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Abstract

Background: In the central nervous system (CNS) myelin sheaths stabilize, protect, and electrically insulate axons.
However, in demyelinating autoimmune CNS diseases such as multiple sclerosis (MS) these sheaths are destroyed
which ultimately leads to neurodegeneration. The currently available immunomodulatory drugs for MS effectively
control the (auto)inflammatory facets of the disease but are unable to regenerate myelin by stimulating
remyelination via oligodendroglial precursor cells (OPCs). Accordingly, there is broad consensus that the
implementation of new regenerative approaches constitutes the prime goal for future MS pharmacotherapy.

Main text: Of note, recent years have seen several promising clinical studies investigating the potential of substances
and monoclonal antibodies such as, for instance, clemastine, opicinumab, biotin, simvastatin, quetiapin and anti-GNbACT.
However, beyond these agents which have often been re-purposed from other medical indications there is a multitude
of further molecules influencing OPC homeostasis. Here, we therefore discuss these possibly beneficial regulators of OPC

differentiation and assess their potential as new pharmacological targets for myelin repair in MS.

Conclusion: Remyelination remains the most important therapeutic treatment goal in MS in order to improve clinical
deficits and to avert neurodegeneration. The promising molecules presented in this review have the potential to
promote remyelination and therefore warrant further translational and clinical research.
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Introduction

Axonal myelin sheaths enable saltatory signal transduction
which accelerates information processing 20-100-fold.
However, many diseases of the central nervous system
(CNS) such as multiple sclerosis (MS) harm or destroy
myelin sheaths and the myelin-producing oligodendro-
cytes resulting in demyelination. MS is an autoimmune in-
flammatory CNS disease of yet unclear etiology [75, 91].
Its most common clinical course is the relapsing subtype
(RMS) which can manifest itself in a plethora of acute
clinical symptoms (i.e. relapses) ranging from paresthesias
to ataxia or even motor weakness. Most RMS cases ultim-
ately transform into (secondary) progressive MS (PMS)
where neurodegeneration outweighs inflammation. Even
though there is evidence that adult oligodendrocyte can
contribute to myelin repair in the adult CNS [18, 103],
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remyelination is thought to be mostly mediated by an ubi-
quitous pool of so-called oligodendroglial precursor cells
(OPCs) which can differentiate into mature cells and then
generate new myelin [10]. Unfortunately, this spontan-
eously occurring process called remyelination is overall in-
efficient and results in shorter and thinner myelin sheaths.
Neuropathologically, this is mirrored by the presence of
so-called shadow plaques - lightly remyelinated lesions
with intermediate levels of myelin. Critical steps for
remyelination such as OPC activation, recruitment, differ-
entiation, and ultimately myelin regeneration are orches-
trated by a number of extrinsic and intrinsic factors that
act either as inhibitors or stimulators of OPC differenti-
ation [47, 50]. Of note, recent publications point to an in-
creasing heterogeneity within the oligodendroglial lineage
reflecting differences between white and grey matter local-
isation and origin [94], different CNS regions [59] as well
as lineage alterations upon demyelination [20, 40]. More-
over, as mentioned above, in the diseased adult CNS an
additional contribution to myelin repair from partially
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lesioned oligodendrocytes has recently been suggested
[18, 103]. Lastly, the subventricular zone (SVZ) stem
cell niche represents yet another source for adult oli-
godendrogenesis, which is therefore contributing to
glial heterogeneity [2]. This review will discuss re-
cently identified molecules affecting OPC differenti-
ation which may represent new therapeutic strategies
to exogenously promote remyelination in MS (see
Table 1 and Fig. 1 for a respective overview).

Receptors/membrane-bound molecules

Klotho

As a single-pass transmembrane protein, Klotho is pri-
marily found in the kidney and the CNS [52]. As a result
of ectodomain shedding, cleaved Klotho can act as a lig-
and, hormone and/or glycosidase regulating ion homeo-
stasis. Furthermore, it modulates the Wnt and insulin/
IGF1 pathways which represses IGF-1 signaling [51]. Re-
cent studies found that Klotho accelerates remyelination
in cuprizone-mediated demyelination animal models [92].
In this context, it is important to note that by means of a
knock-out animal model Klotho had previously already
been shown to promote OPC maturation via the phos-
phorylation of FRS2, ERK and Akt leading to an activation
of mammalian target of rapamycin (mTOR; [12]). How-
ever, given its inability to cross the blood-brain barrier
(BBB), a small molecule approach aimed at increasing en-
dogenous Klotho production appears to be the most prom-
ising therapeutic strategy [1]. Moreover, the uncleaved
Klotho transmembrane protein acts as a co-receptor form-
ing a complex with fibroblast growth factor receptor
(FGFR) responsible for FGF23 signaling which is involved
in vitamin D production [72, 73]. Regarding other members
of the FGF family, p-klotho was demonstrated to enhance
remyelination in a toxic demyelination animal model based
on an interaction with FGF21. This effect seems to result
from a stimulation of OPC proliferation promoting CNS
regeneration [53].

Smoothened (Smo)

Besides the already mentioned Wnt, insulin/IGF and
FGF signaling pathways, sonic hedgehog (Shh) signaling
seems to play an important role in OPC differentiation.
Inhibition of the atypical G protein-coupled receptor
Smoothened (Smo), an activator of Shh signaling, caused
a dramatic decrease in myelin marker expression such as
myelin basic protein (MBP) and myelin associated glyco-
protein (MAG) during OPC differentiation in cell cul-
ture [95]. As a result, Smo constitutes a potential
therapeutic target for myelin repair [14]. In vitro cell
culture-based drug screening approaches and functional
remyelination studies (both in ex vivo cerebellar cultures
and a neuromyelitis optica animal model) identified a
number of active compounds with remyelination/myelin
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repair properties that act as Smo agonists, such as, for
instance, clobetasol which is a corticosteroid already ap-
proved for the treatment of skin diseases such as psoria-
sis (CLOB; [65, 71, 102]).

Myelin regulatory factor (MYRF)

Myelin regulatory factor (MYRF) is a membrane-bound
transcription factor tightly associated with the endoplas-
mic reticulum (ER; [19, 34]). As revealed by MRF condi-
tional knockout (CKO) mice, upon self-cleavage, the N-
terminal fragment of MYRF translocates from the ER
into the nucleus where it functions as a transcription
factor stimulating myelin gene promotor activity [19].
Hence, it seems to be critical for oligodendroglial differ-
entiation and myelin maintenance [46]. Studies in
lysolecithin-induced demyelination animal models point
to an essential role of MYRF in remyelination/myelin re-
pair which is underlined by the observation that in
chronic human MS lesions oligodendrocytes were found
to lack MYRF expression [17].

Repulsive guidance molecule a (RGMa)

Repulsive guidance molecules (RGMs) are a small family
of membrane-bound proteins with tissue-specific expres-
sion which were initially described as axonal guiding fac-
tors during embryogenesis. However, recently they were
also recognized as being involved in multiple cellular pro-
cesses such as axon guidance during adulthood, neuronal
survival, axonal regeneration, iron metabolism and skel-
etal development [83]. As a member of this family, RGMa
was identified as a regulatory factor potentially facilitating
inflammation and inhibiting regeneration and remyelina-
tion in MS [15]. RGMa acts mainly through its target re-
ceptor neogenin which it activates differently depending
on its previous proteolytic processing: either involving ac-
tivation of LARG, RhoA, and ROCK or via y-secretase
cleavage of the intracellular domain of neogenin [4]. In
CD4+ T cells, RGMa leads to an activation of the GTPase
Rap1 resulting in an increased adhesion of T cells to intra-
cellular adhesion molecule-1 (ICAM-1; [63]). However, al-
though not directly inhibiting T cell trafficking to the
CNS, the use of murine EAE (experimental autoimmune
encephalomyelitis) animal models demonstrated that
treatment with anti-RGMa antibodies resulted in a dimin-
ished T cell proliferation as well as inflammation as indi-
cated by a reduced IL-2, IL-4, IFN-y and IL-17 secretion.
Accordingly, the clinical course of EAE was improved as
compared to controls [63]. Of note, this beneficial thera-
peutic effect was also confirmed in an SPMS animal
model, where anti-RGMa antibody treatment prevented
secondary progression of EAE, inhibited inflammation
and promoted neuroregeneration in the murine spinal
cord leading to functional recovery [89]. In addition, this
study showed that anti-RGMa antibody treatment reduced
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Fig. 1 Molecules affecting OPC differentiation. These molecules may represent new therapeutic strategies to exogenously promote remyelination
in MS. (s)APP = (secreted ectodomain fragment of APP) 3-amyloid precursor protein; Akt = serine/threonine-specific protein kinase protein kinase
B; Ca2+ = Calcium; FGF21 =fibroblast growth factor; FGFR = fibroblast growth factor receptor; FRS2 = fibroblast growth factor receptor substrate 2;

IRAKT = interleukin-1 receptor-associated kinase 1; mTOR = mammalian target of rampamycin; MYRF = myelin regulatory factor; NICD = Notch
intracellular domain; OPC = oligodendroglial precursor cell; TR4 = Thymosin beta-4

the number and activation of CD11b + microglia in the in-
flamed CNS. Interestingly, activated microglia were also
shown to express RGMa and to inhibit axonal outgrowth
via direct cell to cell contact. This effect could be reversed
not only by the anti-RGMa antibody but also by the anti-
biotic minocycline recently tested in clinical trials as a po-
tential treatment option for clinically isolated syndrome
(CIS) [45, 61]. In addition, RGMa may also be involved in
neuromyelitis optica (NMO) as in an NMO animal model
similar effects of anti-RGMa treatment were observed
such as a more favourable disease course, a weaker im-
mune response, and a partial restoration of AQP4 and
GFARP reactivity [33].

Physiologically occurring free molecules

miR-146a

During the past years, microRNAs and their dysregulated
expression have been studied extensively in MS pathology
[16]. Pharmaceutically, they are of interest due to the idea

that they could be delivered to target structures via extra-
cellular vesicles [69]. MicroRNA miR-146a was assigned a
potential role in myelin repair as it was demonstrated to
promote oligodendroglial differentiation and to enhance
remyelination in the toxically demyelinated corpus callo-
sum of mice [108]. Mechanistically, it is thought to inacti-
vate interleukin-1 receptor-associated kinase 1 (IRAK1),
an intracellular signaling molecule disturbing OPC differ-
entiation [48].

L-ascorbyl-2-phosphate (AS-2P)

Various studies have demonstrated decreased levels of
ascorbic acid in the serum of MS patients [7, 90]. In this
context, in vitro and in vivo experiments recently identi-
fied L-ascorbyl-2-phosphate (AS-2P), a stable form of
vitamin C, to be able to stimulate OPC differentiation
into mature and myelinating oligodendrocytes [31]. AS-
2P was found to increase the expression of oligodendro-
glial myelin markers such as 2',3"-Cyclic-nucleotide 3'-
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phosphodiesterase (CNPase) and MBP and to facilitate
the formation of myelin sheaths in OPC/neuron co-
cultures. In addition, As-2P also exerts a regenerative
impact in the toxic cuprizone animal model. Interest-
ingly and of note, all these effects seem to be independ-
ent of its well-described antioxidant properties.

Thymosin-f34

Thymosin beta-4 (timbetasin, T4) is a 43-amino acid
hormone-like peptide which is mainly involved in the
regulation of cell motility and migration. It is thought to
interact with globular actin (G-actin) regulating actin
polymerization and ultimately microfilament formation
[78]. Furthermore, recent studies demonstrated Tp4 to
have anti-inflammatory and immunomodulatory prop-
erties, to promote OPC proliferation and differenti-
ation as well as remyelination in the CNS. In EAE
and the cuprizone model, TP4 treatment led to a sig-
nificant neurological functional improvement which
was accompanied by a reduction of inflammatory cell
infiltrates, an enhanced oligodendrogenesis and re-
cruitment of OPCs to demyelinated axons which re-
sulted in a relevant reduction of axonal damage in
the demyelinating CNS [107, 109]. In MS brains, it
was found to be present in the periphery of not yet
fully remyelinated lesions which, in the context of the
previous findings, suggests a restorative effect [57].
On the other hand, proteomic profiling studies of cere-
brospinal fluid (CSF) showed significantly decreased
T4 levels in MS patients as compared to patients with
other neurological diseases [55]. Mechanistically, the
exact mode of action of T4 still needs further clarifica-
tion but seems to be multifaceted as T4 has several
biological functions [25]. However, Tp4 leads to an up-
regulation of p38 mitogen-activated protein kinase
(p38MAPK; [79]), miRNA 146a [80, 108, 111], and
smoothened-activating integrin linked kinase (ILK)
[44], all of them being involved in the mediation of
OPC differentiation (see further above).

Non-physiologically occurring free molecules

Etazolate

The pyrazolopyrine derivate etazolate features unique
pharmacological properties as it simultaneously acts as
an alpha-secretase activator, an allosteric GABAA recep-
tor modulator [58], an adenosine antagonist [97] and a
phosphodiesterase (PDE) inhibitor for PDE4 [96]. In de-
myelinating animal models etazolate has been shown to
promote the restoration of myelinated axons via an alpha-
secretase-induced release of the soluble N-terminal APP
fragment (sAPPalpha), an endogenous protein with neuro-
protective properties [56]. Of note, a clinical trial in Alz-
heimer’s disease (AD) already demonstrated a favorable
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clinical safety/tolerability profile (ClinicalTrials.gov Identi-
fier: NCT00880412).

Nimodipine

The voltage gated L-type calcium channel blocker nimodi-
pine is commonly used clinically to prevent cerebral
vasospams often following subarachnoid haemorrhage
(SAH). In different EAE animal models and in cell culture
experiments nimodipine was demonstrated to exert a
positive impact on both inflammation and neurodegenera-
tion via the induction of microglial apoptosis and im-
proved oligodendrogenesis [81]. Of note, it does so
without affecting the primary immune response. As it ex-
erts a protective effect on neurons and is able to preserve
myelin in EAE, nimodipine seems to be a promising can-
didate for both RMS and PMS [39].

Hesperidin and hesperetin

Hesperidin is a common flavanone from the fruit peel
of Citrus aurantium (bitter orange) with antioxidant,
anti-inflammatory and neuroprotective properties [77].
Oxidative stress is assumed to be one of the causes of
neurodegeneration in MS [26] so that antioxidant com-
pounds have long been regarded as a protective therapy
option [27, 35, 84]. In MOG-induced EAE hesperidin
treatment led to a reduction of disease severity. This ef-
fect is probably mediated by a hesperidin-induced re-
duction of proinflammatory cell infiltration into the
CNS, a T-cell polarization of proinflammatory CD4+ T-
cells to a regulatory T cell status and a subsequent shift
from proinflammatory IL-1b, IL-6, IL-17, and TNF-a to
regulatory L-10 and TGEF-f cytokines [13, 32]. In
addition, the aglycone derivate of hesperidin (hespere-
tin) inhibits neuroinflammation by a downregulation of
TLR4 which leads to a decrease of the proinflammatory
TLR4-dependent downstream cytokines NF-kB, TNF-q,
and IL-1p as demonstrated in an A} mouse model [36].
The administration of hesperetin in a lysolecithin
(LPC)-induced focal demyelination animal model dem-
onstrated a decreased demyelination and glial activation
in the optic chiasm which led to a functional recovery
and might reflect a beneficial impact of hesperetin on
remyelination [5].

Quercetin

Like hesperidin, the flavonol quercetin is a member of the
flavonoid group and thus considered to possess antioxidant,
antiviral and neuroprotective properties. Its neuroprotective
effect is mainly based on its anti-inflammatory and antioxi-
dant activity as well as its ability to induce the release of
neurotrophic factors while simultaneously attenuating
glutamate-mediated excitotoxicity [88]. Quercetin treat-
ment was shown to reduce the expression levels of the pro-
inflammatory cytokines TNF-a, IL-6, IL-1 and COX-2
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[60] promoting a functional recovery in the inflamed CNS
based on an animal model of intracerebral hemorrhage
[110]. Cell culture experiments revealed that quercetin en-
hances neurite outgrowth by the release of neurotrophic
factors, such as brain-derived neurotrophic factor (BDNF),
neurotrophin (NGF; [66]), growth-associated protein 43
(GAP43) and microtubule-associated protein (MAP; [62]).
Furthermore, it can potentially decrease nitrosative stress
by inhibiting NF-kB and its downstream effector inducible
nitric oxide synthase (iINOS; [43]). Regarding remyelina-
tion, recent studies demonstrated that quercetin interferes
with the canonical Wnt signaling pathway by separating
the Wnt-downstream transcription regulating protein [3-
catenin from transcription factor 4 [21, 22, 104], which in
turn improves myelin repair as demonstrated in demyelin-
ating animal models [8, 64].

Tricyclic dimeric peptide 6 (TDP6) - BDNF

Tricyclic dimeric peptide 6 (TDP6) is a small multicyclic
peptide that mimics a distinct region of the neurotro-
phin BDNF which exerts its effect via the transmem-
brane tropomyosin-related kinase B (TrkB) receptor
[11]. BDNF is required for normal CNS myelination [9,
41] and is able to directly enhance myelination in oligo-
dendrocytes [100]. Cell culture studies demonstrated,
that TDP6 selectively targets TrkB receptors [67] and ac-
tivates the downstream signaling molecules extracellular
related-kinase 1 and 2 (Erk1/2; [98]) which in turn pro-
motes remyelination [24, 99]. Further studies in EAE
demonstrated that stimulation of TrkB enhances remye-
lination by increasing oligodendrocyte differentiation,
the frequency of myelinated axons and myelin sheath
thickness [23].

Miscellaneous other molecules

Anti-NogoA antibodies were previously developed for
and intensively studied in axonal regeneration of the
acutely injured CNS [82]. Their application in a rodent
lysolecithin-based demyelinating animal model was
found to promote remyelination of axon tracts in the
spinal cord [37]. This indicates that anti-NogoA treat-
ment might constitute a potential anti-degenerative ap-
proach particularly interesting regarding PMS in which
axonal degeneration is thought to outweigh inflamma-
tion [38]. Aside from that, Notch signaling has been found
to play an important role in the regulation of developmental
and repair-associated oligodendrogenesis [42]. Interestingly,
it was now shown that the small molecule Yhhu4952 can be
used to inhibit the Jagged1-Notchl pathway and when ap-
plied to cuprizone-demyelinated or EAE animal models it
was found to boost oligodendroglial differentiation and to
improve myelin restoration [106]. Besides these factors tam-
oxifen, an FDA-approved selective estrogen receptor modu-
lator (SERM) used for the treatment of breast cancer, was
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found to induce OPC differentiation in culture and to accel-
erate remyelination in demyelinating animal models [28].
Further studies demonstrated that modulation of estrogen
receptors ERa, ERB, and GPR30 are responsible for the
observed effects [6]. Another interesting approach is to
use choline metabolites such as CDP-choline (citicoline)
to enhance remyelination in MS [29, 30, 76, 85]. CDP-
choline was found to ameliorate the disease course of
EAE and to exert beneficial effects on myelin, oligoden-
drocytes and axons. Upon cuprizone-induced demyelin-
ation, CDP-choline stimulated myelin regeneration and
reversed motor coordination deficits. Mechanistically, in-
creased remyelination apparently arises from an increase
in the numbers of proliferating OPCs and oligodendro-
cytes [86].

Conclusion

Remyelination remains the most important therapeutic
treatment goal in MS in order to improve clinical defi-
cits and to avert neurodegeneration which is already
present at early stages of the disease [49]. This is of par-
ticular importance as neurodegeneration dictates in large
measure the accumulating neurological disability in MS.
Even in radiologically isolated syndrome (RIS), a contro-
versially discussed precursor to MS based exclusively on
the incidental finding of clinically asymptomatic MRI le-
sions, there is evidence for thalamic volume loss as a
correlate of early neurodegeneration [3]. It is therefore
very encouraging to observe the plethora of emerging
clinical studies investigating the potential of different
agents to promote remyelination. Once fully established,
such therapies will probably be used as add-on medica-
tions in a two-pronged approach alongside ,classical
“immunomodulators. Of course, translation of experi-
mental findings into clinical trials assessing remyelina-
tion faces significant challenges. Notably it is unclear
which outcome measures should be best used in order
to adequately monitor therapeutic efficiency [68, 87].
Secondly, molecules supposed to stimulate OPC differ-
entiation should not exert negative pleiotropic effects on
otherwise physiologically required homeostatic path-
ways. This is particularly true for experimental molecules
aiming at a modulation of the activity of receptors and
membrane-bound proteins such as, for instance, Klotho,
Wnt, Smo and RGMa. Accordingly, for entirely new mole-
cules extensive animal studies will be an absolute prerequis-
ite as a first line of verification that they are well-tolerated
and do not lead to serious adverse events (SAEs). In con-
trast, repurposing of well-known drugs already approved
for other medical indications constitutes an elegant strategy
to avoid SAEs, to accelerate clinical development and to se-
cure patient trust. Of note, in order to produce effects on
remyelination potential molecules need to be able to cross
the BBB into the brain. It is therefore key to find effective
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ways of delivery, all the more, as it is a misconception that
even most so-called small molecules (i.e. <900Da) can
easily cross the BBB [70]. At least for Clobetasol [65],
Yhhu4952 [106], tamoxifen [54], nimodipine [93], CDP-
choline [74] and the flavonoids [101, 105] BBB penetration
has already been established (see Table 1). Despite all these
challenges, looking at the multitude of promising molecules
presented in this review is extremely reassuring.
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