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Abstract: Hypertension is a chronic disease associated with chronic inflammation involving activated
macrophages. Antihypertensive drugs (for example, angiotensin-converting enzyme inhibitors—
ACEIs) used in the treatment of hypertension have immunomodulatory properties. On the other hand,
the immunological effect of diuretics and combined drugs (diuretics + ACEI) is unclear. Therefore,
we examined the influence of diuretics and combination drugs (ACEI + diuretic) on cellular response
(contact hypersensitivity), production of reactive oxygen intermediates (ROIs), and nitric oxide (NO),
and the secretion of interleukin-12 (IL-12). CBA mice were administered i.p. captopril (5 mg/kg)
with or without hydrochlorothiazide (10 mg/kg) or furosemide (5 mg/kg) for 8 days. On the third
day, the mice were administered i.p. mineral oil, and macrophages were collected 5 days later.
In the presented results, we show that diuretics administered alone or with captopril increase the
generation of ROIs and reduce the formation of NO by macrophages. Moreover, tested drugs inhibit
the secretion of IL-12. Diuretics and combined drugs reduce the activity of contact hypersensitivity
(both activation and induction phases). Our research shows that the tested drugs modulate the
cellular response by influencing the function of macrophages, which is important in assessing the
safety of antihypertensive therapy.

Keywords: antihypertensive therapy; diuretics; cellular immunity; antihypertensive drugs; macrophages;
contact hypersensitivity; reactive oxygen intermediates; nitric oxide; interleukin-12

1. Introduction

Hypertension in adults is defined by the American College of Cardiology/American
Heart Association (ACC/AHA) Task Force on Clinical Practice Guidelines as blood pressure
equal to or higher than 130/80 mmHg. The first stage of hypertension is 130–139/80–
89 mmHg, and the second stage is over 140/90 mmHg [1]. Isolated systolic hypertension
is defined by the ACC/AHA as 130 mmHg and above, while diastolic blood pressure
has normal values (below 80 mmHg). Isolated diastolic hypertension is an opposite
clinical situation, i.e., when normal values of systolic blood pressure are accompanied by
diastolic blood pressure over 80 mmHg. In the treatment of hypertension, according to the
American Heart Association and the European Society of Hypertension/European Society
of Cardiology (ESH/ESC), the most important determinant of cardiovascular risk reduction
is the degree of blood pressure reduction, not the choice of antihypertensive drug [2]. This
conclusion also applies to patients with an increased cardiovascular risk, as confirmed in
the ALLHAT [2], VALUE [3,4], and CAMELOT studies [5].

Most patients use one of three main classes of drugs as monotherapy: thiazide di-
uretics, long-acting calcium channel blockers (most commonly, dihydropyridine), or a
representative of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II recep-
tor blockers (ARBs). Some patients have a clinical rationale for taking certain medication or
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medications unrelated to essential hypertension (e.g., a nondihydropyridine calcium chan-
nel blocker or beta-blocker to control the rate of rhythm in patients with atrial fibrillation).

Sometimes, treatment begins with a combination of drugs. This therapy is particularly
recommended when blood pressure is 10–20 mmHg above the target [1,6]. Such a strategy
increases the chance of achieving the target blood pressure more quickly [7], improves
patient compliance and blood pressure control, and reduces side effects when both drugs
are administered at lower doses [8–15]. The most commonly prescribed therapy combines
the representative of diuretics with angiotensin–renin axis inhibitors (ACEI or ARB). It is
worth noting that such combinations may induce some beneficial effects independently
of their antihypertensive action. This includes anti-inflammatory effects [16], which are
of particular interest since hypertension is accompanied by proinflammatory activation
of immune cells. In turn, such dysregulated inflammatory responses seem to additionally
drive hypertension and its complications. Immune system cells (macrophages especially)
may sense the ion changes caused by the drugs [17]. In parallel, drugs can target cells
directly due to the expressions of particular receptors, e.g., the angiotensin II receptor,
which macrophages have on their surface [18,19]. The mechanism of anti-inflammatory
effects of ACEI is associated with blocking angiotensin II formation and, in the case of ARBs,
with blocking the angiotensin II receptor. Thus, both groups of drugs block the possibility
of stimulating the angiotensin receptor (among other cells, located on macrophages), which
results in an anti-inflammatory effect. Angiotensin II, by acting on the AT1 receptors
on macrophages, induces NADPH oxidase and the production of ROIs. This effect may
be inhibited by the action of ACEI and ARB drugs (e.g., olmesartan) [20,21]. Therefore,
the experimental study of the effects of antihypertensive drugs on the immune system
is a popular and important direction of research in immunology in recent years [22,23].
Recently, we demonstrated the significant influence of captopril administered alone or in
combination with furosemide or hydrochlorothiazide on macrophage-induced humoral
immune response in mice [24].

It is clear from the available sources that diuretics have an effect on the immune system
and that furosemide has an anti-inflammatory effect, but the effect of hydrochlorothiazide
is ambiguous. Previous studies showed that hydrochlorothiazide had no effect on the
production of TNF-α [25,26] and IL-1β [27]. The drug did not affect ROIs or MCP-1 expres-
sion [28]. It is worth noting that it inhibits the accumulation of T lymphocytes in patients
with hypertension [29,30]. Furosemide has anti-inflammatory properties, reduces the con-
centration of TNF-α [31–34], IL-6 [32–35], IL-8 [35,36], and IL-10 [37], and intracellular
concentrations of IL-6 and TNF-α [38]. Interestingly, macrophages express a variety of
functionally active ion channels, especially those belonging to a family of transient receptor
potential channels. Moreover, therapeutic targeting of these ion channels on macrophages
has recently emerged as an effective mechanism to control various macrophage immune ac-
tivities, as reviewed elsewhere [39]. Accordingly, recent studies confirmed that furosemide
and hydrochlorothiazide can target macrophages directly to induce an inhibitory effect,
which brings further evidence for an immunomodulatory potential of diuretics [17], that
likely results from the affected ion channel activity on macrophages. However, very little is
known about the impact of these drugs on macrophage activity in cell-mediated immunity.

Macrophages play a pivotal role in sensing and responding to invading pathogens.
During phagocytosis, the ingested microorganisms are killed and degraded in phagolyso-
somes. Among others, reactive oxygen intermediates (ROIs) and nitric oxide (NO) are
important microbicidal agents released by macrophages and mediate their cytotoxic ac-
tivity [40,41]. Moreover, macrophages professionally present determinants of degraded
antigen to both naive and memory CD4+ T lymphocytes to induce either helper type 2 T
cell-dependent humoral immunity or helper type 1 T (Th1) cell-mediated delayed-type
hypersensitivity [42]. Among other signals, such differentiation of naive T cells is driven
by antigen-presenting macrophage-released cytokines, and IL-12 plays an essential role in
activating Th1 lymphocytes [43]. In turn, effector Th1 cells stimulate macrophage cytotoxic
response. The latter could be detrimental in the case of delayed-type hypersensitivity to
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non-pathogenic antigens (including self-antigens in autoimmunity), and to contact aller-
gens (haptens). Mouse contact hypersensitivity (CHS) reaction induced by trinitrophenyl
(picryl chloride) hapten provides a model of Th1 cell- and macrophage-mediated response
for studying these cellular interactions in vivo [44].

Our experimental work aimed at examining the influence of captopril, furosemide,
hydrochlorothiazide, and combined drugs (captopril with furosemide or captopril with
hydrochlorothiazide) on the Th1 cell- and macrophage-mediated cellular immune response
in mice, together with the assessment of the production of ROIs, NO, and IL-12 by mouse
macrophages. In the current experimental settings, IL-12 gained our particular interest,
because it is secreted by antigen-presenting cells to stimulate the differentiation of Th1
lymphocytes [45–48]. As mentioned above, the selection of the drugs and dosage scheme
for the current studies assessing their impact on chosen aspects of cell-mediated immunity
was based on the high frequency of their clinical use as well as on their pharmacokinetic
and pharmacodynamic properties [24].

The findings of the current study should provide experimental evidence for the safety
of the tested diuretics and combined medications (captopril with diuretic) for the elderly. It
is of particular interest, since those patients’ immune responses, both humoral and cellular,
could be less effective than in young healthy adults, which increases the risk of infections
that may result in the patient’s death.

2. Results
2.1. Treatment with Captopril with or without Diuretic Drug Affects CHS Response Induced
by Macrophages

Macrophages are capable of presenting haptenic determinants to induce CHS response.
Thus, to evaluate the impact of assayed drugs on antigen-presenting macrophage function
in CHS, macrophages collected from drug-treated mice were conjugated with TNP hapten
and transferred to naive mice, that, 7 days later, were challenged with TNP to induce a
CHS ear-swelling response. We observed that all treatment combinations lowered the
hapten-presenting activity of macrophages (Figure 1). Generally, drug administration leads
to a reduction in the presentation phase of CHS, which may make such therapy suitable for
patients with contact allergies. Moreover, in addition to a drug’s main pharmacological ef-
fect, one can speculate that it may reduce the number of contact allergic reactions occurring
in sensitized people.
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or without furosemide or hydrochlorothiazide for eight consecutive days. Then, oil-induced mac-
rophages were harvested and conjugated with TNP hapten for 10 min in darkness at room temper-
ature. After washing, TNP-conjugated macrophages were adoptively transferred by intravenous 
injection into naive recipients. A week later, TNP-macrophage recipients were challenged with a 
0.4% PCL to elicit CHS ear swelling, measured with engineer’s micrometer 24 h later. The averaged 
results of ear-thickness increase, after subtracting the ear thickness increase in non-sensitized but 
challenged littermate mice, were expressed as delta +/− standard error of the mean. Two-way 
ANOVA with Tukey’s post hoc test. * p < 0.05; ** p < 0.01; *** p < 0.005; **** p < 0.001, macrophage 
donors: n = 3 (in each group), macrophage recipients: n = 4 (in each drug-treated mice test group) + 
negative control n = 3; N = 2. 
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Figure 1. CHS reaction in mouse recipient of TNP-conjugated macrophages obtained from drug-
treated mice. Donors of peritoneal macrophages were treated intraperitoneally with captopril
with or without furosemide or hydrochlorothiazide for eight consecutive days. Then, oil-induced
macrophages were harvested and conjugated with TNP hapten for 10 min in darkness at room tem-
perature. After washing, TNP-conjugated macrophages were adoptively transferred by intravenous
injection into naive recipients. A week later, TNP-macrophage recipients were challenged with a 0.4%
PCL to elicit CHS ear swelling, measured with engineer’s micrometer 24 h later. The averaged results
of ear-thickness increase, after subtracting the ear thickness increase in non-sensitized but challenged
littermate mice, were expressed as delta +/− standard error of the mean. Two-way ANOVA with
Tukey’s post hoc test. * p < 0.05; ** p < 0.01; *** p < 0.005; **** p < 0.001, macrophage donors: n = 3 (in
each group), macrophage recipients: n = 4 (in each drug-treated mice test group) + negative control
n = 3; N = 2.

2.2. Treatment with Captopril with or without Diuretic Drug Affects Active CHS Response

To confirm the above speculation, we used hapten-sensitized mice treated with assayed
drugs to induce and then elicit an active CHS response. Interestingly, furosemide alone as
well as captopril alone or in combination with diuretics reduced the 2 h ear swelling in an
early phase of CHS response, depending on the activation of innate immune mechanisms,
involving B1 lymphocytes, mast cells, hapten-specific IgM antibodies, and complement [49]
(Figure 2). Furthermore, we observed the significant reduction in late-phase CHS ear
swelling in mice treated with all tested drug combinations (Figure 2). The CHS late phase
is mediated by hapten-specific effector T cells and cytotoxic macrophages [44,45], and our
findings suggest that these cell activities are diminished by captopril and diuretics, which,
together with the reduced CHS early phase, leads to the suppression of CHS response.
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Figure 2. Actively induced CHS reaction in drug-treated mice. Mice were treated intraperitoneally
with captopril with or without furosemide or hydrochlorothiazide for eight consecutive days. On
the third day, mice were actively sensitized to TNP by topical application of PCL dissolved in a 1:3
mixture of acetone and ethanol on the shaved abdominal skin. Five days later, mice were challenged
to elicit CHS ear swelling by topical application of a 0.4% PCL solution in a 1:1 mixture of acetone
and olive oil on both sides of both ears. At 2 and 24 h later, the ear swelling was measured with
an engineer’s micrometer. The averaged results of ear-thickness increase, after subtracting the ear-
thickness increase in non-sensitized but challenged littermate mice, were expressed as delta +/−
standard error of the mean. Two-way ANOVA with Tukey’s post hoc test. ** p < 0.01; *** p < 0.005;
**** p < 0.001, n = 4 (in each drug-treated mice test group) + negative control n = 3, N = 2.
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2.3. Treatment with Captopril with or without Diuretic Drug Differently Impacts the Adoptively
Transferred CHS Response

To examine whether hapten-specific effector T cells and cytotoxic macrophages are af-
fected by assayed drugs at the induction or effector phase of CHS, we adoptively transferred
CHS effector cells to drug-treated mice. Interestingly, while administration of captopril
and furosemide alone diminished the activity of transferred CHS effector cells, combining
captopril with diuretics reversed this effect (Figure 3). These observations suggest that
all drugs differ in their action on CHS effector cells. One can assume that captopril and
furosemide administered alone influence both the induction and effector phases of CHS
response, while hydrochlorothiazide rather acts solely on the induction phase, similarly to
its combination with captopril, and captopril combined with furosemide.
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Figure 3. CHS reaction in mouse recipient of PCL-induced CHS effector cells adoptively transferred
to drug-treated mice. Recipients of PCL effector cells were treated intraperitoneally with captopril
with or without furosemide or hydrochlorothiazide for eight consecutive days, while donors, on
the third day, were sensitized with PCL on the shaved abdominal skin. Five days later, lymph node
and spleen CHS effector cells were adoptively transferred by intravenous injection into drug-treated
recipients. Just after transfer, recipients were challenged with a 0.4% PCL to elicit CHS ear swelling,
measured with an engineer’s micrometer 24 h later. The averaged results of ear-thickness increase,
after subtracting the ear-thickness increase in non-sensitized but challenged littermate mice, were
expressed as delta +/− standard error of the mean. Two-way ANOVA with Tukey’s post hoc test.
* p < 0.05; ** p < 0.01; *** p < 0.005, n = 4 (in each drug-treated mice test group) + negative control
n = 3, N = 2.

2.4. Treatment with Captopril with or without Diuretic Drug Differently Influences the Secretion of
IL-12p40 by Macrophages

According to the above observations, we hypothesized that the drug-induced effects
on CHS may at least partly depend on the alterations in macrophage activity, especially
that all treatment combinations lowered hapten-presenting activity of hapten-conjugated
macrophages (Figure 1). Thus, we assessed the macrophages’ ability to secrete IL-12p40,
the main cytokine responsible for the induction of helper type 1 T (Th1) cell differentiation
during CHS development. We observed that, in contrast to combined captopril and
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hydrochlorothiazide therapy, all other treatments reduced the basal secretion of IL-12p40
(Figure 4). Moreover, a similar decrease was observed in the case of LPS-stimulated
macrophages, with the stronger effect induced by captopril combined with a diuretic
drug (Figure 4). This suggests that macrophage cytotoxic activation is accompanied by
diminished secretion of IL-12p40 under the drug’s influence. In turn, this may be at
least partly responsible for the suppression of CHS response by both diminishing the
IL-12-dependent Th1 cell differentiation and affecting macrophage cytotoxic activity.
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Figure 4. IL-12p40 secretion by macrophages harvested from drug-treated mice. Oil-induced peri-
toneal macrophages from mice treated with captopril with or without a respective diuretic drug were
cultured in standard conditions, in some cases after stimulation with LPS (200 ng). Enzyme-linked
immunosorbent assay (ELISA) was used to measure the concentration of IL-12p40 in supernatant
collected after 24 h of the culture. Results were expressed as the mean (+/− SD) per group. Two-way
ANOVA with Tukey’s post hoc test. * p < 0.05; ** p < 0.01; *** p < 0.005; **** p < 0.001, n = 3, N = 3.

2.5. Treatment with Captopril with or without Diuretic Drug Differently Influences the Secretion of
NO and ROIs by Macrophages

To examine whether assayed drugs actually affect macrophage cytotoxic activity,
we evaluated their ability to generate NO and ROIs, the main mediators of macrophage
cytotoxicity. While tested drugs moderately influenced the basal NO release, they strongly
reduced the LPS-stimulated NO secretion by macrophages (Figure 5). These observations
seem to confirm that captopril administered with or without a diuretic drug directly affects
macrophage cytotoxic activation. On the other hand, all drug combinations were found to
increase macrophage ability to generate ROIs (Figure 6). Given that macrophages respond
to danger signals first with ROI generation and require further activation with pathogenic
agents or activated T cell-derived cytokines (such as interferon-gamma) to release NO, our
findings strongly suggest that macrophages are affected by assayed drugs selectively at
the time of their cytotoxic reactivation, but not at the time of the first-line defense. This
seems to have a significant clinical meaning, implying that captopril alone or combined
with diuretics selectively reduces macrophage antigen-presenting and cytotoxic functions
in contact allergic responses, but not their antimicrobial innate immune activity.
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Figure 5. Nitric oxide (NO) secretion by macrophages harvested from drug-treated mice. Oil-induced
peritoneal macrophages from mice treated with captopril with or without a respective diuretic drug
were cultured in standard conditions, in some cases after stimulation with LPS (200 ng). Griess-
based colorimetric reaction was then used to measure the concentration of NO/NO2 in supernatant
collected after 24 h of the culture. Results were expressed as mean (+/− SD) per group. Two-way
ANOVA with Tukey’s post hoc test. **** p < 0.001, n = 3, N = 3.
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Figure 6. Generation of reactive oxygen intermediates (ROIs) by macrophages harvested from
drug-treated mice. Oil-induced peritoneal macrophages from mice treated with captopril with
or without a respective diuretic drug were harvested and incubated with luminol or lucigenin,
as a chemiluminescent probe, for 15 min at 37 ◦C. Afterwards, macrophage oxidative burst was
stimulated with mouse serum-opsonized zymosan just before the measurement of luminol- or
lucigenin-dependent chemiluminescence with a Lucy 1 luminometer, lasting for 75 min. The averaged
results of ROI generation were expressed in relative units of luminescence emission (RULE) per
second, n = 3, N = 3.

3. Discussion

Our current results demonstrated the significant influence of captopril administered
alone or in combination either with furosemide or with hydrochlorothiazide on mouse CHS
response. In particular, our findings imply that the assayed drugs suppress CHS response
by affecting macrophage antigen-presenting activity, their ability to release Th1-inducing
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IL-12 as well as their cytotoxic reactivation by effector T lymphocytes. These observations
have an important clinical significance, suggesting that the tested drugs could alleviate
contact allergic reactions in treated patients with leaving the antimicrobial defense intact or
even enhanced.

Other studies showed that captopril reduces the concentration of nitric oxide metabo-
lites [50]. Our research, similar to the cited authors, has shown that captopril alone and
when used together with hydrochlorothiazide and furosemide reduces NO secretion. Cap-
topril increased the number of CD3 + T cells and CD4 and CD8 double-negative T cells,
while CD4 + T cells decreased and CD8 + T cells remained unchanged [51]. Captopril
reduces the activity of nitric oxide synthase and, consequently, the concentration of ni-
tric oxide [52–56]. In addition, this drug reduces MPO activity [53]. Captopril reduced
H2S-induced NO release from S-nitrosoglutathione [57–59] and lowered circulating and
tissue IFNα levels [60]. Captopril dose-dependently reduced oxidative stress, reduced NO
levels, and the production of pro-inflammatory cytokines [56,59,61], as well as significantly
decreasing the expression of CD103, CD80, CD86, and MHC-II proteins and the immunos-
timulatory function of splenic dendritic cells [62]. Furthermore, this ACEI representative
profoundly inhibited dendritic cell maturation and promoted Treg cell differentiation [62].
However, other studies showed that long-term administration of a high dose of captopril
reduced the number of Treg cells [63]. While this drug did not affect NK activity [31], it de-
creased the amount of white blood cells and the percentage of neutrophils, but increased the
percentage of lymphocytes [64]. Captopril did not reduce the synthesis of the complement
component C3 [65]. In line with our findings, captopril was reported to decrease the level
of IL-12 [62,66]. Our studies have shown that captopril reduces IL-12 levels more strongly
than furosemide and hydrochlorothiazide and has an additive effect as a component of
combination drugs (captopril + furosemide, captopril + hydrochlorothiazide).

Furosemide inhibits the expression of iNOS and the production of nitric oxide [17,67].
Similar to the research of the cited authors, our studies have shown that furosemide reduces
NO secretion and, interestingly, is the strongest drug inhibiting NO secretion from the stud-
ied drugs (even stronger than combined drugs, e.g., furosemide + captopril). Furosemide
reduces the production of superoxide anions by bronchial epithelial cells and pulmonary
macrophages [68]. Furosemide reduces the basal airway response, thus reducing the extent
of airway hyperresponsiveness induced by the allergen. However, the same treatment
also increases T lymphocyte infiltration in the course of allergic asthma, i.e., an ambiguous
effect of furosemide, because on the one hand it increases T lymphocyte infiltration (but
without pulmonary goblet cell hyperplasia), and on the other hand, furosemide reduces
the basal airway response, thereby reducing the airway range of allergen-induced hy-
perresponsiveness [69]. Similar to captopril, furosemide did not affect NK activity [31].
Furosemide was suggested to alter the Th1/Th2 cytokine balance in pre-eclampsia by the
results from an in vitro study [70]. Furosemide had no significant effect on the intensity
of the phagocytosis process, the percentage of phagocytic neutrophils, or the phagocytic
index [71]. This seems to be in line with our observations suggesting that assayed drugs do
not affect the antimicrobial activity of macrophages.

Hydrochlorothiazide inhibits T cell function in spontaneous hypertension [72]. This
diuretic was found to inhibit the production of nitric oxide [17,73]. Our studies also showed
that hydrochlorothiazide reduces NO secretion, this effect is slightly stronger in the case of
the combined drug (captopril + hydrochlorothiazide) than with hydrochlorothiazide alone.
However, the combination of nebivolol and hydrochlorothiazide was reported to increase
the plasma nitric oxide concentration and NO synthase activity, which were reduced in
spontaneous hypertension [74]. Hydrochlorothiazide did not reduce the aortic superoxide
anion radical production [28] but prevented the accumulation of T cells in the tissues [29].
On the other hand, some data imply that hydrochlorothiazide shows no significant anti-
inflammatory activity in vitro at clinically relevant serum concentrations [27,75].

The current study examined the modulation of intracellular and extracellular ROI
production by captopril, furosemide, hydrochlorothiazide, and combined drugs, which has
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not been studied so far. We found that all drugs increase intracellular and extracellular ROI
production, with captopril being the most potent among drugs administered alone, and
furosemide being the least potent. However, using two drugs in combination enhances
particular drug effects, with the combination of furosemide and captopril having a stronger
effect on ROI generation. In the case of the secretion of extracellular ROIs, we also observed
that each of the drugs increases the production of ROIs, but hydrochlorothiazide is the
most potent drug for enhancing ROI production (even stronger than the combination drug
consisting of captopril and furosemide), and the strongest combined drug is captopril and
hydrochlorothiazide. Interestingly, captopril and the combined drug captopril + furosemide
have practically identical properties in stimulating the production of ROIs.

The current study provides initial direct experimental evidence of the hitherto unex-
plored influence of diuretics (furosemide, hydrochlorothiazide) and captopril, administered
alone or in combination, on the function of macrophages in CHS. We showed that all tested
drugs reduce the process of antigen presentation by macrophages. Moreover, all assayed
drugs were found capable of reducing IL-12. These effects resulted in the inhibition of the
induction of allergic cellular responses in active hapten sensitization. On the other hand,
examining the transfer of CHS effector cells to drug-treated mice allowed us to conclude
that captopril and diuretics modulate CHS at different phases of contact allergic immune
response, in each case, however, by affecting macrophage antigen-presenting and cytotoxic
activities. Importantly, tested drug administration seems not to affect the antimicrobial
innate immune activity of macrophages.

4. Materials and Methods
4.1. Mice

In all experiments, 10–12-week-old male mice (23 ± 2g) of the inbred CBA strain were
used according to the guidelines of the 1st Local Ethics Committee (approval no. 81/2017
and 434/2020). Mice were obtained from the 2nd breeding unit of the Faculty of Medicine,
Jagiellonian University Medical College, Krakow, Poland, and were fed autoclaved food
and water ad libitum. In all experiments, 282 mice were used. Detailed information about
the number of mice used in each experiment and the number of repetitions are provided in
the descriptions of the figures showing the results of the experiments.

4.2. Antihypertensive Drug Administration

Drugs were purchased from Sigma-Aldrich (St. Louis, MO, USA). Furosemide and
hydrochlorothiazide were first dissolved in dimethyl sulfoxide (DMSO), and then in 0.9%
sodium chloride (solvents were used at a ratio of 1:99). Captopril was dissolved in 0.9%
sodium chloride. Drugs were administered to mice intraperitoneally (i.p.) once a day for
8 consecutive days. Captopril and furosemide were injected in a daily dose of 5 mg/kg,
and hydrochlorothiazide in a daily dose of 10 mg/kg.

4.3. Harvest of Oil-Induced Peritoneal Macrophages

Peritoneal exudate macrophages were induced by i.p. injection of 1 mL of mineral oil
(heavy fraction, Sigma-Aldrich, St. Louis, MO, USA) on the third day of drug treatment.
Five days later, the resulting exudates, containing over 95% of nonspecific esterase-positive
cells [76], were collected by washing the peritoneal cavity with 5 mL of ice-cold DPBS
containing heparin sodium salt (5 U/mL, Polfa, Warszawa, Poland) and, after washing,
were used in the assays as peritoneal macrophages obtained from either drug-treated
donors or non-drug-treated control mice.

4.4. Assessing ROI Generation by Macrophages in Chemiluminescence Assay

Macrophages at a concentration of 1 × 106 cells per well were placed in tetraplicates
on 96-well black plates (Nunc, Roskilde, Denmark) at a volume of 200 µL of RPMI1640
with 10% fetal calf serum (FCS, Gibco Life Technologies, Grand Island, NY, USA), and
incubated with either luminol or lucigenin (Sigma-Aldrich, St. Louis, MO, USA) for
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15 min at 37 ◦C. Afterwards, macrophage oxidative burst was stimulated in half of the
wells with mouse serum-opsonized zymosan (Sigma-Aldrich, St. Louis, MO, USA) added
at a 10:1 ratio (particles per cell) just before the measurement of luminol- or lucigenin-
emitted chemiluminescence with a Lucy 1 luminometer (Anthos, Salzburg, Austria), lasting
for 75 min. The averaged results of ROI generation were expressed in relative units of
luminescence emission (RULE) per second.

4.5. Measurement of IL-12p40 and Nitric Oxide Concentration in Macrophage
Culture Supernatant

Macrophages obtained from either control or drug-treated mice were stimulated with
lipopolysaccharide (LPS, 200 ng per well, BIO-Whittaker, Walkersville, MD, USA) in half
of the wells, and then, cells were cultured at a concentration of 2 × 106 cells per well in
2 mL of RPMI1640 with 5% FCS at 37 ◦C and 5% CO2 for 24 h. The resulting culture
supernatants were collected for evaluation of the concentration of NO and IL-12p40. The
concentration of nitrites and nitrates was analyzed in freshly collected supernatants in
a method based on a modified Griess reaction [77]. The concentration of IL-12p40 was
measured in supernatants stored previously at −80 ◦C, with the use of an enzyme-linked
immunosorbent assay (ELISA) kit (Mouse IL-12p40 BD OptEIATM Set, BD Biosciences, San
Diego, CA, USA), according to the manufacturer’s guidelines.

4.6. Induction of Active or Adoptively Transferred CHS Reaction in Mice

On the third day of drug treatment, mice were actively sensitized to trinitrophenol
(TNP) by topical application of 150 µL of a 5% picryl chloride (PCL, recrystallized 2,4,6-
trinitrophenyl chloride, Chemica Alta, Edmonton, Alberta, Canada) dissolved in a 1:3
mixture of acetone and ethanol on the shaved abdominal skin. Five days later, mice were
challenged to elicit CHS ear swelling by topical application of 10 µL of a 0.4% PCL solution
in a 1:1 mixture of acetone and olive oil on both sides of both ears. At 2 (in the case of
active CHS) and 24 h later, the induced ear swelling was measured with an engineer’s
micrometer (Mitutoyo, Tokyo, Japan). The averaged results of the ear-thickness increase
in each of the five mice in each group, after subtracting the ear-thickness increase in non-
sensitized but challenged littermate mice, were expressed as delta +/− standard error of
the mean (SEM). Otherwise, naive mice were similarly sensitized with 5% PCL solution on
the shaved abdomen, and 5 days later, draining lymph nodes and spleens were collected for
isolating CHS effector cells that were then adoptively transferred (via intravenous route) to
drug-treated mice on the 8th day of treatment. Immediately after CHS effector cell transfer,
recipients were similarly ear challenged with 0.4% PCL solution, and the elicited CHS ear
swelling was measured as above.

4.7. Transfer of Hapten-Conjugated Macrophages to Induce CHS Reaction

Peritoneal macrophages harvested from control or drug-treated mice were conjugated
with TNP hapten by incubation with water-soluble 2,4,6-trinitrobenzene sulfonic acid
(TNBSA, Eastman Kodak, Rochester, NY, USA) dissolved in DPBS (2 mg TNBSA per
1 × 108 cells) for 10 min in darkness at room temperature. After washing, TNP-conjugated
macrophages were adoptively transferred (via intravenous route) into naive recipients. A
week later, TNP-macrophage recipients were challenged with a 0.4% PCL to elicit CHS ear
swelling, measured as described above.

4.8. Statistical Analysis

All experiments were performed three to five times, and representative results are
shown in the figures. Two-way analysis of variance (ANOVA) with a post hoc RIR Tukey’s
test was used to estimate the statistical significance of differences observed between all
control and experimental groups, and p < 0.05 was considered as a minimum level of
significance.
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