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Background: Preoperative determination of breast cancer molecular subtypes facilitates individualized treat-
ment plan-making and improves patient prognosis. We aimed to develop an assembled convolutional neural
network (ACNN) model for the preoperative prediction of molecular subtypes using multimodal ultrasound
(US) images.
Methods: This multicentre study prospectively evaluated a dataset of greyscale US, colour Doppler flow
imaging (CDFI), and shear-wave elastography (SWE) images in 807 patients with 818 breast cancers from
November 2016 to February 2021. The St. Gallen molecular subtypes of breast cancer were confirmed by
postoperative immunohistochemical examination. The monomodal ACNN model based on greyscale US
images, the dual-modal ACNN model based on greyscale US and CDFI images, and the multimodal ACNN
model based on greyscale US and CDFI as well as SWE images were constructed in the training cohort.
The performances of three ACNN models in predicting four- and five-classification molecular subtypes
and identifying triple negative from non-triple negative subtypes were assessed and compared. The per-
formance of the multimodal ACNN was also compared with preoperative core needle biopsy (CNB).
Finding: The performance of the multimodal ACNN model (macroaverage area under the curve [AUC]: 0.89–
0.96) was superior to that of the dual-modal ACNN model (macroaverage AUC: 0.81–0.84) and the monomo-
dal ACNN model (macroaverage AUC: 0.73–0.75) in predicting four-classification breast cancer molecular
subtypes, which was also better than that of preoperative CNB (AUC: 0.89–0.99 vs. 0.67–0.82, p < 0.05). In
addition, the multimodal ACNN model outperformed the other two ACNN models in predicting five-classifi-
cation molecular subtypes (AUC: 0.87–0.94 vs. 0.78-0.81 vs. 0.71–0.78) and identifying triple negative from
non-triple negative breast cancers (AUC: 0.934–0.970 vs. 0.688–0.830 vs. 0.536–0.650, p < 0.05). Moreover,
the multimodal ACNN model obtained satisfactory prediction performance for both T1 and non-T1 lesions
(AUC: 0.957–0.958 and 0.932–0.985).
Interpretation: The multimodal US-based ACNNmodel is a potential noninvasive decision-making method for
the management of patients with breast cancer in clinical practice.
Funding: This work was supported in part by the National Natural Science Foundation of China (Grants
81725008 and 81927801), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502),
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Research in context

Evidence before this study

Preoperatively identifying molecular subtypes of breast cancer
can facilitate individualized treatment plan-making and
improve patient prognosis. Previous studies found that multi-
modal ultrasound (US) imaging manifestations were related to
certain molecular subtypes of breast cancer. Convolutional neu-
ral network (CNN)-based image analysis can establish a direct
link between complicated medical imaging data and disease
prediction. Thus, we aimed to develop an assembled CNN
(ACNN) model for the preoperative prediction of breast cancer
molecular subtypes using multimodal US images.

Added value of this study

The database we built in this multicentric and prospective
study was standardized multimodal US images data of breast
cancers. Breast shear-wave elastography (SWE) examinations
were conducted firmly according to the World Federation for
Ultrasound in Medicine & Biology guidelines, which ensured
the quality of SWE images. In addition, SWE image quality con-
trol was conducted independently by one senior radiologist.
Based on this database, original ACNN models were designed to
predict breast cancer molecular subtypes and compared their
performance with preoperative core needle biopsy (CNB). The
multimodal ACNN model showed satisfactory performance and
robustness for predicting breast cancer molecular subtype
tasks. Moreover, the multimodal ACNN model yielded similar
prediction performance for T1 and non-T1 lesions. In addition,
the multimodal ACNN model achieved better performance than
preoperative CNB for identifying breast cancer molecular
subtypes.

Implications of all the available evidence

We developed a promising ACNN model based on greyscale US,
colour Doppler flow imaging (CDFI), and SWE images to predict
four- and five-classification St. Gallen breast cancer molecular
subtypes. The multimodal ACNN model achieved better perfor-
mance than preoperative CNB. Moreover, this model also
achieved superior performance in discriminating triple nega-
tive from non-triple negative breast cancers. The multimodal
US image-based ACNN model is a noninvasive approach for the
prediction of breast cancer molecular subtypes. Therefore, X Xthis
model is a potential noninvasive decision-making method for
the management of patients with breast cancer in routine clini-
cal practice.
1. Introduction

Breast cancer is the leading cause of cancer-related death in
women worldwide and is a molecular heterogeneous disease with
varying prognoses [1,2]. Determining the breast cancer molecular
subtypes preoperatively can facilitate individualized treatment plan-
making and thus improve the patient prognosis [3,4]. Currently,
ultrasound (US)-guided core needle biopsy (CNB) is commonly per-
formed for the preoperative pathological diagnosis of breast cancer
[5]. However, some intrinsic limitations of US-guided CNB might
handicap accurate determination of breast cancer molecular subtypes
preoperatively [6–10]. The partial samples obtained by CNB might
not represent the entire lesion owing to the heterogeneity of breast
cancer [6].

Given the importance and challenges of preoperatively identifying
breast cancer molecular subtypes, some radiology communities have
explored the potential value of US images for noninvasively predict-
ing molecular subtypes [11–14]. Greyscale US, colour Doppler flow
imaging (CDFI), and shear-wave elastography (SWE) examinations
have been widely used to characterize breast lesions in clinical prac-
tice. Some studies found that some US image features from radiolog-
ists’ visual interpretation were related to certain molecular subtypes
of breast cancer [15,16]. However, there exists high inter- and intra-
observer variability in the interpretation of US images, and there is
currently no practicable method to directly predict molecular sub-
types of breast cancer [17].

The convolutional neural network (CNN), a newly developed type
of artificial intelligence (AI), has drawn widespread attention for its
excellent performance and high reproducibility in the field of medical
image recognition tasks [18]. CNN-based image analysis can establish
a direct link between complicated medical imaging data and disease
prediction. It has been shown to achieve prominent performance in
automatically recognizing breast lesions, distinguishing malignant
from benign breast lesions, and predicting clinically negative axillary
lymph node metastasis using US images [19–21].

Combining multimodal US images and CNN-based image analysis
technology may yield a promising effect in predicting breast cancer
molecular subtypes. Thus, the aim of our study was to investigate the
potential for CNN to predict molecular subtypes through the use of
multimodal US images of breast cancer.
2. Methods

2.1. Ethics

This multicentre study was approved by the institutional ethics
committees of the three participated centres (approval number:
SHSYIEC–4.1/20–120/01), and informed consent was obtained from
all the patients. Prospective research of this study was registered at
www.chictr.org.cn (ChiCTR2000038606).
2.2. Study population

Consecutive patients with breast cancers were prospectively
enrolled from the Shanghai Tenth People's Hospital in Shanghai, China,
between December 2016 and September 2020 as the training cohort.
From October 2020 to February 2021, consecutive patients with breast
cancers were prospectively enrolled from the Shanghai Tenth People's
Hospital as the internal validation cohort, the Sun Yat-Sen University
Cancer Center in Guangzhou, China, as the test cohort A, and the Ma'an-
shan People's Hospital in Anhui, China, as the test cohort B.

All the three centres used the same patient inclusion and exclusion
criteria. The inclusion criteria were as follows: (a) patients with breast
cancers underwent surgical resection; (b) greyscale US, CDFI, and SWE
examinations were performed within one month before surgery and
prior to any treatment, including biopsy or neoadjuvant therapies. The
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Fig. 1. Flowchart of procedures in patient enrolment and the development and evaluation of the assembled convolutional neural network (ACNN) model for automated breast can-
cer molecular subtypes prediction.
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exclusion criteria were as follows: (a) breast cancer without immuno-
histochemistry (IHC) examination; (b) breast cancer with incomplete
IHC data including oestrogen receptor (ER), progesterone receptor (PR),
human epidermalgrowth factor receptor-2 (HER-2), or Ki-67; (c) breast
cancer without fluorescence in situ hybridization (FISH) when IHC scor-
ing 2+ in HER-2; (d) breast cancer with missing data on the greyscale
US, CDFI, or SWE images; (e) nonmass lesion. A detailed flowchart of
patient selection in the study is shown in Fig. 1.
2.3. The greyscale US, CDFI, and SWE examination protocol

The greyscale US, CDFI, and SWE examinations were performed by
one of six experienced radiologists in breast US examination with the
same US system (Aixplorer; SuperSonic Imagine, Aixen Provence,
France) with a 15–4 MHz linear transducer following the standard
protocol.

The greyscale US, CDFI, and SWE images of each breast lesion at
the largest long axis cross-section and the largest transverse cross-
section were routinely recorded. Two greyscale US images, including
a nonmarked image and an image with enclosing callipers at the
edge of the lesion for measurement, were obtained at each plane.
During CDFI examination, a default equipment setting was imple-
mented for all lesions: a scale of 4 cm/s, medium wall filter, and pulse
repetition frequency of 700 Hz. One CDFI image was obtained at each
plane. Then, SWE image acquisition was immediately performed.
Breast SWE examinations were conducted according to the World
Federation for Ultrasound in Medicine & Biology guidelines for per-
forming US elastography of the breast [22]. Briefly, the probe was
vertically placed on the skin without consciously applying any vibra-
tion/compression, lightly touching the skin, and trying not to apply
pressure. The stabilized SWE images of the lesion were saved after a
few seconds of immobilization. The tissue elasticity was represented
as a colour-coded map in kilopascals (kPa) at each pixel and a colour
scale ranging from 0 (dark blue, soft) to 180 kPa (red, hard). A total of
12 US images (one nonmarked greyscale US image, one greyscale US
image with callipers, one CDFI image, and three SWE images per
plane) were obtained from each breast lesion. Greyscale US images
with callipers were used to assist nonmarked greyscale US image
resizing. The greyscale US, CDFI, and SWE images were stored on the
Supersonic imagine system platform in DICOM format and then
exported in JPEG format for subsequent analysis.

2.4. Image quality control

One radiologist (T. Ren) with 10 years of experience in performing
breast US examinations independently conducted image quality con-
trol. One SWE image per plane was selected for the ACNN models.
Finally, eight US images (one nonmarked greyscale US image, one
greyscale US image with callipers, one CDFI image, and one SWE
image per plane) were obtained from each breast lesion for further
analysis.

2.5. Data annotation

According to IHC results of ER, PR, HER-2, Ki-67, and FISH status,
all breast cancers were classified into four and five types of St. Gallen
molecular subtypes (luminal A, luminal B [including luminal B-HER-2
negative and luminal B-HER-2 positive], HER-2 positive, and triple
negative) [23].

Briefly, the breast cancers were identified as ① luminal A: ER (+)
and/or PR (+), HER-2 (-) and Ki-67 (< 14%); ② luminal B (-): ER (+)
and/or PR (+), HER-2 (-) and Ki-67 (> 14%); ③ luminal B (+): ER (+)
and/or PR (+), HER-2 (+) and any Ki-67; ④ HER-2 positive: ER (-) and
PR (-), HER-2 (+);⑤ triple negative: ER (-) and PR (-), HER-2 (-).

ER and PR were deemed positive if the percentage of stained cells
and intensity were over 1%. For HER-2, IHC scoring 0 or 1+ was con-
sidered negative, and those scoring 3+ were considered positive. IHC
scoring 2+ was further tested with FISH, and HER-2 was considered
positive if (a) the ratio of the HER-2 gene signal to the chromosome
17 probe signal (HER-2/CEP17 ratio) ≥ 2.0; (b) HER-2/CEP17 ratio <
2.0, while average HER-2 signals/cell ≥ 6.0.

2.6. Data preprocessing

A Faster Region-based Convolutional Neural Network (FR-CNN)
detection algorithm was used to obtain the regions of interest
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(ROIs) of multimodal US images [24]. Greyscale US images with cal-
lipers were used to assist nonmarked greyscale US images resizing.
Four callipers at the edge of the lesion were first detected by FR-
CNN in greyscale US images with callipers. Then, a rectangular ROI
was generated by extending 64 pixels from enclosing callipers.
Third, the rectangle ROI was duplicated to the corresponding grey-
scale US image without callipers at the same location. FR-CNN was
used to detect and extract the embedded ROI in CDFI and SWE
images. Finally, all extracted multimodal US images in JPEG format
were normalized to 448 × 448 pixels to standardize the distance
scale. This procedure facilitates the unification of the input size of
the model. To avoid overfitting, we applied offline data augmenta-
tion techniques for each image during training. By means of random
geometric image transformations (rotation, mirroring, and shifting),
it can artificially increase the training image dataset up to 88 times
its original size. This strategy can mimic the data diversity observed
in reality, which results in better generalization performance of the
model. Detailed information on the data preprocessing is provided
in Appendix S1. All preprocessing steps were conducted in Python
(Version 3.6.8; Python Software Foundation, Wilmington, Del) by
using PyTorch Transform (https://pytorch.org/docs/stable/torchvi-
sion/transforms.html) and Dataloader (https://pytorch.org/docs/sta-
ble/data.html?highlight=dataloader#torch.utils.data.DataLoader).
Image augmentation was not performed for the internal validation
and test cohorts.

2.7. ACNN model development

An ACNN model architecture was designed to predict breast can-
cer molecular subtypes. It is a combination architecture of three CNN
networks (DenseNet 121, ResNet 50, and SENet 50). ResNet uses
residual learning blocks to increase the ability of function layers for
learning semantic information at the same time, and preserves the
information flow over a long range via skip connections. However,
ResNet has obvious redundancy, where each layer with a relatively
simple structure extracts only a few features [25]. DenseNet allows
every layer block to have access to all proceeding layer blocks, which
significantly improves the data flow between layers. As a result, it
reduces the number of parameters to prevent overfitting or gradient
vanishing or exploding. This method makes up for the redundancy of
ResNet. However, as the number of dense connections grows, the vol-
ume of DenseNet increases. This results in the increasing training
time of DenseNet [26]. Compared to DenseNet, SENet could selec-
tively emphasize informative features and suppress less useful fea-
tures by means of attention and gating mechanisms, which would
achieve better results [27]. Therefore, these three basic CNN net-
works were chosen and then parallelly assembled via a majority vote
algorithm that has been proven to have prominent and stable perfor-
mance in image recognition tasks [28]. To optimize the hyperpara-
meter configurations, three CNN networks were pretrained on
ImageNet. Appendix S2 shows the detailed information about devel-
opment of the ACNN model architecture based on three CNN net-
works. All programs were run in Python version 3.6.8. The
monomodal ACNN model applied to greyscale US images only was
trained and tested. The dual-modal ACNN model applied to both
greyscale US and CDFI images was trained and tested. The multi-
modal ACNN model applied to greyscale US and CDFI as well as SWE
images was trained and tested. The workflow of the ACNN model
development is presented in Fig. 2.

2.8. Heat map generation

To better interpret the network predictions, the class activation
mapping method was utilized to produce heat maps. Heat maps can
visualize the most indicative areas of the image to interpret the pre-
dictive mechanism of the ACNN model, which reflects the
contribution of each pixel in the three modal US images for predic-
tion of breast cancer molecular subtypes. All heat maps were pro-
duced by applying the packages of OpenCV (opencv-python 4.1.0.25,
https://opencv.org/releases.html) and Matplotlib (https://pypi.org/
project/matplotlib/).
2.9. Statistical analysis

All statistical analyses were performed using SPSS (Version 22.0,
IBM Corporation, Armonk, USA) and R software (Version 3.4.1, R
Foundation for Statistical Computing, Vienna, Austria). Comparisons
of the differences in clinical factors among the different molecular
subtypes of breast cancer were analysed using the chi-square test or t
test. To evaluate the prediction performance of the three ACNN mod-
els, receiver operating characteristic (ROC) curves were constructed.
The area under the ROC curve (AUC) with 95% confidence intervals
(CIs), sensitivity, specificity, and accuracy were investigated. In addi-
tion, the F1-score was also calculated (F1 = 2PrecisionñRecall

PrecisionþRecall ). Delong's
test was performed to compare the AUCs. A confusion matrix was
applied to illustrate the specific examples of molecular subtype clas-
ses where the prediction results of the ACNN model were discordant
with the ground truth from the IHC results. A p value less than 0.05
was considered statistically significant.
2.10. Role of the funding source

The funders had no role in study design, data collection, data anal-
yses, interpretation, or writing of the manuscript. The corresponding
authors (C. Zhao and H. Xu) had full access to all of the data and the
final responsibility for the decision to submit for publication.
3. Results

3.1. Patient characteristics and pathological features of breast cancers

A total of 807 women (mean age, 59.30 years ± 12.75; range, 20–
95 years) with 818 breast cancers were prospectively enrolled for
analysis. There were 534 women (mean age, 59.3 years ± 13.04;
range, 26–95 years) with 545 breast cancers in the training cohort
and 85 women (mean age, 59.55 years ± 11.31; range, 35–81 years)
with 85 breast cancers in the internal validation cohort from the
principal hospital. In addition, 93 women (mean age, 56.33 years ±
13.78; range, 20–88 years) with 93 breast cancers were enrolled in
test cohort A from the Sun Yat-Sen University Cancer Center. There
were 95 women (mean age, 55.97 years ± 14.56; range, 26–87 years)
with 95 breast cancers in test cohort B from Ma'anshan People's
Hospital.

A total of 306 breast cancers presented in T1 stage and 239 non-T1
cancers in the training cohort. There were 39, 44, and 39 cancers in
the T1 subgroup and 46, 49, and 56 cancers in the non-T1 subgroup
in the internal validation cohort, test cohort A, and test cohort B,
respectively. Other baseline characteristics of all patients and breast
cancers (including age, sex, pathological findings, and US Breast
Imaging Reporting and Data System [BI-RADS] category) are pre-
sented in Table 1. As reported in Table 1, the distribution of each
breast cancer molecular subtype was similar in the training cohort,
internal validation cohort, and two independent test cohorts.

The clinical factors (including age, location, size, and BI-RADS cat-
egory) were not relevant to breast cancer molecular subtypes (p =
0.808, 0.851, 0.940, and 0.969, respectively [chi-square test and t
test]) (Table S5). Therefore, clinical factors were not included in AI
model. Additionally, the aim of this study was to predict breast cancer
molecular subtypes preoperatively. Thus, pathological factors were
also not used in AI model development.



Fig. 2. Workflow in the development of three ACNN models for automated breast cancer molecular subtypes prediction and the structure of each CNN network.
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3.2. Performance of the three ACNN models in predicting four-
classification St. Gallen molecular subtypes

In comparison with the monomodal and dual-modal ACNN mod-
els, the multimodal ACNN model showed the best performance in
predicting four-classification St. Gallen molecular subtypes (luminal
A, luminal B, HER-2 positive, and triple negative). This was measured
in terms of macroaverage AUC (0.89 vs. 0.81 vs. 0.75 for the internal
validation cohort, 0.92 vs. 0.84 vs. 0.73 for test cohort A, and 0.96 vs.
0.81 vs. 0.75 for test cohort B) (Fig. S1 and Fig. 3). The sensitivity,
specificity, accuracy, and F1 score of the ACNN models are presented
in Table 2.

Additionally, the detailed confusion matrices of the three ACNN
models revealed particular examples of breast cancer molecular
subtypes where the ACNN prediction was in accordance with the
postoperative IHC results. After adding CDFI to develop the dual-
modal ACNN model, an additional two luminal A, seven triple neg-
ative, and one HER-2 positive cancers were correctly predicted in
the internal validation cohort, an additional thirteen luminal B and
five HER-2 positive cancers were correctly predicted in test cohort
A, an additional two luminal A, two luminal B cancers, four HER-2
positive, and five triple negative cancers were correctly predicted
in test cohort B. The dual-modal ACNN model had a better perfor-
mance based on its more accurate prediction of luminal B, HER-2
positive, and triple negative cancers (Fig. 4). Compared with the
dual-modal ACNN model, the multimodal ACNN model made an
additional two, fifteen, and two correct predictions in luminal A,
luminal B and HER-2 positive cancers, respectively, in the internal
validation cohort; an additional two, three, and one correct predic-
tions in luminal A, luminal B, and HER-2 positive, respectively, in
test cohort A; and an additional three, seven, and three correct pre-
dictions in luminal A, luminal B and HER-2 positive cancers,
respectively, in test cohort B. The multimodal ACNN model ren-
dered a higher performance than the dual-modal ACNN model by
predicting more correct cases in luminal A, luminal B and HER-2
positive cancers (Fig. 4).



Table 1
The basic characteristics of patients and breast cancers.

Characteristics Training cohort Internal validation cohort Test cohort A Test cohort B

No. patients 534 85 93 95
Age (y)
Mean ± SD 59.30 ± 13.04 59.55 ± 11.31 56.33 ± 13.78 55.97 ± 14.56
Median (range) 60 (26-95) 62 (35-81) 57 (20-88) 56 (26-87)
No. breast cancers 545 85 93 95
Tumor size
T1 (< 2 cm) 306 (56.1) 39 (45.9) 44 (47.3) 39 (41.1)
T2 (2-5 cm) 223 (40.9) 42 (49.4) 47 (50.5) 54 (56.8)
T3 (> 5 cm) 16 (3.0) 4 (4.7) 2 (2.2) 2 (2.1)
Location
Left 280 (51.4) 46 (54.1) 46 (49.4) 47 (49.5)
Right 265 (48.6) 39 (45.9) 47 (50.6) 48 (50.5)
Histologic type
Invasive ductal cancer 482 (88.4) 78 (91.8) 87 (93.5) 86 (90.5)
Invasive lobular cancer 12 (2.2) 1 (1.2) 4 (4.3) 3 (3.2)
Mixed 7 (1.3) 0 (0.0) 1 (1.1) 0 (0.0)
Other 44 (8.1) 6 (7.0) 1 (1.1) 6 (6.3)
Histologic grade
I 46 (8.5) 7 (8.2) 9 (9.7) 8 (8.4)
II 271 (49.7) 43 (50.6) 46(49.5) 47 (49.5)
III 228 (41.8) 35 (41.2) 39 (40.8) 40 (42.1)
BI-RADS
3 2 (0.4) 1 (1.2) 0 (0.0) 0 (0.0)
4a 84 (15.4) 9 (10.6) 10 (10.8) 12 (12.6)
4b 154 (28.3) 17 (20.0) 19 (20.4) 20 (21.1)
4c 239 (43.8) 41 (48.2)) 41 (44.1) 48 (50.5)
5 66 (12.1) 17 (20.0) 23 (24.7) 15 (15.8)
ER status
Positive 395 (72.5) 66 (77.6) 68 (73.1) 67 (70.5)
Negative 150 (27.5) 19 (22.4) 25 (26.9) 28 (29.5)
PR status
Positive 349 (64.0) 50 (58.8) 55 (59.1) 59 (62.1)
Negative 196 (36.0) 35 (41.2) 38 (40.9) 36 (37.9)
HER-2 status
Positive 135 (24.8) 21 (25.0) 28 (30.1) 29 (30.5)
Negative 410 (75.2) 64 (75.0) 65 (69.9) 66 (69.5)
Ki-67
≤ 14% 118 (21.7) 18 (24.7) 16 (17.2) 22 (23.2)
> 14% 427 (78.3) 67 (75.3) 77 (82.8) 73 (76.8)
Molecular subtypes
Luminal A 93 (17.1) 15 (17.6) 14 (15.1) 16 (16.8)
Luminal B 307 (56.3) 52 (61.2) 54 (58.1) 51 (53.7)
Luminal B (-) 240 (44.0) 41 (48.3) 42 (45.2) 40 (42.1)
Luminal B (+) 67 (12.3) 11 (12.9) 12 (12.9) 11 (11.6)
HER-2 positive 72 (13.2) 7 (8.3) 12 (12.9) 9 (9.5)
Triple negative 73 (13.4) 11 (12.9) 13 (13.9) 19 (20.0)

Note.—Unless otherwise specified, data in parentheses are percentages.
SD, standard deviation; BI-RADS, breast imaging reporting and data system; ER, oestrogen receptor; PR, proges-
terone receptor; HER-2, human epidermal growth factor receptor-2.
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3.3. Comparison of the performance between the multimodal ACNN
model and preoperative CNB in predicting four-classification St. Gallen
molecular subtypes

Preoperative CNBs were performed in 82.4% (70/85) breast can-
cers in internal validation cohort, 84.9% (79/93) breast cancers in test
cohort A, and 53.7% (51/95) breast cancers in test cohort B. In addi-
tion, there were 37 (43.5%, 37/85), 42 (45.2%, 42/93), and 24 (25.3%,
24/95) breast cancers that underwent preoperative CNB and had
complete preoperative IHC results in the internal validation cohort,
test cohort A, and test cohort B, respectively. The κ-values of ER, PR,
HER-2, and Ki-67 between CNB and surgical excision specimens
ranged from 0.21 to 0.67. The detailed IHC results of breast cancers in
CNB and postoperative pathological examinations are presented in
Table S6.

The multimodal ACNN model achieved better performance than
preoperative CNB for predicting breast cancer molecular subtypes in
the validation and test cohorts. In the internal validation cohort, the
performance of the multimodal ACNN model was superior to that of
preoperative CNB (AUC: 0.89 vs. 0.67, p < 0.05 [Delong's test]). The
multimodal ACNN model made an additional seven correct predic-
tions than preoperative CNB (31 vs. 24 correct predictions in 37
breast cancers). There were 4, 17, 5, and 11 breast cancers classified
as luminal A, luminal B, HER-2 positive, and triple negative cancers
by the multimodal ACNN model, respectively; 3, 26, 2, and 6 cancers
were classified as luminal A, luminal B, HER-2 positive, and triple
negative cancers by preoperative CNB, respectively; 4, 21, 6, and 6
cancers were classified as luminal A, luminal B, HER-2 positive, and
triple negative cancers by postoperative IHC, respectively (Tables 3,
S7, and Fig. 5).

In test cohort A, the performance of the multimodal ACNN model
was better than preoperative CNB (AUC: 0.92 vs. 0.74, p < 0.05
[Delong's test]). The multimodal ACNN model made an additional
seven correct predictions than preoperative CNB (35 vs. 28 correct
predictions in 42 breast cancers). There were 7, 19, 8, and 8 breast
cancers classified as luminal A, luminal B, HER-2 positive, and triple
negative cancers by the multimodal ACNN model, respectively; 5, 25,
3, and 9 cancers were classified as luminal A, luminal B, HER-2 posi-
tive, and triple negative cancers by preoperative CNB, respectively;
and 7, 20, 9, and 6 cancers were classified as luminal A, luminal B,



Fig. 3. Receiver operating characteristic (ROC) curves of three ACNN models in predicting four-classification breast cancer molecular subtypes for (a) the internal validation cohort
from the Shanghai Tenth People's Hospital, (b) test cohort A from the Sun Yat-Sen University Cancer Center, and (c) test cohort B from the Ma'anshan People's Hospital. Numbers in
parentheses are areas under the receiver operating characteristic curves (AUCs).

Table 2
Comparison of performance in three ACNNmodels for predicting four-classification molecular subtypes of breast cancers.

ACNN models Datasets AUC Sensitivity (%) Specificity (%) Accuracy (%) F1-score

Monomodal ACNN model Internal validation cohort (n=85) 0.75 66.67 53.33 51.76 0.53
Test cohort A (n=93) 0.73 64.29 64.29 53.76 0.59
Test cohort B (n=95) 0.75 52.94 56.25 54.73 0.55

Dual-modal ACNNmodel Internal validation cohort (n=85) 0.81 71.43 66.67 62.35 0.64
Test cohort A (n=93) 0.84 75.00 64.28 74.19 0.69
Test cohort B (n=95) 0.81 61.11 68.75 68.42 0.69

Multimodal ACNNmodel Internal validation cohort (n=85) 0.89 92.31 80.00 84.71 0.82
Test cohort A (n=93) 0.92 91.67 78.57 81.72 0.80
Test cohort B (n=95) 0.96 87.50 87.50 82.11 0.85

Note.—The monomodal ACNN model was trained and tested with greyscale US images.
The dual-modal ACNNmodel was trained and tested with greyscale US and CDFI images.
The multimodal ACNNmodel was trained and tested with greyscale US and CDFI as well as SWE images.
ACNN, assembled convolutional neural network; AUC, area under the receiver operating characteristic curve.
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HER-2 positive, and triple negative cancers by postoperative IHC,
respectively (Tables 3, S7, and Fig. 5).

In test cohort B, the multimodal ACNN model also performed bet-
ter in comparison to preoperative CNB (AUC: 0.99 vs. 0.82, p < 0.05
[Delong's test]), and made an additional five correct predictions com-
pared to preoperative CNB (20 vs. 15 correct predictions in 24 breast
cancers). There were 2, 9, 7, and 6 breast cancers classified as luminal
A, luminal B, HER-2 positive, and triple negative cancers by the multi-
modal ACNN model, respectively; 5, 8, 2, and 9 cancers were classi-
fied as luminal A, luminal B, HER-2 positive, and triple negative
cancers by preoperative CNB, respectively; and 1, 12, 5, and 6 cancers
were classified as luminal A, luminal B, HER-2 positive, and triple
negative cancers by postoperative IHC, respectively (Tables 3, S7, and
Fig. 5).

3.4. Performance of the three ACNN models in predicting five-
classification St. Gallen molecular subtypes

Comparing the monomodal and dual-modal ACNN models, the
multimodal ACNN model showed the best performance in predicting
five-classification St. Gallen molecular subtypes (luminal A, luminal B
(-), luminal B (+), HER-2 positive, and triple negative). This was mea-
sured in terms of macroaverage AUC (0.88 vs. 0.78 vs. 0.71 for the
internal validation cohort, 0.94 vs. 0.81 vs. 0.78 for test cohort A, and
0.87 vs. 0.79 vs. 0.75 for test cohort B) (Fig. S2). The sensitivity, speci-
ficity, accuracy, and F1 score of the ACNN models could be found in
Table S8.

As shown in Fig. S3, the multimodal ACNN model could correctly
generate an additional 29 and 15 predictions in comparison with the
monomodal ACNN and the dual-modal ACNN models in the internal
validation cohort, respectively. In test cohort A, an additional 30 and
14 correct predictions were made by the multimodal ACNN model in
comparison with the monomodal ACNN and the dual-modal ACNN
models, respectively. In test cohort B, an additional 28 and 17 correct
predictions were yielded by the multimodal ACNNmodel in compari-
son with the monomodal ACNN and the dual-modal ACNN models,
respectively.

3.5. Performance of the three ACNN models in predicting triple negative
from non-triple negative breast cancers

The multimodal ACNN model had better performance in compari-
son with the dual-modal and monomodal ACNN models in predicting
triple negative from non-triple negative breast cancers. For the inter-
nal validation cohort, the AUCs were 0.970 (95% CI: 0.936, 1.000) for
the multimodal ACNN model, 0.830 (95% CI: 0.672, 0.989) for the
dual-modal ACNN model, and 0.578 (95% CI: 0.386, 0.770) for the
monomodal ACNN model (p < 0.05 for the multimodal ACNN model
vs. dual-modal ACNN model, multimodal ACNN model vs. monomo-
dal ACNN model, and dual-modal ACNN model vs. monomodal ACNN
model [Delong's test]). For test cohort A, the AUCs were 0.962 (95%
CI: 0.926, 0.997) for the multimodal ACNN model, 0.793 (95% CI:
0.618, 0.968) for the dual-modal ACNN model, and 0.536 (95% CI:
0.364, 0.707) for the monomodal ACNN model (p < 0.05 for multi-
modal ACNN model vs. dual-modal ACNN model, multimodal ACNN
model vs. monomodal ACNN model, and dual-modal ACNN model vs.
monomodal ACNN model [Delong's test]). For test cohort B, the AUCs
were 0.934 (95% CI: 0.886, 0.981) for the multimodal ACNN model,



Fig. 4. The confusion matrices of three ACNNmodels for predicting four-classification breast cancer molecular subtypes in (a) the internal validation cohort, (b) test cohort A, and (c)
test cohort B.

Table 3
Comparison of performance in the multimodal ACNN model and preoperative CNB for predicting four-classification molecular
subtypes of breast cancers.

Methods Datasets AUC Sensitivity (%) Specificity (%) Accuracy (%)

Multimodal ACNNmodel Internal validation cohort (n=37) 0.89 84.87 82.47 83.73
Test cohort A (n=42) 0.92 83.00 81.35 83.33
Test cohort B (n=24) 0.99 89.62 76.27 83.33

Preoperative CNB Internal validation cohort (n=37) 0.67 51.56 49.70 64.86
Test cohort A (n=42) 0.74 61.11 70.93 66.67
Test cohort B (n=24) 0.82 49.66 63.54 62.50

Note.—The multimodal ACNNmodel was trained and tested with greyscale US and CDFI as well as SWE images.
ACNN, assembled convolutional neural network; AUC, area under the receiver operating characteristic curve; CNB, core needle
biopsy.
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0.688 (95% CI: 0.519, 0.858) for the dual-modal ACNN model, and
0.650 (95% CI: 0.503, 0.796) for the monomodal ACNN model
(p < 0.05 for multimodal ACNN model vs. dual-modal ACNN model,
multimodal ACNN model vs. monomodal ACNN model; p = 0.46 for
dual-modal ACNN model vs. monomodal ACNN model [Delong's
test]) (Fig. 6). The performance of the multimodal ACNN model was
also measured in terms of specificity, sensitivity, accuracy, and F1
score. The detailed results of prediction performance appear in
Table 4, and the classification confusion matrices for the ACNN mod-
els are shown in Fig. S4.



Fig. 5. ROC curves of (a) the multimodal ACNN model and (b) preoperative CNB in classifying four-classification breast cancer molecular subtypes in the internal validation cohort
from the Shanghai Tenth People's Hospital, test cohort A from the Sun Yat-Sen University Cancer Center, and test cohort B from the Ma'anshan People's Hospital. Numbers in paren-
theses are AUCs.

Fig. 6. ROC curves of three ACNN models for predicting triple negative from non-triple negative breast cancers in (a) the internal validation cohort, (b) test cohort A, and (c) test
cohort B. Numbers in parentheses are AUCs.
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Additionally, the multimodal ACNN model obtained satisfactory
prediction performance for both T1 and non-T1 lesions. This was
measured in terms of the AUC for the T1 subgroup and non-T1 sub-
group (Fig. S5): 0.957 (95% CI: 0.891, 1.000) and 0.985 (95% CI: 0.958,
1.000) for the internal validation cohort, 0.958 (95% CI: 0.897, 1.000)
and 0.961 (95% CI: 0.903, 1.000) for the test cohort A, and 0.957 (95%
CI: 0.889, 1.000) and 0.932 (95% CI: 0.868, 0.996) for the test cohort B.
The sensitivity, specificity, accuracy, and F1 score for two subgroups
are presented in Table 5.
3.6. Visual interpretation of the ACNN model

The corresponding heat maps of greyscale US, CDFI, and SWE
images of different molecular subtypes are presented in Fig. 7, which
could produce a crude localization highlighting the import regions
during the prediction process. Different colour distributions reflected
that the ACNN model focused on the most predictive areas and image
features in different phenotypes. The red parts of the heat map indi-
cated that those parts provided more informative features during the
network's predictive process.



Table 4
The performance of three ACNNmodels for predicting triple negative from non-triple negative breast cancers.

ACNN models Datasets AUC Sensitivity (%) Specificity (%) Accuracy (%) F1-score

Monomodal ACNN model Internal validation cohort (n=85) 0.578 (0.386-0.770) 45.45 (21.25-72.01) 68.92 (56.23-77.17) 64.71 (54.09-74.05) 0.66
Test cohort A (n=93) 0.536 (0.364-0.707) 61.54 (35.41-82.40) 57.50 (46.56-67.75) 58.06 (47.91-67.58) 0.58
Test cohort B (n=95) 0.650 (0.503-0.796) 57.89 (36.24-76.89) 69.74 (58.62-78.95) 67.37 (57.40-75.98) 0.69

Dual-modal ACNN model Internal validation cohort (n=85) 0.830 (0.672-0.989) 81.82 (51.15-96.01) 75.68 (66.16-85.22) 77.65 (67.63-85.27) 0.77
Test cohort A (n=93) 0.793 (0.618-0.968) 84.62 (56.54-96.90) 71.25 (60.49-80.06) 73.12 (63.28-81.12) 0.72
Test cohort B (n=95) 0.688 (0.519-0.858) 68.42 (45.80-84.84) 71.05 (59.99-80.09) 70.53 (60.67-78.79) 0.71

Multimodal ACNN model Internal validation cohort (n=85) 0.970 (0.936-1.000) 100 (69.98-100) 83.78 (79.85-94.66) 90.59 (82.28-95.38) 0.90
Test cohort A (n=93) 0.962 (0.926-0.997) 100 (73.41-100) 91.14 (81.25-95.08) 91.40 (83.72-95.80) 0.91
Test cohort B (n=95) 0.934 (0.886-0.981) 94.74 (73.52-100) 84.21 (74.24-90.89) 86.32 (77.85-91.96) 0.85

Note.—95% confidence intervals are included in brackets.
ACNN, assembled convolutional neural network; AUC, area under the receiver operating characteristic curve.

Fig. 7. The corresponding heat maps of greyscale US, CDFI, and SWE images in four molecular subtypes of breast cancer from (a) a 74-year-old woman with luminal A invasive duc-
tal carcinoma, (b) a 52-year-old woman with luminal B invasive ductal carcinoma, (c) a 48-year-old woman with HER-2 positive invasive ductal carcinoma, and (d) a 57-year-old
woman with triple negative invasive ductal carcinoma.

Table 5
The performance of the multimodal ACNN model for predicting triple negative from non-triple negative breast cancers in two subgroups with different T stages.

Datasets Subgroups AUC Sensitivity (%) Specificity (%) Accuracy (%) F1-score

Internal validation cohort T1 stage (n=39) 0.957 (0.891-1.000) 100 (45.41-100) 88.57 (73.45-96.06) 89.74 (75.85-96.51) 0.89
non-T1 stage (n=46) 0.985 (0.958-1.000) 100 (59.56-100) 89.74 (75.85-96.51) 91.30 (79.14-97.10) 0.91

Test cohort A T1 stage (n=44) 0.958 (0.897-1.000) 100 (59.56-100) 94.59 (81.37-99.43) 95.45 (84.04-99.58) 0.95
non-T1 stage (n=49) 0.961 (0.903-1.000) 100 (55.72-100) 86.05 (72.36-93.82) 87.76 (75.39-94.64) 0.87

Test cohort B T1 stage (n=39) 0.957 (0.889-1.000) 100 (45.41-100) 82.86 (66.94-92.28) 84.62 (69.89-93.14) 0.85
non-T1 stage (n=56) 0.932 (0.868-0.996) 93.33 (68.16-100) 85.37 (71.17-93.50) 87.50 (76.07-94.12) 0.84

Note.—95% confidence intervals are included in brackets.
ACNN, assembled convolutional neural network; AUC, area under the receiver operating characteristic curve.
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4. Discussion

In this multicentre study, we successfully developed a prominent
multimodal US image-based ACNN model for predicting breast can-
cer molecular subtypes. It yielded satisfactory performance in pre-
dicting four- and five-classification St. Gallen breast cancer molecular
subtypes, with AUCs of 0.89–0.96 and 0.87–0.94 in the validation and
test cohorts, respectively. The multimodal ACNN model outper-
formed preoperative CNB in identifying four-classification molecular
subtypes in the validation and test cohorts (AUC: 0.89–0.99 vs. 0.67–
0.82). Moreover, this multimodal ACNN model achieved the best per-
formance in discriminating triple negative from non-triple negative
cancers compared with the monomodal and the dual-modal ACNN
models. In addition, the multimodal ACNN model obtained satisfac-
tory prediction performance for both T1 and non-T1 lesions. These
promising results in the study were attributed to the advantages of
standardized US image acquisition criteria, a large-scale sample size
from a multicentre database, and the ACNN model architecture. To
the best of our knowledge, this is the first multicentre study to apply
the ACNN approach to decode multimodal US images for predicting
breast cancer molecular subtypes.

Breast cancer molecular subtypes can greatly influence the initial
selection of treatment options. The presence of ER or PR in luminal
cancers indicates the possibility of benefit from preoperative neoad-
juvant endocrine therapy (NET) [29]. Preoperative NET could
decrease Ki-67 in the majority of patients while low Ki-67 scores at
week 2 are associated with a longer time to recurrence [30]. HER-2
positive cancers can benefit from targeted anti-HER-2 antibody ther-
apy [31]. The combination of chemotherapy and preoperative tar-
geted therapy could significantly increase pathological complete
response (pCR) and tail pCR [32]. Triple negative cancers with unfav-
ourable prognostic features do not benefit from conventional endo-
crine and targeted therapies. Chemotherapy is the only established
therapeutic option until the appearance of immunotherapy [33,34].
The KEYNOTE-522 study showed that the addition of pembrolizumab
to preoperative chemotherapy increased pCR [35].

Prior studies found that some greyscale US image features were
associated with certain breast cancer molecular subtypes [11–
14,36,37]. Echogenic halo and posterior acoustic shadowing are pre-
dictive features of luminal A cancer [13]. The absence of an echogenic
halo is a specific characteristic of luminal B cancer, and calcifications
are highly correlated with luminal B cancer [12]. Luminal cancer usu-
ally shows irregular shapes, while HER-2 positive cancer and triple
negative cancer appear oval or round with posterior acoustic
enhancement [11,13,14]. Calcifications, echogenic halo, and posterior
acoustic enhancement are more commonly observed in HER-2 posi-
tive cancer [13,36,37]. Ko et al. reported that triple negative cancer
was more likely to exhibit circumscribed and markedly hypoechoic
shadowing but less likely to have posterior acoustic shadowing on
greyscale US [38]. Furthermore, some studies have shown that blood
vessel distribution and lesion stiffness varied among different molec-
ular subtypes [11,16,39]. HER-2 positive cancers are more likely to
have internal vessels, while luminal cancers are internal vessel poor
with prominent external vessels [11]. Shear wave velocity shows sig-
nificant differences in different subtypes of breast cancer [16,39].
These findings supported a strong link between intrinsic biological
properties and imaging manifestations.

Recently, some efforts have been made to apply AI methods to US
images for the assessment of breast cancer molecular subtypes [12,
40]. A preliminary study by Zhang et al. established an ensemble
decision method based on US features collected from radiologists’
interpretations to predict breast cancer molecular subtypes and
achieved accuracies from 77.4% to 92.7% [12]. However, high inter-
and intrareader variability in the interpretation of breast lesions on
US will undoubtedly lessen the actual value of the traditional
machine learning approach. Unlike traditional machine learning
approach, which requires radiologists to design specific image char-
acteristics beforehand, CNNs can automatically learn characteristics
from medical images [18,41]. A retrospective study attempted to
apply a CNN model to process greyscale US images for predicting
four-classification breast cancer molecular subtypes [40]. However,
their predictive results simply comprised outputs of four separate
binary tasks (including luminal A and non-luminal A set, luminal B
and non-luminal B set, HER-2 positive and non- HER-2 positive set,
and triple negative and non-triple negative set). Similarly, another
study also only evaluated the performance of retrospectively col-
lected greyscale US images for prediction of binary classification
breast cancer molecular subtypes using a CNN approach [42]. Addi-
tionally, previous studies used radiomics, machine learning, or deep
learning methods to decipher breast cancer molecular subtypes seen
on magnetic resonance image (MRI) [43–46]. Nevertheless, in com-
parison to those studies using MRI, US is a much more widely avail-
able and cheaper option. The ACNN models could realize the overall
predictive performance for four subtypes simultaneously by using a
macroaverage statistical method. Furthermore, their monostructured
CNN model was constructed based on the greyscale US image alone.
When analysing the molecular heterogeneity of cancer, the vascular
architecture and tissue stiffness should be taken into consideration.
CDFI could provide blood information on breast lesions, and SWE
could assess the mechanical properties of the tumour tissue elasticity.
Our results verified that CDFI and SWE could provide added value in
improving the predictive performance of the ACNN model. Biological
changes in tumour tissues can affect the radiologic manifestations on
US images that can be encoded by the CNN algorithm. By comple-
menting the advantages and disadvantages of DenseNet, ResNet, and
SENet, the ACNN model can integrate informative features in differ-
ent modal US images. Thus, the multimodal strategy based on grey-
scale US, CDFI, and SWE images is more effective and valuable for
predicting breast cancer molecular subtypes than monomodal (grey-
scale US image) and dual-modal (greyscale US and CDFI images).

The application in medical imaging of CNN models is mostly
dubbed the “black box”medical algorithm [47]. The method of visual-
ization with a heat map by highlighting the import regions of the
image can solve the problem of how the algorithm identifies input
images and establishes links with output labels [48]. The ACNN
model focused on the US features of breast cancer associated with
molecular subtype instead of the nonrelevant regions of the image
and exhibited the strongest activation regions corresponding to areas
with certain features. Our study indicated that there were usually
two locations valuable for predicting molecular subtype, including
the boundary of the tumour and the region inside the tumour for
greyscale US. For CDFI, the distribution of supplying vessels was
mostly noticed in our study, while we also found that the relatively
rigid region of SWE was related to molecular subtype features.

In our study, ACNN models were initially developed for predicting
four-classification breast cancer molecular subtypes. However, the
luminal B subtype is the dominant subtype and could be further clas-
sified as luminal B (-) and luminal B (+). These two subtypes are clini-
cally different diseases and treated with different systemic
modalities [11]. Therefore, we investigated the feasibility and perfor-
mance of the ACNN model in a five-classification molecular subtype
task. Our results indicated that the multimodal ACNN model was
capable of processing a five-classification task and outperformed the
other two ACNNmodels. In addition, among all breast cancer molecu-
lar subtypes, triple negative cancer is a special type of breast cancer
due to a lack of targeted molecular therapies and poor prognosis
[33,34]. The ACNN models were able to yield a prediction of triple
negative cancer in four and five-classification tasks, whereas the pre-
diction performance of triple negative cancer was affected by non-tri-
ple negative cancer. Therefore, we further optimized our ACNN
models to specifically identify triple negative from non-triple nega-
tive cancers. Our results demonstrated that the multimodal ACNN
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model also performed best in comparison with the monomodal
ACNN model and the dual-modal ACNN model. Moreover, the multi-
modal ACNN model obtained similar and satisfactory prediction per-
formance for T1 and non-T1 subgroups. The T stage of breast cancer
has been considered an essential and critical determinant of clinical
outcome, while even T1 triple negative cancer has the tendency to
behave aggressively [49,50]. This result indicated that multimodal
ACNN has the potential to help clinicians in the management of
breast cancer, especially for early-stage triple negative cancers.

A multimodal ACNN algorithm for the classification of breast can-
cer molecular subtypes could make a difference in clinical practice.
US-guided breast biopsy is the standard method for preoperative
diagnosis of breast cancer molecular subtypes in the current clinical
practice. It is often used for clinicians in pre-treatment plan-making
of breast cancer patients. However, high variability in ER, PR, HER-2,
and Ki-67 between partial samples obtained by CNB and surgical
excision specimens was found in our study (κ-value from 0.21 to
0.67), which was similar to previous studies (κ-value from 0.195 to
0.522) [8,9]. The diagnostic performance of preoperative CNB might
be lessened owing to the heterogeneity of breast cancer. Deep learn-
ing is well known for its capability to learn high-level representations
of data through multiple functional layers and to represent character-
istic biological processes of different subtypes, which has the poten-
tial to better dissect molecular heterogeneity [51]. In addition,
different modalities of US images contain different information on
breast cancers [15,16]. Thus, the multimodal US image-based ACNN
model achieved better performance than preoperative CNB in this
study. If the result of the multimodal ACNN model was not in accor-
dance with US-guided CNB, clinicians would consider an additional
biopsy because inadequate tissue might result in inaccurate IHC
results, especially for small cancers. On the other hand, if presented
with the same results, it can increase the clinicians’ confidence in
making the optimum treatment strategy. In addition, the ACNN
model can convert obscure and inexplicably derived image features
into intelligible heat maps. In actual clinical applications, heat maps
can be a visual tool that provides highly informative regions on US
images. Our study provided a method to supplement US-guided CNB
instead of obviating the need for which. With the help of generated
heat map, the ACNN model has the potential to assist clinicians in
determining the sampling area for the lesion during US-guided CNB
procedures. Therefore, our study provided a noninvasive decision-
making method for the preoperative prediction of breast cancer
molecular subtypes in clinical practice, especially in remote areas.

Our study had some limitations. First, the breast cancer molecular
subtype classification was based on IHC phenotypes in our study
rather than genetic subtypes. However, IHC is still recommended for
clinical application in current clinical practice guidelines because it is
easily accessible and inexpensive [52]. Second, although multimodal
US images were analysed in our study, other imaging modalities (for
example, mammography and MRI) were not studied. Accordingly,
further efforts will focus on assessing predictions that combine differ-
ent imaging methods of breast cancer. Third, the sample size of the
validation set in our study was limited due to the prospective design
and relatively short study period. Therefore, further studies with
long-term periods are needed to effectively validate the performance
of our ACNN model. Finally, although our proposed ACNN model had
prominent performances for predicting four-, five-, and two-classifi-
cation breast cancer molecular subtypes, other newly developed
algorithms (for example, transformer and transfer learning) and
well-performed CNNs (for example, InceptionNet and NASNet) were
not involved in this study. Thus, we suggest that the continually
updated AI algorithms should be explored for decoding the molecular
subtypes of breast cancer seen on multimodal US images in future
studies.

In conclusion, we developed an original multimodal ACNN that
combined greyscale US and CDFI as well as SWE images to predict
molecular subtypes of breast cancer and outperforms ACNN models
applied to dual-modal or monomodal US images. The multimodal
US-based ACNN model is therefore a potential noninvasive decision-
making method for the management of patients with breast cancer
in routine clinical practice.
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