wheat on the translocation 7DS-7el2L
[115,170]. The gene has not gained major distribution because the translocated chromo-
some arm also carried factors affecting agricultural quality, in particular for yellow flour
color [115]. The Sr44 gene derives from a partial amphyploid of wheat with the wild rela-
tive Thinopyrum intermedium (Host) Barkworth and D.R. Dewey (translocation 7DL-7J#1S)
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and confers resistance against all the biotypes of Ug99 [116]. However, Australian and
European races of stem rust with virulence to this gene were discovered [12,116].

The Sr45 gene on chromosome 1DS was introgressed from Ae. tauschii [117,171]. It
confers resistance against all the races of Ug99 and stem rust races that are common in
India and Australia, but virulence to this gene was reported for races in Canada [117] and
the novel Spanish race TKGLK [12]. The gene was cloned with use of the same technique
as Sr22 and was also found to encode a CC-NB-LRR protein belonging to a family with
8–12 homologs [143]. The Sr46 gene was transferred from Ae. tauschii var. meyeri on
chromosome 2DS. Virulence to this gene was discovered among stem rust races distributed
over the world. Tests with Ug99 and wheat lines with Sr46 have been not carried out
although the samples of Ae. tauschii with the gene showed juvenile resistance against the
race TTKSK [118]. The gene was sequenced by conventional fine mapping in segregating
diploid progenitor and wheat populations coupled with the sequencing of candidate genes
in this region and was discovered to encode a CC-NB-LRR protein [172]. The Sr47 gene
was introgressed from Ae. speltoides on the translocation 2BL-2SL 2SS [119,120]. During all
the field trials it conferred total resistance against stem rust, but trials with Ug99 have not
been carried out [120].

The Sr50 gene originates from rye cv. ‘Imperial’ (translocation 1DL.1DS-1R#3S-1DS)
and confers resistance to Ug99 races but is sensitive to some other common races of P.
graminis [121], in particular to TTRTF and the novel Spanish race KKGBM [12]. The gene
was cloned and found out to be homologous to the barley Mla, encoding a CC-NB-LRR
protein. The resistance conferred by it was discovered to be different from Sr31 and
other genes on rye chromosome 1RS and molecular genetic markers for the gene were
described [173]. The gene product was shown to interact with the pathogen in a way that
has been described for CC-NB-LRR proteins and involved recognition of the corresponding
AvrSr50 product. P. graminis races virulent to the gene were shown to express the protein
with a substitution in a single surface-exposed residue or did not express it at all due to
mutations in the gene [174].

The SrAmigo (Sr1RSAmigo) gene was introgressed as part of the 1AL/1RS translocation
from the Argentinian rye cv. ‘Insave’ [131]. The first cultivar with the translocation was
‘Amigo’ registered in the USA in 1976, which obtained the translocation from the octoploid
triticale cv. ‘Gaucho’ [175]. The presence of the translocation with the gene can be easily
detected by electrophoresis of storage proteins. The SrAmigo gene confers moderate race-
specific resistance against biotypes of Ug99 but is not effective against some other races of
stem rust, in particular TRTTF [176] and TKKTP [9,173]. However, according to Patpour
et al. [12], TKKTP is avirulent to this gene.

The Sr51 gene was transferred from Ae. searsii Feldman and Kislev ex K. Hammer
on translocations 3AL-3SSS, 3BL-3SSS, and 3DL-3SSS and translocation recombination
3DS-3SSS/3SSL [122]. The gene confers total resistance against Ug99 and other races
of stem rust it was trialed with, but the work to localize and introduce it on a smaller
chromosome fragment is still in progress [122].

The Sr52 gene originates from the wild grass Dasypyrum villosum (L.) Borbas (translo-
cation 6AL-6V.3L) [123]. It confers temperature-sensitive (effective within the temperature
range 18–26 ◦C) resistance against the original race of Ug99 and other races of stem rust. In
addition, possible coexpression with the increased level of resistance between this gene
and others on the translocated arm or those of T. aestivum was reported [123]. However, it
is ineffective against many currently prevalent European stem rust races [12].

The Sr53 gene was obtained from Ae. geniculata Roth by translocation of the chromo-
some 5M(g)L/5M(g)S part to arm 5DL [124]. The gene confers moderate juvenile as well
as adult resistance against all the races of stem rust, including Ug99. The Sr59 gene was
transferred from the rye S. cereale on the 2DS·2RL Robertsonian translocation, mapped, and
proved to confer resistance against the Ug99 races of stem rust [125].

The Sr60 gene was transferred to common wheat from T. monococcum chromosome
5AmS. It is effective against the races QFCSC, QTHJC, and SCCSC but not the Ug99 group.
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The gene is closely linked to the markers CJ942731 and GH724575 and completely linked
to LRRK123.1 [126]. Sr60 is 5008 bp in length with a complete coding sequence of 2175 bp;
the predicted protein is 724 amino acids long and unlike most of the sequenced wheat
resistance genes contains two putative protein kinase domains [126]. The Sr61 gene had
been previously designated as SrB and was, such as Sr26, transferred from Th. ponticum.
The gene proved to confer resistance to a set of races of stem rust other than Sr26 [127].
Similar to Sr26, it was also sequenced and found to be of the NLR type [127]. The Sr62 gene
was introgressed into common wheat from Ae. sharonensis Eig on translocation 1SshS·1SshL-
1BL/1SshS·1SshL-1DL [128,129]. The gene proved to confer resistance against some races of
the Ug99 group. It was mapped, and KASP markers were developed [177].

Resistance conferred by the Sr63 gene was first described in T. turgidum cv. ‘Glossy
Huguenot’ as an APR [178]. Recently the gene was mapped to chromosome 2AL, proved to
confer resistance against all races of stem rust including Ug99, and closely linked molecular
markers for its detection were developed [130]. Another gene conferring race nonspecific
APR against stem rust and race-specific juvenile resistance against leaf rust as well as
tolerance against powdery mildew is Sr2/Lr27/Pbc [93,94]. The gene was transferred from
emmer wheat (T. turgidum ssp. dicoccum) cv. ‘Yaroslav’ in the 1920s and was reported by
McFadden in 1930. As a result, cv. ‘Hope’ was obtained [93]. Further, it was discovered
that APR in cv. ‘Hope’ was conferred by a single gene designated as Sr2 [179]. Resistance
conferred by the Sr2 gene is associated with a decreased number of uredinia in infected
plants. The gene was discovered to provide the highest level of resistance at the flowering
stage [180]. The gene remains effective for more than 80 years and no stem rust race, including
Ug99, is virulent against it [94,181]. In addition, the ability to enhance unknown factors of
stem rust resistance was discovered for this gene, as with other APR genes [182]. Identification
of resistance conferred by the gene in the field is complicated due to the moderate level of
expression [183,184]. The main morphological trait of Sr2 is pseudo black chaff, which was re-
ported to manifest itself unevenly in the field depending on other genes and temperature [184].
The juvenile leaf rust resistance gene Lr27, which was discovered to cosegregate with Sr2,
needs resistance associated with the Lr31 gene to fully manifest itself [94].

The Sr2 gene was localized on the short arm of chromosome 3B [185]. On the first
genetic map, the Lr27 and Sr2 genes were mapped at some genetic distance [183]. Gwm533
was the first molecular marker with a sufficient level of polymorphism, which was used in
breeding for the resistance associated allele. It has three alleles: the 0 and 155 bp alleles are
mostly associated with a lack of resistance and the 120 bp allele is mostly associated with
resistance conferred by the gene [185]. Further, based on the marker sequence, STS markers
stm598ctac and stm598gtag were developed; the markers have several alleles and only one
for each marker (56~61 bp and 83~85 bp, respectively) was associated with resistance [186].
Additionally, based on the BAC library of wheat, a more detailed genetic map for chro-
mosome 3B, including the Sr2 region, was developed and subsequently, more tightly
linked markers were discovered: BE426676, BE401794, BE500189, CA640157, and BE591959.
Among them, BE500189 and CA640157 showed the closest linkage, 0.14 cM and 0.07 cM,
respectively [187]. Moreover, a number of SSR markers 3B028F08, 3B042G11, and 3B061C22
were developed based on the BAC map [188]. The SSR markers are close enough to the Sr2
gene, but they were found to have different alleles for the samples with the same allele of
the Sr2 gene during trials with a number of lines and cultivars [169]. Recently, the SCAR
marker csSr2 was identified based on the data from the BAC library of cv. ‘Hope’ 3B chro-
mosome partial sequence. It was discovered that resistance and susceptibility-associated
alleles differ by a single nucleotide polymorphism and in case of the resistance-associated
allele there is a restriction site for enzyme BspHI; the marker is precise and does not segre-
gate with the Sr2 gene (the estimated degree of accuracy is around 95%) [94]. More detailed
mapping of the Sr2/Lr27/Pbc locus was carried out and the candidate genes that could con-
fer Sr2-like resistance were proposed namely: TaGLP3_1/TaGLP3_2, TaGLP3_3/TaGLP3_4,
TaGLP3_10, TaGLP3_6, TaGLP3_5, TaGLP3_8/TaGLP3_9. The location of the marker csSr2
was further revised and another marker was identified [118].
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4. Conclusions

Numerous genes conferring resistance to stem rust have been discovered to date either
in the gene pool of common wheat or in related species. Although many of them do not
confer resistance to Ug99 races, some, such as Sr31, are still effective against other numerous
modern and devastating races of P. graminis [11,23]. On the other hand, other genes that
were considered to not be effective against modern races of stem rust appeared to have
some value conferring resistance against Ug99 [56]. In accordance with recent discoveries,
the Ug99 races of P. graminis should not be the only races considered as a threat to wheat
production worldwide [3,9,12,25,26]. Introgressed R-genes, such as Sr33, seem to be the
most effective at providing “strong” types of resistance against almost all the races of stem
rust known to date [160] Such resistance is based on a gene-for-gene interaction with the
pathogen and recognition of the pathogen’s effectors. However, as effectors are usually
encoded by a single gene, mutations often cause an emergence of new races virulent to
race-specific genes [1,6,7,174]. Resistance conferred by Sr2, as well as other APR genes, is
based on more elaborate mechanisms of physiological responses to the pathogen invasion
in general, therefore it seems to be far more promising on a long-term scale [76,189].

The studies of QTLs related to stem rust resistance in modern wheat cultivars mostly
revealed the effectiveness and coexpression of known genes against the races used, but
potential loci related to P. graminis resistance were discovered as well [181,190,191]. For
instance, stem rust resistance of the spring wheat line ‘CI 14275′ to the races TTKSK, TRTTF,
TPMKC, TTTTF, and RTQQC was shown to be conferred not only by the Sr12 gene but also
by the unknown QTLs QSr.cdl-2BS.2 and QSr.cdl-6A [192]. Based on RIL populations from
cv. ‘Baguette 13′, cv. ‘INIA Tero’, and line BR23//CEP19/PF85490′, QTLs on chromosomes
2B, 6A, and 7B were identified, of which the QTL on 2B was effective against Ug99 [59].
The QSr.umn-2B.2 QTL on chromosome 2B conferring APR against African and North
American stem rust races (including the Ug99 race group) in four environments in the
RB07/MN06113-8 population has been reported in the literature [166]. In addition, several
minor QTLs on different chromosomes and major QTLs on chromosomes 1A and 1B were
discovered [193].

To date stem rust resistance genes such as Sr13, Sr21, Sr22, Sr26, Sr33, Sr35, Sr45,
Sr46, Sr50, Sr55, Sr57, Sr60, and Sr61 were sequenced [77,86,96,126,127,143,163,172–174].
Of them, only two (Sr55 and Sr57) are APRs and bread wheat own genes. Considering the
importance of not only using stem rust resistance genes in breeding but also understanding
the mechanisms of resistance, such studies are of prime value. New approaches such as
“rapid cloning”, which was used for the Sr22 and Sr45 genes [143], and “sequence capture”
which was used to clone Sr46 [172], might be considered as a way forward to sequence
other stem rust resistance genes for studying special features of the expression of Sr genes
in response to the pathogen and their involvement in plant immunity mechanisms.

Stem rust caused by P. graminis remains a constant threat to agriculture worldwide.
New races have emerged that are virulent to the resistance genes which were considered
to be effective even several decades ago. On the other hand, some Sr genes previously
considered as ineffective have proved to be of use as they might provide resistance to
new exotic races of stem rust. Moreover, when pyramided with other race-specific genes
or genes conferring race-nonspecific moderate APR any resistance gene may take part
in complex and durable stem rust resistance. The search for new Sr genes, especially
APR genes, continues to be of primary importance. In this context, the report about the
identification of the SrPan3161 gene on chromosome 4D in bread wheat cultivar PAN
3161, which accounts for 71.5% of the phenotypic variation for field resistance to the Ug99-
group race PTKST, is very promising. This gene derives from the cultivar Tugela and may
represent a novel APR [194].
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