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Abstract: The crosstalk between the exercising muscle and the adipose tissue, mediated by myokines
and metabolites, derived from both tissues during exercise has created a controversy between animal
and human studies with respect to the impact of exercise on the browning process. The aim of this
study was to investigate whether co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the
stimuli of electrical pulse stimulation (EPS) mimicking muscle contraction can impact the expression
of UCP1, PGC-1a, and IL-6 in adipocytes, therefore providing evidence on the direct crosstalk
between adipocytes and stimulated muscle cells. In the co-cultured C2C12 cells, EPS increased the
expression of PGC-1a (p = 0.129; d = 0.73) and IL-6 (p = 0.09; d = 1.13) protein levels. When EPS was
applied, we found that co-culturing led to increases in UCP1 (p = 0.044; d = 1.29) and IL-6 (p = 0.097;
d = 1.13) protein expression in the 3T3-L1 adipocytes. The expression of PGC-1a increased by EPS
but was not significantly elevated after co-culturing (p = 0.448; d = 0.08). In vitro co-culturing of
C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of EPS leads to increased expression of
thermogenic proteins. These findings indicate changes in the expression pattern of proteins related to
browning of adipose tissue, supporting the use of this in vitro model to study the crosstalk between
adipocytes and contracting muscle.
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1. Introduction

The brite or beige adipocytes, discovered during the last decade, play a central role
in the energy expenditure and the associated heat release during non-shivering thermo-
genesis [1,2]. Cumulating evidence is indicating the beneficial effects of beige adipocyte
proliferation to the increase of insulin sensitivity as well as the reduction of circulating
triglycerides and body mass index (BMI), making these cells a candidate therapeutic
target in battling illnesses related to metabolism such as obesity and cardiometabolic
syndrome [3,4].

White lipid cells trans-differentiate to beige adipocytes (a process known as “brown-
ing”) in response to certain types of stimuli including exposure to cold, presence of thyroid
hormones and exercise, while the list of factors that can activate this mechanism is actively
growing [2,5,6]. The expression of beige adipocytes specific genes and protein is com-
monly used to evaluate the browning capacity of adipocytes, including beige adipocytes
marker protein Uncoupling Protein 1 (UCP-1), thermogenic genes Peroxisome proliferator-
activated receptor γ (PPARγ), PPARγ coactivator-1 alpha (PGC-1α), PR domain containing
protein 16 (PRDM16) and specific marker molecular of beige pre-adipocytes early B-cell
factor 2 (EBf2) [7,8].
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Recent studies showed a crosstalk between the exercising muscle and the adipose
tissue, which apparently is mediated by myokines and metabolites, derived from the muscle
during exercise [9–11]. In mice, exercise has been linked to increased mitochondrial activity,
changes in gene expression, and an increase in beige adipocyte gene expression levels [12].
These studies consistently showed that exercise leads to browning of adipose tissue in
mice [13,14] and that the degree of beige cell proliferation is linked with the intensity and
duration of exercise [15]. However, the respective human studies show highly controversial
results regarding the effectiveness of exercise/physical activity on the formation of beige
adipose tissue [16–18]. A recent clinical trial did not detect significant browning of adipose
tissue after 12 weeks of exercise [19], which is in line with several studies that have failed
to identify a correlation between physical activity and browning [20–22]. In contrast, other
studies using similar exercise protocols reported that exercise upregulated the browning
process, but without any positive effects on the metabolism of the volunteers [16]. This
stark controversy between animal and human studies with respect to the impact of exercise
on the browning process has been demonstrated in a recent series of meta-analyses [23]
and has been attributed to (i) heterogeneity of white adipose tissue depots [17], (ii) the
variability in sample collection in animals and, mainly, humans [17,24], and (iii) a host
of external factors (e.g., nutrition, environmental temperature, other stressors) that may
interfere with the effect of exercise on the browning process [6,23]. Therefore, there is a
need for in vitro experiments aiming to identify the factors and the procedures which can
induce browning of white lipocytes under the effect of exercise.

Numerous studies employ the culturing of either human or mouse myotubes to
identify myokines and metabolites and the use electric pulse stimulation (EPS) to mimic
exercise (i.e., contraction of the myotubes) [25,26]. The electric pulse evokes contraction
of the myotubes, mimicking the function of a nerve signal reaching the nerve-muscle
synapse. Electrical stimulation of muscle cells in culture increases contractile properties
and accelerates sarcomere assembly [27,28]. Moreover, EPS upregulates classical markers
of exercise including interleukin 6 (IL-6) [29], PGC-1a [30], as well as glucose uptake [31].
While innervation and interaction with other organs is missing from in vitro exercise mod-
els [32] different protocols have managed to induce adaptations similar to resistance [32]
and aerobic exercise [33]. Moreover, the in vitro contraction EPS model has proven to be
a valuable tool for the identification of new myokines [25,34] as well as in the study of
metabolism [35,36]. However, EPS has not been employed to date to investigate mecha-
nisms related to tissue crosstalk in the browning process through co-culturing of different
cell lines.

The aim of this study was to investigate whether co-culturing of C2C12 myotubes
and 3T3-L1 adipocytes under the stimuli of EPS mimicking muscle contraction can impact
the expression of UCP1, PGC-1a, and IL-6 in adipocytes, therefore providing evidence on
the direct crosstalk between adipocytes and stimulated muscle cells. Based on previous
findings for the use of EPS for the study of metabolic pathways [35–37], we hypothesized
that our in vitro model of co-cultured white adipocytes and electrically stimulated my-
ocytes to simulate exercise would increase the expression of UCP1, PGC-1a, and IL-6 in
3T3-L1 adipocytes. To our knowledge, this is the first time that the two cell types were
allowed to interact in vitro under the stimuli of EPS mimicking muscle contraction, to
unravel possible browning effects of contracting myotubes on adipose cells. Should our
hypothesis be confirmed, this model can be used to provide precise and comprehensive
mechanistic data that in vivo studies may not be able to tease apart.

2. Materials and Methods
2.1. Cell Lines and Cell Cultures

The established and well-characterized murine cell lines C2C12 and 3T3-L1 (Ameri-
can Type Culture Collection (ATCC, Manassas, VA, USA) were used as muscle cells and
white fat lipocytes, respectively. All cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, with L-glutamine, (Gibco/BRL, Paisley, UK), 10% (v/v) fetal bovine
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serum (Gibco/BRL, Paisley, UK) and penicillin/streptomycin (100 IU/mL; Biosera, Ring-
mer, UK) at 37 ◦C, in an atmosphere of 5% CO2 in air with 100% humidity.

2.2. C2C12 and 3T3-L1 Differentiation Protocols

Differentiation of C2C12 muscle cells to myotubes was achieved when at about
70–80% confluence were cultured in starvation medium of Dulbecco’s modified Eagle’s
medium (DMEM, with L-glutamine) (Gibco/BRL, Paisley, UK) 2% (v/v) fetal bovine serum
(Gibco/BRL, Paisley, UK) and penicillin/streptomycin (100 IU/mL; (Gibco/BRL, Paisley,
UK) at 37 ◦C in an atmosphere of 5% CO2 in air with extra humidity [38]. Myotubes were
formed after 5–7 days. Transformation was observed under light microscope (Figure 1a,b).
All experiments were performed for passages 7–8.
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Figure 1. C2C12 and 3T3-L1 differentiation process. The images show undifferentiated (a) and
differentiated (b) C2C12 cells, as well as undifferentiated (c) and differentiated (d) 3T3-L1 cells. All
images were taken at 20× magnification.

Differentiation of 3T3-L1 fibroblasts was achieved by adjusting the established pro-
tocol previously described [39]. Briefly, 100% confluent cells were cultured in DMEM
(Gibco/BRL, UK), 10% (v/v) fetal bovine serum (Gibco/BRL, Paisley, UK) and peni-
cillin/streptomycin (100 IU/mL; Biosera, Ringmer, UK) supplemented with 10 µg/mL
insulin (Sigma-Aldrich, Dorset, UK), 1 µM dexamethasone (Sigma, Dorset, UK) and 0.5 mM
3-isobutyl-methyl-xanthine (IBMX) (Sigma-Aldrich, Dorset, UK) medium and changed
daily for 3 consecutive days, followed by a sustainability medium containing 10% FBS-
DMEM containing 10 µg/mL insulin. After the course of three to five days differentiated
adipocytes (accumulated lipid droplets in the cytoplasm) could be observed under the
phase contrast microscope inverted Axionvert 40C) equipped with a ccd camera (Zeiss,
AxionVision, software, Gottingen, Germany, accessed on 28 March 2021) until day 12 to 15
of differentiation (Figure 1c,d). All experiments were performed for passages 8–10.

2.3. Co–Culture Protocol

Muscle myotubes were plated in 6-well plates (SPL Life Sciences), and cells were let
grow and differentiate for 6 days, while the 3T3-L1 cells were plated to grow and differenti-
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ate for 10 days, in transparent culture inserts, 0.4 µm pore size (cellQart). The inserts were
hanged in the wells for the entire duration of the EPS experimental protocol [40].

2.4. EPS Protocol

The protocol was performed using a custom-made stimulator device. The EPS pro-
tocol used was an adaptation of previous established protocols [28,41,42]. Briefly, the
fully differentiated C2C12 myotubes were stimulated to contract via carbon electrodes
connected to the stimulator. The protocol consisted of 1 h stimulation at 50 mV/1 Hz. Three
experimental conditions were established: (a) the co-culture of both cell types with EPS
application to the myotubes; (b) the co-culture of both cell types without EPS application;
(c) the single culture of the 3T3-L1 cells in the inserts with the EPS application on the
well below, filled with medium. All cell types were harvested after 1 h rest from the EPS
application (Figure 2). Independent experiments were performed at least in duplicates.
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Figure 2. Experimental set up. Schematic representation of the three experimental conditions used: (a) co-culture of both
cell types and EPS applied to the myotubes; (b) 3T3-L1 adipocytes were co-cultured with the C2C12 myotubes in absence of
EPS; (c) EPS was applied to the well filled with medium, with only the presence of 3T3-L1 cells inserts.

2.5. Lactate Dehydrogenase (LDH) Assay

For myotubes, the toxicity of EPS was determined in a colorimetric assay measuring
lactate dehydrogenase (LDH) activity in the supernatant of the cell culture at the end of ex-
periment with Cytotoxicity Detection Kit PLUS (LDH) (Roche Applied Science, Mannheim,
Germany) [43] measured in a multimode plate reader (Perkin Elmer-EnSpire).

2.6. Western Blot Analysis

Western blot analysis was performed as described previously [44]. In short, cells were
treated using lysing buffer (Biorad, Hercules, CA, USA) and the lysates were boiled in
loading buffer for 10 min. Equal amounts of protein were separated by 8–12% sodium
dodecyl sulphate–polyacrylamide gel and transferred onto nitrocellulose membranes
((Biorad, Hercules, CA, USA). The blots were blocked using 5% non-fat dry milk in TBS
plus 0.05% Tween 20 and incubated with the primary antibody (Supplementary Table S1)
overnight at 4 ◦C, followed by 1 h incubation at room temperature with the secondary
antibody (Table S1) conjugated to horseradish peroxidase. Detection was carried out using
the chemiluminescence (ECL) reaction (Biorad, Hercules, CA, USA) in Uvitec Alliance
imaging system (Uvitec, Cambridge, UK). All immunoblots were performed in duplicates.

2.7. Statistical Analysis

Independent samples t tests and Cohen’s d effect size estimates were used to com-
pare relative protein expression levels between co-cultured and non-co-cultured 3T3-L1
adipocytes. The same analyses were used to compare relative protein expression levels
between stimulated and non-stimulated C2C12 myotubes. Given the limitations of using
statistical tests based on p values for large and, as in this case, small sample sizes [45],
the Cohen’s d effect size estimates were used to complement the p value comparisons,
as a way to provide an additional estimate of the effect that is not based on the number
of replicates. We interpreted effect sizes as small (0.2–0.5), moderate (0.5–0.8), and large
(>0.80) according to Cohen’s recommendations [46]. The level of significance for the t tests
was set at p < 0.05. All statistical analyses were performed using the statistical software
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package SPSS 27 for Windows (SPSS Inc., Chicago, IL, USA). The results are reported as
means ± standard deviation, except otherwise indicated.

3. Results
3.1. Effects of EPS Protocol on C2C12 Myotubes

After 7 days of differentiation, the majority of the C2C12 myoblasts fused together
and formed multinucleated myotubes (Figure 1). We applied EPS to differentiated C2C12
myotubes for one hour and observed by optical microscope the contraction. Differentiation
and contraction of the myotubes was also confirmed by monitoring the desmin protein
expression. During the treatment with EPS, no morphological changes were detected,
and cell viability measured via LDH activity was not affected by the contraction protocol
(Figure S1).

3.2. Effects of EPS Protocol on 3T3-L1/C2C12 Co-Cultured Cells

Co-culturing of the 3T3-L1 cells with the C2C12 myotubes lasted for the entire contrac-
tion protocol and was followed by a resting period of one additional hour. After the resting
period, PGC-1a protein levels in C2C12 myotubes showed a 1.1-fold increase and differ-
entiated co-cultured without EPS cells had a 0.8-fold increase compared to differentiated
untreated cells (Figure 3). The mean difference of PGC-1a protein levels between the two
experimental conditions (with and without EPS) was 0.3 ± 0.2. The observed differences
did not reach statistical significance (p = 0.129), yet a medium effect size was detected
(d = 0.73). Similarly, IL-6 showed the same pattern of expression, presenting 0.86 times
higher levels in EPS co-cultured myotubes when compared to differentiated untreated
cells and 0.4-fold increase in the case of differentiated co-cultured without EPS cells. This
effect of EPS did not reach statistical significance (p = 0.09) but showed a large effect size
(d = 1.13).
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The impact of the EPS contracting myotubes on the differentiated 3T3-L1 cells, when in
co-culture, was examined through UCP-1, PGC-1a and IL-6 protein expression in relation
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to 3T3-L1 adipocytes co-cultured with C2C12 without EPS (Figure 4). UCP1 protein
levels were significantly higher (p = 0.044) in the co-cultured adipocytes with contracted
myotubes in comparison to the 3T3-L1 cells when EPS was applied without the presence
of the myotubes. Moreover, this difference showed a large effect size (d = 1.29). PGC-1a
was similar in EPS co-cultured cells compared to EPS treated cells (without co-culture)
(p = 0.448; d = 0.08). Finally, IL-6 expression was higher in EPS co-cultured cells (1.3-fold
increase) than EPS treated cells without co-culture (0.98-fold increase). The difference did
not reach statistical significance (p = 0.097) but revealed a large effect size (d = 1.13).
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4. Discussion

In this study, we let C2C12 myotubes and 3T3-L1 adipocytes interact in vitro under the
stimuli of EPS, mimicking muscle contraction. We found that EPS increased the expression
of PGC-1a and IL-6 protein levels in the co-cultured C2C12 cells. When EPS was applied,
we found that co-culturing led to increases in UCP1 and IL-6 protein expression in the
3T3-L1 adipocytes. These findings suggest the existence of a direct crosstalk between the
muscle cells, when contracted, with the adipocytes, resulting in changes in the expression
pattern of proteins related to browning of adipose tissue. These findings confirm what has
already been shown with in vivo rodent studies, and hence, they confirm that our model
can be used in future studies to provide precise and comprehensive mechanistic data that
in vivo studies may not be able to tease apart.

During and after exercise, a variety of factors are known to exert and trigger many
signaling pathways, while secreted myokines have been described to have an endocrine as
well as a paracrine action. Exercise-induced myokines change the profile of both muscle
and adipose tissue [47]. This leads to adaptations in white adipose tissue including the
reduction of the size of the adipocytes, increased mitochondrial activity, change of the
adipokines profile, and changes in gene expression [12,13].

In vitro studies have investigated myokines, adipokines and metabolites that are
considered modulator candidates for the formation of beige cells after exercise [9,48,49]
but often without including exercise in their experimental design. In the present study, we
incorporated a co-culturing of C2C12 and 3T3-L1 cells in vitro with the application of EPS
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on myotubes. EPS is a well-described exercise proxy that has been documented over the
years as a method for inducing contraction in skeletal muscle myotubes, whereas increased
levels of PGC-1a expression and other contraction related genes have been recorded [7,8].

The finding of elevated PGC-1a and IL-6 expression in the C2C12 myotubes after
EPS application was expected, as a direct result of the contraction. The increased levels of
both PGC-1a and IL-6 after electrical pulse stimulation are indicative of the activation of
the metabolic adaptations in myotubes as a response to exercise, since they are known to
regulate mitochondrial biogenesis [25,31,50,51]. We found that this process exerted, indi-
rectly, an alteration in the expression of certain proteins derived by the 3T3-L1 adipocytes.
Specifically, UCP1 and IL-6 production were increased after EPS induction. Moreover, the
expression of PGC-1a increased by EPS but was not significantly elevated after co-culturing.
This may be because PGC-1a has a relatively high turnover [52], reaching a peak expression
at 15 min post stimulation, whereas our samples were assessed 60 min following EPS.
When stimulated by external cues such as exercise and contraction, beige adipocytes ex-
press UCP1 protein and exhibit UCP1-dependent thermogenic capacity [24,53]. Moreover,
IL-6 has a dual role: as a major myokine, it activates beige adipocyte development and is
required for exercise-induced white adipose tissue browning in mice [54]; as an adipokine,
IL-6 acts as a mediator in non-shivering thermogenesis and is involved in metabolic profile
regulation in mice [55,56]. In line with these findings, we detected a significantly higher
expression of UCP1 in 3T3-L1 adipocytes co-cultured with C2C12 myotubes under the
effect of muscle contraction, in comparison to the non-co-cultured adipocytes.

A recent study investigated the effect of contracting myotubes on adipocytes where
fractionated supernatant was used to culture 3T3-L1 pre-adipocytes, showing that EPS-
conditioned medium promoted lipid droplet accumulation in 3T3-L1 pre-adipocytes [37].
Our experimental findings extend this work, demonstrating the existence of a direct
crosstalk between the contracting muscle cells and the adipocytes, resulting in increased
adipocyte expression of proteins that play key roles in the browning process (UCP-1 and
IL-6).

The studied “closed”, controlled, observational in vitro system provides the advan-
tage of having a clearer insight of the interplay between the two cell types, without the
intervention of other internal or external factors. As this is the first attempt to depict
this crosstalk in a closed in vitro model, through contracting myotubes co-cultured with
adipocytes, these findings could ignite further research on the field. Further experimental
work should also be performed with different contraction protocols as well as with the use
of human myotubes and adipocytes to establish the browning effect of muscle contraction
and identify the possible pathway(s) for the suggested crosstalk between cell types. There
could be several hypotheses on how this communication occurs and which molecule(s)
participate. This has not been elucidated by the present study and requires further in-
vestigation. This knowledge will provide a more robust theoretical framework and will,
undoubtedly, increase our understanding of metabolic diseases and could be extended
to understand potential connections between muscle cells and other cell types, such as
cancer cells and osteocytes. Nevertheless, it is important to note that in vitro models of
exercise incorporate several limitations, including lack of unanimously accepted exercise
protocol characteristics and inability to study systemic effects of exercise. Consequently,
results from such studies may not translate directly to whole body physiology and must be
interpreted with caution and combined with in vivo studies.

The present study adopted a previously established EPS protocol [28,41,42]. Therefore,
our results are limited only to this particular stimulation protocol. Future studies should
test a range of muscle stimulation protocols ranging in terms of muscle stimulation char-
acteristics (frequency, intensity, and duration). Moreover, additional browning markers,
including Tbx1, Tmem26, and CD137 [57], as well as research methodologies, including
gene silencing [58] and gene knock-out [59], should be investigated in future studies to
confirm and expand on the present findings. Finally, it is important to note that most of
our statistical comparisons based on p values were non-significant. Since the vast major-
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ity of our effect size comparisons were moderate or large, the lack of reaching statistical
significance in most cases was not caused by increased variability, but instead, it likely
reflects the small size of the data pool used in our study. As we aimed to detect biologically
meaningful (instead of statistically meaningful) changes in protein expression caused by
our EPS protocol, our results and conclusions are based on both p values and effect sizes. In
recent years, many experts and scientific societies have called for complementing p value
comparisons with other tests, such as Cohen’s effect size, to increase robustness and validity
in research [45,60].

Both in vivo and in vitro models are necessary to effectively understand the mecha-
nisms involved in the browning process. This is demonstrated by the controversy observed
between in vivo human and animal studies regarding exercise-induced adipose tissue
browning, which is likely caused by a variability in the exercise protocols used and dif-
ferent methods of browning detection [23]. Moreover, exercise exerts many whole-body
adaptations, which are difficult to study separately through in vivo studies. While this
can be addressed by in vitro models, previous in vitro studies did not involve exercise
activity in their experimental designs [61]. This is needed to reach to a robust conclusion
on the impact of exercise on the browning process. Therefore, there have been recent calls
for the development of more in vitro browning models, particularly involving cell–cell
signaling [62]. In the present study, the co-culturing of two different cell types under
the stimulus of EPS improved previous in vitro models for studying browning because it
considers, for the first time, aspects of in vivo exercise physiology. In this light, the present
novel model involving contracting myocytes and adipocytes may play an important role
towards the understanding of the browning process. This is particularly true since the
proposed model can describe the effects of exercise on other cell types, in this case white
adipocytes, which is a vital aspect of in vivo exercise physiology. However, it is important
to acknowledge that in vitro models of exercise and browning, such as the present, do not
account for inter-organ communication. Moreover, in vitro exercise protocols cannot be
easily translated into in vivo situations [63]. Therefore, the simultaneous development of
both in vivo and in vitro models that can complement each other should be employed in
future studies to generate robust mechanistic data.

5. Conclusions

In vitro co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of
EPS leads to increased expression of thermogenic proteins. These findings support the
use of the present in vitro model to study the direct crosstalk between adipocytes and
contracting muscle cells which results in changes in the expression pattern of proteins
related to browning of adipose tissue.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11111227/s1, Figure S1: LDH cytotoxicity assay in C2C12 cells. Control represents medium
of untreated cells. EPS treat-ment represents medium from EPS-treated cells and cytolysis describes
the control for cell death, Table S1: List of antibodies used in Western blot analyses, Figure S2:
Original Blots for UCP1, PGC1-a, IL-6, and GAPDH in 3T3-L1 cell line, Figure S3: Original Blots for
PGC1-a, IL-6 and GAPDH in C2C12 cell line.
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