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Microbes collectively shape their environment in remarkable ways via the

products of their metabolism. The diverse environmental impacts of macro-

organisms have been collated and reviewed under the banner of ‘niche

construction’. Here, we identify and review a series of broad and overlapping

classes of bacterial niche construction, ranging from biofilm production to

detoxification or release of toxins, enzymes, metabolites and viruses, and

review their role in shaping microbiome composition, human health and

disease. Some bacterial niche-constructing traits can be seen as extended phe-

notypes, where individuals actively tailor their environment to their benefit

(and potentially to the benefit of others, generating social dilemmas). Other

modifications can be viewed as non-adaptive by-products from a producer

perspective, yet they may lead to remarkable within-host environmental

changes. We illustrate how social evolution and niche construction perspec-

tives offer complementary insights into the dynamics and consequences of

these traits across distinct timescales. This review highlights that by under-

standing the coupled bacterial and biochemical dynamics in human health

and disease we can better manage host health.
1. Microbial niche construction
Microbes engage in a remarkable array of behaviours that shape and change

their shared environments (table 1). In short, microbes are prodigious ‘niche

constructors’ [16–20], with construction varying from elaborate and adaptive

extracellular mechanisms that yield collective improvements to a set of focal

‘engineers’ (e.g. secreting molecules to enhance nutrient supply and shelter)

[21–23], to the inevitable environmental degradation [24–30] (from focal

agent’s perspective) that follows from the uptake and consumption of limiting

resources [18,19,31]. Examples in important pathogens include: the production

of the toxin pyocyanin by the opportunistic pathogen Pseudomonas aeruginosa,

which both kills competitors and is toxic to humans [32,33]; biofilm formation

in the nosocomial pathogen Klebsiella pneumonia, which greatly enhances its anti-

biotic resistance [34] and transmission of Shiga toxin encoding phage viruses to

commensal microbes by shigatoxinagenic Escherichia coli, which can both clear

commensal E. coli and amplify production of the often deadly Shiga toxin

[35,36]. Understanding both the consequences of these behaviours on the host

environment and how these consequences shape the ecology and evolution of

pathogens is critical in developing robust treatment strategies for these infections.

Together, the diverse influences of organisms on their environment have

been termed ‘niche construction’, an extremely broad term that can be applied

to any organismal trait that has some (direct or indirect) consequence for the

organism’s environment [37,38]. The breadth of this concept has led some

authors to question its utility [39–41]. Here, we use a combination of concepts

from niche construction and social evolution theory to outline a broad classifi-

cation of how microbes change their environments, to better understand the
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Table 1. Examples of microbial niche construction.

trait niche construction effect references

respiration reduced partial pressure of O2-favouring anaerobes

biofilm production modifies spatial structure and chemical environment [1,2]

extracellular enzymes and scavenging molecules

(e.g. invertase, proteases, siderophores)

modifies the nutrient environment [3,4]

resistance to phages ‘herd immunity’ can reduce the effects of phages on others [5]

antibiotic production modifies composition of the microbiota [6,7]

antibiotic detoxification (e.g. b-lactamase) removes toxic chemicals from environment, alters microbiota [8]

excretion of metabolic by-products inhibits or promotes growth of other microbes [9 – 11]

immune system suppression suppression of the immune system may allow growth of other microbes [12]

immune system activation provocation of the immune system may clear commensals [13 – 15]

Table 2. A Hamiltonian classification of social traits. Traits are classified
based on the signs of their lifetime effects on the actor and on recipients,
yielding a four-way classification for the trait (behaviour or phenotype) of
interest. Note that ‘mutual benefit’ (þ/þ) here refers to costs and
benefits of the trait, and does not necessarily imply ecological mutualism
among species. After refs [42,43].

recipient 1 recipient 2

actor þ mutual benefit selfish

actor 2 altruistic spiteful
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ecological, evolutionary and human health implications of

these diverse changes.

‘Sociality’ and ‘niche construction’ are strongly overlapping

concepts. By broad definitions, they are entirely overlap-

ping ‘theories of everything’ that can describe all biological

traits, in so far as all traits affect a focal organism, and other

organisms via the inevitable impacts of an organism on its

environment. The classification of social behaviours most com-

monly follows Hamilton [42,43], who classified traits based on

lifetime direct fitness consequences of the trait to the actor (the

individual expressing the focal trait) and on fitness conse-

quences to recipients (other individuals impacted by the focal

trait; table 2; [42,43]). This classification has been extremely

influential in evolutionary biology and is increasingly applied

to understand adaptation in pathogenic microbes [44–46].

However, the powerful concision of this approach tends to

mask the environmental intermediaries that are central to

bacterial social interactions (adaptive and non-adaptive) and

impacts to the host [47], such as secreted proteins [3,4], metab-

olites [9–11,48], shared mobile genetic elements [49], changes

in pH [23], and changes in host immunity or gut flora [50].
2. Adaptive, maladaptive and incidental niche
construction

A common criticism of niche construction theory is that it

considers all effects of an organism on its environment as

niche construction effects, whereas these effects may not be

significant for the evolution of the organismal traits contrib-

uting to environmental change [40,41]. As such, the niche

construction perspective can be accused of obfuscating the

ultimate causes of the evolution of a trait [40,41]. Here,

we illustrate that by combining social evolution and niche

construction perspectives into a single classification system

this limitation can be easily overcome.

Table 3 illustrates this classification of traits depending on

their effects on an actor, recipient, and also whether the trait

was selected for based on its effects on recipients via modifi-

cation of the environment. Note that a single actor trait

can have distinct classifications depending on the identity

of the recipient. This classification differs from the classical

Hamiltonian classification of behaviours in that it considers

effects on the environment (and therefore other organisms)
that were not selected for, i.e. incidental effects. This leads

to three broad categories of niche-construction—incidental,

maladaptive and adaptive.

(a) Incidental niche construction
Incidental niche construction (INC) concerns the consequences

of ‘self-interested’ traits, traits that increase the direct fitness of

a focal individual, and may either increase (incidental mutually
beneficial niche construction) or decrease (incidental selfish niche
construction) the fitness of interactants via their effects on

the environment that have not been selected for. A large

proportion of bacterial interactions fall into the category of

incidental selfish niche construction, as most metabolic activity

will likely degrade the environment for other conspecifics,

though metabolic traits are unlikely to have generally been

selected for this purpose. However, incidental mutually beneficial
niche construction is also common (note that this mutualism

need not be ecological mutualism). By-products of selfish

microbial metabolism may be metabolized by heterospecific

microbes, in a process termed cross-feeding or syntrophy

[9–11], allowing both interactants to benefit from the selfish

metabolic trait even in the absence of any return of beneficial

services from the recipient to the actor.

(b) Maladaptive niche construction
Maladaptive niche construction (MNC) concerns traits that

reduce the fitness of the focal individual, and have not been

selected based on their effects on the social environment.

Such traits would be expected to appear only transiently as

they are entirely deleterious to the actor. However, for



Table 3. A Hamiltonian classification of niche-constructing behaviours.

recipient 1 recipient 2

selected for effect
on environment

not selected for effect
on environment

selected for effect
on environment

not selected for effect
on environment

actor þ mutually beneficial extended

phenotype, e.g. secretions

in medium to low

densities (EP)

incidental mutually beneficial

niche construction, e.g.

cross-feeding (INC)

selfish extended

phenotype, e.g.

intracellular pathogen

secretions (EP)

incidental selfish niche

construction, e.g.

respiration (INC)

actor 2 altruistic extended phenotype,

e.g. secretions in high

density environments (EP)

maladaptive altruism, e.g.

inappropriate VF expression

(facilitating pathogen

invasion) (MNC)

spiteful extended

phenotype, e.g.

bacteriocin

secretions (EP)

maladaptive spite, e.g.

inappropriate virulence

factor expression

(damaging host) (MNC)

mutual benefit

altruistic spiteful

selfish(b)(a)

(c) (d )

Figure 1. Social calculus for costly secreted factors is dependent on density
and mixing of a population. Focal cell and focal cell niche-constructing beha-
viours are shown in black, interactants are shown in grey. (a – c) Secreted
public good molecule (e.g. iron-scavenging siderophore or extracellular diges-
tive enzyme). (d ) Lytically produced anti-competitor toxin (e.g. bacteriocin).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140298

3

generalist microbes that are able to survive and grow across

a broad range of environments, the potential for locally

maladaptive gene expression in novel or rarely encountered

environments is increased. A recent comparative analysis of

bacterial pathogens of humans illustrated that more generalist,

zoonotic species carry a larger genomic repertoire of secreted

proteins [4]. This result suggests that generalist bacterial

pathogens have larger repertoires of niche-constructing behav-

iours, and by virtue of their environmental generalism are also

more likely to make regulatory ‘bad decisions’ in any specific

environment—such as within a human host [51]. Inappropri-

ate expression of a virulence factor (VF) in a host species or

disease site to which a pathogen is not adapted could lead to

negative effects for the focal individual and its neighbours,

appearing as maladaptive spite. Similarly, production of public

goods molecules when they are not of use to the focal individ-

ual and relatives, but could be of use to other species, could

create the appearance of maladaptive altruism.

(c) Adaptive niche construction or ‘extended
phenotypes’

Adaptive niche construction or ‘extended phenotypes’ (EP)

concerns traits that have been selected for based on their effects

on the environment [52]. These traits would be expected to

show a clear signature of being designed for their effects on

their environment of adaptation (which may not be the

human host). For example, for microbes, secreted proteins

would be expected to constitute adaptive niche construction

traits in their appropriate environment as they are costly to

produce and, given that they are secreted, must therefore

have been selected for their effects on their environment of

adaptation. Adaptive niche construction traits could poten-

tially fall into any of the Hamiltonian classifications of social

behaviour (figure 1):

— Mutually beneficial extended phenotype, e.g. production of

scavenging molecules (siderophores, etc.) at low densities

(figure 1a). Here, a focal producer receives a net gain owing

to the return of iron-loaded siderophores to their producer,

as well as gains to other neighbouring individuals [53].

— Altruistic extended phenotype, e.g. production of scavenging

molecules at high densities in well-mixed populations

(figure 1c). Here, a focal producer is highly unlikely to
receive a direct return on the molecules it has individually

produced, but the trait has been selected based on the

benefits received by relatives [53].

— Spiteful extended phenotype, e.g. suicidal production of

bacteriocins (figure 1d ). Here, a focal individual pays a

cost of the trait, but gains an indirect benefit by harming

individuals that are less related to them than average [6,7].

— Selfish extended phenotype, e.g. production of scavenging

molecules when alone or at low densities (figure 1a). Here,

a focal individual gains from modifying their environment

and harms others via environmental degradation (draw-

down of shared local resources and/or direct damage to

the host) [54].
Adaptive niche construction traits will also inevitably have

additional incidental or maladaptive consequences, owing to

their impacts on other recipients. For example, adaptive invest-

ment in biofilm matrix production can change the physical

structure of an environment, producing dramatic changes in

flow rates [55], oxygenation [1,2] and can ultimately shift com-

munity structure [56–58] and lead to the local extinction of the

lineages that initially constructed the biofilm [2].
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The expanded classification of social behaviours in table 3,

encompassing both social evolution and niche construc-

tion perspectives, provides a more holistic view of both the

evolutionary causes, and ecological and environmental conse-

quences, of microbial social behaviours. However, a major

challenge exists in elucidating to which of these classes any

individual microbial behaviour belongs, and how classifi-

cations change with changing environmental contexts—for

instance, density, mixing, host and microbiome composition

(figure 1). However, we believe there are some general guiding

principles that can be applied. Whenever an instance of

microbial niche construction is caused by secretions/excretions

released by microbial cells, the mechanism of production of

these secretions can give insights into whether or not this

niche construction effect is adaptive in at least some environ-

ments. If these secretions are proteins, then we argue that the

protein’s anticipated niche construction effect must be adaptive

in an appropriate environment—why produce a costly large

molecule and release it from the cell if its expected net effect

on the environment is not beneficial to the actor and kin?

This view is also supported by the observation that secreted

proteins show a signature of selection for reduced biosynthetic

cost [49]. Similarly, if a secreted small molecule is produced by

dedicated synthase genes (e.g. siderophores, certain quorum-

sensing signal molecules [59]), it stands to reason that it must

have some adaptive niche construction function; otherwise,

the trait would be lost by selection. However, for excreted mol-

ecules that are by-products of selfish intracellular metabolic

processes, we argue that the niche-constructing impacts (such

as cross-feeding or syntrophic community structures) are

likely to be purely incidental effects.
3. Utility of combining niche construction and
social evolution perspectives: managing
bacterial niche construction

The combination of niche construction and social evolution

perspectives promises a richer understanding of microbial

social behaviours. However, what value does this combination

of perspectives offer for our understanding, and ultimately

management, of our interaction with microbes?

Consider for example a bacterial VF. VFs are clearly niche-

constructing traits, as they are typically defined and identified

by their causal impact on host-level disease, in addition

to the requirement of being expendable in rich culture. In

short, they are molecular determinants of pathology, coded by

non-essential genes [60]. What would a niche construction per-

spective tell us about VFs? The focus of a niche construction

perspective would be on the effects of the virulence trait on the

environment through space and time. Key questions would be

(1) How is the microbiota affected?

(2) How is the immune system affected?

(3) How spatially diffuse are the effects (VF diffusion,

propagation, etc.)?

(4) How temporally elongated are the effects (VF durability,

immune memory, etc.)?

(5) How do impacts on immunity and other microbes

interact?

On the other hand, a social evolution perspective asks a very

different set of questions:
(1) How does VF production affect the producer’s fitness?

(2) How does VF production affect the fitness of other

individuals?

(3) What is the relatedness between affected individuals and

producers?

(4) Ultimately, what was the VF selected for?

The niche construction perspective focuses on the range of

effects of the trait on the host environment through space and

time, and identifies potential consequences directly for host

health and those mediated by microbiota, immune system,

etc. This focus on mechanism is more aligned with mainstream

microbiological approaches, and allows us to make inference

by homology—similar molecules in another organism will

likely have similar effects. In sum, the niche construction per-

spective identifies the full range of potential direct and

indirect impacts of the trait on the host and microbiota.

In contrast, the social evolution perspective tells us which of

these effects are important for the evolution of the trait, if

any (recognizing the potential for the trait to be sculpted by

selection in distinct environments [51,61]). By providing a diag-

nosis of the selectively relevant forces acting on the VF, a social

evolution perspective provides vital information on the poten-

tial evolutionary consequences of interfering with the trait in

different ways.

(a) Case study 1: Clostridium difficile dynamics in the
gut microbiome

As a concrete example, let us consider the recently discovered

suppression of Clostridium difficile infection by its cogener

C. scindens [62]. C. difficile is a ubiquitous soil-dwelling

microbe, and is found in a carriage state in the colon of

approximately 2–5% of the adult human population [63].

C. difficile is also a major opportunistic pathogen of humans

with disrupted gut microbiomes, notably following antibiotic

treatment. Antibiotic-associated reductions in the resident

commensal microbiota can lead to C. difficile colitis [64], a

dangerous condition and increasingly the target of contro-

versial ‘faecal transplant’ therapies, where faecal material

from healthy donors is used to repopulate the microbiome

of the patient [65]—a clear and dramatic example of medical

niche construction. While faecal transplants are reported as

an empirical success, the search for a mechanistic basis of

their efficacy is pressing, in order to replace faecal transplants

with defined therapeutic consortia.

Using a combination of metagenomics of the microbiome

of hospitalized patients and mouse model infections, Buffie

et al. [62] recently showed that the presence of C. scindens pro-

tects against infection with C. difficile via the biosynthesis of

secondary bile acids, which inhibit C. difficile growth. This

suggests that the use of C. scindens as a probiotic for patients

undergoing antibiotic treatment may help prevent debilitat-

ing C. difficile infections, without recourse to entire faecal

transplantation.

What does a joint niche construction and social evolution

perspective offer in terms of understanding this potential

new treatment? While C. difficile infections primarily occur

in the lower parts of the colon [66], C. scindens and other

secondary bile-acid-producing bacteria are thought to be pri-

marily active in the upper parts of the colon [67,68]. Thus,

the production of secondary bile acids by C. scindens is analo-

gous to the canonical example of niche construction—a
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Figure 2. The niche construction effect of bile acid modification by C. scindens. Dehydroxylation of bile acids by C. scindens at the caecum (upper colon) leads to
suppression of C. difficile in the lower colon. Bile acid modification may directly yield energy for C. scindens, but may also suppress the growth of local competitors,
which could be an adaptive or incidental function. Finally, the downstream effect of C. scindens on C. difficile may either provide benefits via immune system
interaction or may be incidental.
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beaver dam—in having downstream effects modifying the

environment (figure 2).

Whereas the biomedically significant effects of enzymat-

ically modifying bile acid are downstream of the actor, the

nature and localization of the costs and benefits to the actor

are currently unknown (figure 2). We anticipate that the sup-

pression of C. difficile has negligible impacts on C. scindens
owing to their significant spatial segregation (although

immune-mediated interactions are possible). It is more

likely that bile acid modification provides local benefits to

C. scindens, through the chemical suppression of local (and

currently unidentified) competitors. Finally, it is possible

that dehydroxylation of primary bile acids directly yields

energy for C. scindens, and all extracellular impacts are inci-

dental for the focal actor. Critical to elucidating which of

these scenarios holds will be characterizing the temporal

and spatial extent of the costs and benefits of secondary

bile acid synthesis to C. scindens, its local interactants, and

downstream players including C. difficile. If bile acid modifi-

cation is driven by direct metabolic gains (i.e. INC), then the

microbiome management goal will be to increase profitability

of this reaction (potentially via diet, prebiotics). In contrast, if

the trait is driven by local competitive gains, then manage-

ment might involve manipulating competitive cues driving

expression of the enzymatic modification. In either case,

understanding the social and non-social selection pressures

governing bile acid modification is critical for ensuring any

such intervention is robust to potential within host evolution

of C. scindens and its interactants.
(b) Case study 2: Pseudomonas aeruginosa dynamics
in the cystic fibrosis lung microbiome

Cystic fibrosis (CF) is a genetic condition that primarily affects

the lung, leading to impaired airway clearance and the establish-

ment of chronic lung infections. Chief among the multiple

microbial pathogens of the CF lung is the environmental

generalist bacterium and opportunistic pathogen, Pseudomonas
aeruginosa. In linewith other generalist opportunistic pathogens,

P. aeruginosa is characterized by a broad arsenal of secreted

‘VFs’, with the typical genome carrying 60 or more genes

coding for secreted proteins, spanning toxins, exoenzymes

and immunomodulatory factors [4]. On initial colonization of

mammalian tissues, many of these secreted factors are upregu-

lated [69,70]. However, during subsequent evolution within

chronically infected CF patients, many of these secreted factors
are subsequently lost [71–74]. The loss of collectively produ-

ced VFs has led social evolution theorists to suggest that the

within-host evolutionary dynamics is due to social interac-

tions favouring non-producing ‘cheater’ strains that exploit the

benefits, but do not pay the costs of collective action [75,76].

However, it is also possible that the benefits of VF expression

change in time owing to a successional process of environmental

modification—in the early stages of lung colonization, secreted

factors are beneficial in remodelling the lung environment, and

then only later on do they become redundant [51]. Finally, it is

possible that these VFs are always redundant in the lung and

that their initial upregulation was a regulatory mistake, a ‘bad

decision’ resulting from a severe environmental mismatch

[51]. The potentially widespread existence of regulatory mis-

takes in generalist microbes was recently highlighted in a

study of P. aeruginosa acute burn and chronic wound infections,

which found no correlation between gene expression level and

selection on a mutant—P. aeruginosa is just as likely to upregu-

late redundant genes and downregulate useful genes as the

converse [77].

Understanding the relative roles of these three non-exclu-

sive hypotheses (cheating, succession and redundancy) is

important from a management perspective. One emerging

therapeutic option to manage P. aeruginosa virulence in

CF lung infections is the use of ‘anti-virulence’ drugs. Anti-

virulence (AV) drugs act by chemically suppressing the

expression or functioning of bacterial VFs [60]. If VFs are

purely redundant within the lung, then chemically suppressing

their activity could even lead to selection against resistance [60].

Similarly, if VFs are collectively beneficial and prone to cheater

exploitation, then drug treatment could select against resistant

cells—but only if resistant ‘cooperators’ and sensitive ‘cheats’

are sufficiently well mixed [60,78]. Finally, if the benefits of

VF expression are temporally variable, then the picture becomes

yet more nuanced and dependent on the successional stage of

the infection process.

(c) Case study 3: Provocation of the host immune
response by Salmonella enterica serovar
Typhimurium

One of the most dramatic ways in which bacteria can modify

the within-host environment they experience is by provoking

the host immune system in order to clear competitors [13].

If a pathogen is suitably protected, eliciting a strong immune

response could facilitate its invasion by clearing commensals
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and other competing pathogens from the infection site [14,36].

Many examples of this behaviour have been characterized in

bacteria, including provocation of immune response by inflam-

mation-promoting toxins or immunogenic factors in E. coli
O157:H7 [79,80], Streptococcus pneumoniae [81,82] and C. difficile
[83–85], leading to clearance of commensal competitors, and

by recruitment of neutrophils into the paranasal spaces by

Haemophilus influenzae, leading to the clearance of its com-

petitor S. pneumoniae [15]. Interestingly, in this last example,

provocation of the immune system by H. influenzae may have

selected for more virulent serovars of S. pneumoniae, which

can resist this immune response [86]. While for many of these

examples, it is unclear whether this inflammation is adaptive,

one of the most well-described examples of adaptive immune

provocation occurs in the enteric pathogen Salmonella enterica
serovar Typhimurium.

Pathogenic salmonella, like other enteric food-borne

pathogens, face a dramatic ecological challenge on entering

the digestive tract: the presence of a diverse and saturated eco-

system of resident and presumably locally adapted microbes.

Stecher et al. [13] demonstrated that S. typhimurium can

overcome resident microbiome competitive suppression by

provoking an inflammatory host immune response to preferen-

tially clear commensal competitors. In order to overcome

competition from the commensal microbiota, S. typhimurium
uses type III secretion system 1 (T3SS-1) to manipulate and

invade gut tissue and induce inflammation in the host, to

which S. typhimurium is resistant [13]. Expression of these

VFs is regulated by a stochastic bistable switch, with only a

subpopulation of S. typhimurium expressing the trait. This

means that, despite most of the cells invading the gut tissue

being killed, cooperators can gain indirect benefits by enhan-

cing the growth of relatives in the gut lumen [87]. However,

this behaviour has been shown to also benefit avirulent cheater

strains (unable to switch to the virulent, sacrificial phenotype),

allowing the cheater strain to increase in frequency within the

host [88]. This would initially suggest that provocation of the

host immune response is an altruistic extended phenotype, imply-

ing that anti-virulence drugs [60,89], or even treatment with

cheater strains (‘cheat therapy’ [90]), may be an evolutionarily

robust way to manage S. typhimurium virulence.

However, the picture becomes more complicated when we

consider the effects of antibiotic treatment on the evolutionary

dynamics of this trait. Ciprofloxacin treatment has been shown
to reduce the ability of cheats to invade WT S. typhimurium
during infection [91,92]. This occurs as S. typhimurium cells

that have invaded the gut tissue are protected from the effects

of the antibiotic, acting as a ‘persister’ subpopulation [91],

whereas cheaters and cooperators in the gut lumen are cleared

by the antibiotic [91]. A small proportion of the cooperators

that have invaded the gut tissue then re-seed the infection in

the lumen [91]. These results highlight that under antibiotic

treatment the benefits of expression of the virulent pheno-

type (survival in a persistence state/location) become direct,

whereas the environmental modifications likely become redun-

dant (competitor clearance is now driven by antibiotics). In this

scenario, the virulent phenotype becomes a case of incidental
selfish niche construction, and there will be strong selection for

resistance to any anti-virulence drug (and within-host selection

against cheats), reducing the evolutionary robustness of this

treatment strategy. Under antibiotic treatment, a more promis-

ing approach may be to try to manage the niche construction

effects (i.e. inflammation) caused by tissue invasion.
4. Conclusion
The evolutionary management of infectious diseases needs

clear focus on both the effects of microbes on their environ-

ment and the consequent selection pressures of these effects.

Whether adaptive or not, elucidating the niche construction

effects of microbes is critical as they are likely to impact on

host health. However, we also need to clearly delineate the

subset of impacts that have a selective relevance—the direct

and indirect costs and benefits of a pathogen trait—as it is

this social evolution cost–benefit analysis that governs the tra-

jectories of biomedically significant traits (e.g. drug resistance,

virulence, emergence, microbiome resilience) through very

rapid evolutionary time.
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