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Abstract

We present a method for calculating the Acute Insecticide Toxicity Loading (AITL) on US

agricultural lands and surrounding areas and an assessment of the changes in AITL from

1992 through 2014. The AITL method accounts for the total mass of insecticides used in the

US, acute toxicity to insects using honey bee contact and oral LD50 as reference values for

arthropod toxicity, and the environmental persistence of the pesticides. This screening anal-

ysis shows that the types of synthetic insecticides applied to agricultural lands have funda-

mentally shifted over the last two decades from predominantly organophosphorus and N-

methyl carbamate pesticides to a mix dominated by neonicotinoids and pyrethroids. The

neonicotinoids are generally applied to US agricultural land at lower application rates per

acre; however, they are considerably more toxic to insects and generally persist longer in

the environment. We found a 48- and 4-fold increase in AITL from 1992 to 2014 for oral and

contact toxicity, respectively. Neonicotinoids are primarily responsible for this increase, rep-

resenting between 61 to nearly 99 percent of the total toxicity loading in 2014. The crops

most responsible for the increase in AITL are corn and soybeans, with particularly large

increases in relative soybean contributions to AITL between 2010 and 2014. Oral exposures

are of potentially greater concern because of the relatively higher toxicity (low LD50s) and

greater likelihood of exposure from residues in pollen, nectar, guttation water, and other

environmental media. Using AITL to assess oral toxicity by class of pesticide, the neonicoti-

noids accounted for nearly 92 percent of total AITL from 1992 to 2014. Chlorpyrifos, the fifth

most widely used insecticide during this time contributed just 1.4 percent of total AITL based

on oral LD50s. Although we use some simplifying assumptions, our screening analysis dem-

onstrates an increase in pesticide toxicity loading over the past 26 years, which potentially

threatens the health of honey bees and other pollinators and may contribute to declines in

beneficial insect populations as well as insectivorous birds and other insect consumers.
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Introduction

Insects form the basis of the food web that sustains life on Earth. They are critical to ecosystem

success, providing food for amphibians, fish, birds, reptiles, and mammals. Insects play a role

in decomposing animal wastes and dead vegetation, recycling the nutrients in these materials

and returning them to the soil. Insects also contribute to the agricultural production of crops

that feed humankind, both as the primary pollinators of many plants and as natural controls of

pest insects that feed on crops important to human survival. A diverse population of insects

benefits agriculture by keeping a balance between predatory and pest insects and providing

pollination services [1].

Insecticides targeting crop-damaging pests reduce both the number and diversity of insects

in an ecosystem [2]. With conventional farming practices relying primarily on chemical insec-

ticides for pest insect management, ecosystems comprising US agricultural lands are highly

impacted through both direct effects on insects and direct and indirect effects on other species

[3]. Although many members of the ecosystem may not be exposed to sufficient doses of insec-

ticides to suffer acutely lethal poisonings, sublethal and indirect adverse effects have been dem-

onstrated to occur [4].

Insecticide use patterns in the US

The types of synthetic insecticides applied to agricultural lands have fundamentally shifted

over the last two decades from predominantly organophosphorus and N-methyl carbamate

insecticides to substantially lower amounts of organophosphorus compounds along with a

substantial increase in neonicotinoids and a modest increase in pyrethroids (Fig 1). Petroleum

derivatives such as mineral oil and inorganics such as kaolin clay, lime-sulfur, cryolite, and

borates remain as some of the primary lower-toxicity chemical classes of insecticides in current

use, with little change over time.

These changes in use patterns reflect the outcome of US Environmental Protection Agency

(US EPA) re-registration of pesticides mandated by the Food Quality Protection Act of 1996

and the development of new pesticide chemistries targeting different receptors in insect physi-

ology to combat resistance in pest species [8]. These changes have almost certainly altered the

toxicity landscape for insects. In general, systemic pesticides, in particular the neonicotinoids,

are now one of the preferred or most readily available and economically efficient class of insec-

ticides used in conventional agriculture practices in rotation with carbamate, pyrethroid, and

organophosphorus-containing pesticide products, many of which are still registered for use in

the US. The organophosphorus and N-methyl carbamate classes of pesticides are highly toxic

to insects but are not especially persistent in the environment, with half-lives ranging from sev-

eral days to several weeks [9, 10]. Neonicotinoids, like organophosphates and N-methyl carba-

mates, are neurotoxicants that target the central nervous system by binding to nicotinic

acetylcholine receptors leading to overstimulation and paralysis. However, neonicotinoids

generally pose lower acute hazards to mammals and greater toxicity to insects due to their dif-

ferential binding abilities to invertebrate and vertebrate cholinergic receptors (Table 1) [11].

The nitro-substituted neonicotinoids, including imidacloprid, thiamethoxam, and clothiani-

din (which is also a metabolite of thiamethoxam), are the most frequently used neonicotinoids

and tend to have measurably greater persistence than the organophosphorus, carbamate, and

pyrethroid insecticides, with half-lives of 39 to 174 days in soils (see S1 Appendix for the

source information of these data). In addition, the neonicotinoids exhibit higher water solubil-

ity, leading to greater exposure potential for insects consuming pollen, nectar, guttation water,

or plant tissue or aquatic insects exposed to runoff containing these pesticides [12]. On the
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other hand, lipophilic chemicals would tend to accumulate more in the lipid components of

pollen and bee bread [13].

Although the neonicotinoids are highly toxic to insects, their effects are not confined to

insects. For example, recent analyses indicate that insectivorous bird declines observed in the

Netherlands and France appear to be associated with the use of neonicotinoid insecticides in

Fig 1. Change in use of insecticide chemical classes in the US (1992–2014). Data source: US Geological Survey

pesticide use estimates for the US [5–7].

https://doi.org/10.1371/journal.pone.0220029.g001

Table 1. Top ten most acutely toxic insecticides to honey bees by the oral route.

Active Ingredient Chemical Class Environmental Half-life (days) ‡ Honey Bee Oral LD50 (μg/bee)† Mammalian LD50� (mg/kg)

Fipronil Pyrazole 65 0.003 92 (II)

Imidacloprid Neonicotinoid 174 0.0037 424 (III)

Thiamethoxam Neonicotinoid 39 0.005 1,563 (III)

Abamectin Macrolide 1 0.0063 11 (I)

Clothianidin Neonicotinoid 121 0.0079 >5,000 (IV)

Deltamethrin Pyrethroid 21 0.011 >5,000 (IV)

Monocrotophos Organophosphorous 30 0.02 23 (I)

Mevinphos Organophosphorous 1 0.027 2.2–12 (I)

Beta-Cyfluthrin Pyrethroid 13 0.035 11 (I)

Dinotefuran Neonicotinoid 75 0.04 2,000 (III)

‡ Source of half-life data provided in S1 Appendix, and is predominantly obtained from field testing and/or soil persistence.

† All oral LD50s for these active ingredients are considered “highly toxic” (<2 μg/bee) using US Environmental Protection Agency’s criteria.

� Acute mammalian toxicity category is given in parentheses: I = Highly Toxic; II = Moderately Toxic; III = Slightly Toxic; IV = Not Acutely Toxic

Sources: Half-life data S1 Appendix, Honey bee LD50s S1 Appendix, and mammalian LD50s US Environmental Protection Agency.

https://doi.org/10.1371/journal.pone.0220029.t001
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the field or as seed treatments [14, 15]. Another review of the direct and indirect ecosystem

effects of insecticides linked impaired growth in fish to reductions in invertebrate prey due to

imidacloprid and fipronil use and linked reductions in lizard species to the effects of fipronil

on termite prey [3]. Surface waters in agricultural areas have been shown to contain concentra-

tions of neonicotinoids that exceed acute and chronic “invertebrate aquatic life benchmarks”

and toxicity thresholds (e.g., no observed effect concentrations or NOEC) for aquatic life [16,

17].

Long-term pest control often suffers from pesticide application since beneficial predatory

insects that consume pest insects are susceptible to insecticide exposure and often not as quick

to rebound [18–20]. Prophylactic use of neonicotinoids as seed treatments in corn, soy, and

other crops has risen in recent years; research has shown that this use has potentially damaged

predatory beneficial insect populations and disrupted integrated pest management (IPM) pro-

grams [21].

Honey bees as an indicator species of ecotoxicity

Honey bees are the most well studied indicator of insect health in US agricultural lands and

surrounding areas. Because they are economically important for crop pollination, honey pro-

duction, and wild plant pollination, the National Agricultural Statistics Service (NASS) tracks

colony counts and honey production in the US [22]. The honey bee (Apis mellifera) is generally

considered to be relatively sensitive to pesticides when compared to other bee species [23] and

has historically been used as an indicator for ecotoxicological testing. However, there has also

been some concern that the honey bee is not a good indicator for other bees or other beneficial

insects because of species differences in autecology and sensitivity [24]. Information is being

developed on the toxicity of insecticides to pollinators other than honey bees, notably bumble

bees (Bombus species) and several solitary bee species. However, to date, data are only available

for a small proportion of active ingredients, and tests have not been standardized. Heard et al.
developed a “standardized” toxicity test system to compare the relative sensitivity between bee

species in terms of a pesticide’s toxic potency and the time needed for the onset of toxicity

[24]. Although there were significant inter-species differences that varied through time, over-

all, the magnitude of these differences was generally within an acceptable two-fold range.

A recent meta-analysis of paired toxicity data from the same sources demonstrated a high

variability of sensitivity among bee species (Max/Min ratio from 0.001 to 2085.7) [23]. How-

ever, an extrapolation factor of 10 applied to honey bee toxicity endpoints was sufficiently pro-

tective in 95 percent of cases, and the honey bee tended (as shown by a median value of ratios)

to be slightly more sensitive than the paired test species. Sanchez-Bayo and Goka regressed

Bombus LD50 values against Apis LD50 values and concluded that the susceptibility of both

genera was similar when exposed by the oral route [25]. However, the honey bee was found to

be more sensitive than bumble bees by the contact route even after correcting for weight. It is

clear that the susceptibility of any one insect species could be substantially different from

another.

In our work, we use honey bee toxicity as an indicator for other bees and beneficial insects

in US agricultural land because the available data appear to demonstrate that the honey bee is

sensitive to the toxicity of chemical pesticides and has the most comprehensive data set avail-

able for insects. Until more data on other insects become available, the use of the honey bee as

an indicator for other species is a reasonable approach to show how insecticide toxicity load-

ings have changed over time.

The toxicity database on honey bees is compiled from test results submitted by pesticide

manufacturers (“registrants”), academic researchers, and other independent research

Acute insecticide toxicity loading on US agricultural land
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institutes. In order to register (license) a pesticide product in the US, applicants for registration

must satisfy several criteria specified in the Federal Insecticide, Fungicide, and Rodenticide

Act (FIFRA) including but not limited to the product’s toxicity in a variety of biological sys-

tems, its fate and impact on the environment, and for certain pesticide products, proof of its

performance (efficacy) [26]. Acute lethality (LD50) testing in honey bees is required under

FIFRA, however, field tests are only required on a rarely invoked case-by-case basis. Despite

these limitations and data gaps, the acute toxicity data base (LD50s) for honey bees is sufficient

to allow for a comparative screening analysis of acute insecticide toxicity loading in the

environment.

Assessing the acute toxicity loading of insecticides on US agricultural land

and surrounding areas

An assessment of changes in the types and amounts of insecticides used over time and consid-

eration of potential environmental impacts is illuminating. We present here a method for

assessing the Acute Insecticide Toxicity Loading (AITL) on US agricultural lands and sur-

rounding areas for terrestrial insects using toxicity data for the honey bee as an indicator for

all arthropods. We developed the AITL method in order to allow for a screening level analysis

of the historical loading of pesticides onto agricultural land and surrounding areas over the

past two decades and as a metric for evaluating their potential for causing detrimental impacts

on beneficial insects such as pollinators and other non-target species.

Recently, researchers in Great Britain published a comparable method [27]. In this work,

the authors investigated the occurrence of changes in the mass of pesticides used, the area

sprayed, and the total number of honey bees that could potentially be killed in Great Britain in

the period covering 1990 to 2015. Our AITL analysis is an internally consistent estimate,

which accounts for the total mass of toxic pesticides applied in the US and to specific crops

and the acute toxicity of each pesticide to the honey bee. However, unlike the previously pub-

lished method, the AITL also accounts for pesticide persistence in the environment (i.e. dissi-

pation rate in field). The AITL values were calculated by chemical class, by individual chemical

for the top chemicals contributing to the loading, and by crop groups as defined in the US

Geological Survey (USGS) pesticide use database [5–7].

We believe the incorporation of persistence (e.g., as measured by half-life in the field and/

or soil) of pesticides in this analysis is crucial to understanding the long-term and cumulative

ecosystem toxicity beyond the initial pesticide application to a crop. For example, although

organophosphorus insecticides are highly toxic to insects, they generally have half-lives less

than 30 days and do not present a long-term hazard for insects. This characteristic allows for

the mitigation of the risk to pollinators through application timing that avoids periods of

bloom. In contrast, neonicotinoid residues from seed treatments may be found in the soil for

months or even years after planting [12, 28]. For example, neonicotinoid insecticides applied

on coated seeds [18], mature citrus trees [29], or as soil drenches [12] on annual crops have

been found to be effective at killing insects more than 50 days from treatment or planting of

treated seeds. For perennial crops such as trees and vines, insecticidal efficacy can last for

months up to a few years under certain conditions [30].

To account for persistence, similar to the methods used to estimate the dose of a drug [31],

we estimated pesticide loading to the US agricultural land and surrounding areas as the area

under the curve of degradation/dissipation of pesticides over time. We assumed typical first-

order kinetics, which is used by US EPA to estimate pesticide degradation (see Methods).

The AITL analysis does not account for toxicity effects other than lethality or for synergistic

effects from co-application of different active ingredients. The analysis also does not provide

Acute insecticide toxicity loading on US agricultural land
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specific information on actual exposures experienced by insects in the environment nor on the

timing and mode of pesticide application or the dissipation of the pesticide into the environ-

ment. Therefore, the AITL is not a standard risk assessment method (i.e., estimating the proba-

bility of harm) based on quantified actual or predicted exposure.

We propose that the AITL could be used as a screening tool by providing year-to-year com-

parison of toxicity loading over time, measuring change in the potential toxicity of chemicals

released into the environment, predicting potential impacts of new insecticides being consid-

ered for registration, and for surveying insecticide use and impacts on agricultural land. In this

paper, we apply our AITL methodology to analyze how acute toxicity loading for insects in US

agricultural land and surrounding areas changed between 1992 and 2014 and to identify the

pesticidal chemical classes, the specific chemical active ingredients, and the crops that contrib-

uted most to these changes.

Methods

Pesticide use data

Pesticide use data were obtained from USGS and include foliar, soil, and seed treatment uses

of pesticides [5–7] from 1992–2014. USGS reports agricultural pesticide use at the county

level, which are based on farm surveys of pesticide use and estimates of harvested crop acres.

Data collected after 2014 were not included, since the data collection methods no longer incor-

porate pesticides used as seed treatments. USGS developed two estimates: the “EPest High”

estimate that interpolated for missing data and the “EPest Low” estimate which simply

assumed zero use if data were missing. We used the EPest High data for our assessment

because it provides a more complete and realistic quantitative description of pesticide use in

the US. It should be noted that data are missing from this data set for insecticides used on soy-

bean crops between 1998 and 2003 because this question was omitted in grower surveys

(USGS, personal communication). Also, pesticides for which no environmental half-life or

either oral or contact honey bee LD50 values were available were not included in the analysis.

Nationwide, data on acres treated with different pesticides do not exist for the time period

in question, but approvals for new use of systemic insecticides on cropland can be tracked via

tolerance decisions published in the Federal Register [32]. We determined acres that could

legally be treated using the USDA National Agricultural Statistics Service acres planted data

from the Census of Agriculture (Fig 2) [22]. By this measure, the acres of US cropland that

could be treated with neonicotinoids have increased every year, with large increases in poten-

tial use when approvals were obtained for high-acreage commodity crops like corn, soybeans,

cotton, wheat, and alfalfa. As noted previously, seed coatings comprise the largest contribution

to increasing use [33], although studies do not consistently demonstrate economic benefits to

farmers from insecticidal seed treatments [34].

Toxicity and environmental persistence data

In calculating the AITL, we used honey bee contact (often referred to in the literature as topi-

cal) and oral LD50 values as an indicator for pesticide toxicity to insects, referred to as AITLC

and AITLO, respectively. Honey bee LD50 values for registered insecticides were obtained from

a variety of sources and are provided in the supporting materials that accompany this publica-

tion (S1 Appendix). The database for LD50s is a compilation of data publicly available from

several databases managed by government agencies, academic institutions, and independent

research institutes worldwide. Values generated for the technical grade active ingredient were

used preferentially, although data obtained with formulations were used if technical grade

active ingredient LD50s were not available. Toxic degradates were included in the analysis if

Acute insecticide toxicity loading on US agricultural land
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the degradate was also a registered pesticide and the AITLC of the parent pesticide was greater

than or equal to (�) 0.1 percent of the total AITLC for the period 1992–2014. In practice, this

criterion excluded all but clothianidin produced from the degradation of thiamethoxam,

where 35.6 percent of applied thiamethoxam degrades to clothianidin within 90 days [35].

This portion of clothianidin was analyzed separately for source clarity.

Excluded from the analysis were known low acute toxicity inorganic pesticides (e.g., cryo-

lite, sulfur), low acute toxicity petroleum derivatives (e.g., mineral oil), microbial pesticides

(e.g., Bacillus thuringiensis), and low-use (<5,000 kg over the time period 1992–2014) pesti-

cides. The only high-use, potentially higher toxicity pesticide for which LD50 values could not

be found is phostebupirim (tebupirimphos), which excluded it from the analysis [36]. A range

of LD50 values for honey bees has been reported for some pesticide active ingredients, and for

some we have concerns over the quality of the data. In order to consistently and comparably

select LD50s to use in our analysis, we developed a set of explicit rules which we applied in the

selection process (Table 2). These rules were used independently for both contact and oral tox-

icity values.

Aerobic half-lives for pesticide chemicals were obtained from several sources. The preferred

source was the Pesticide Properties Database (PPDB) field half-life [37]. If a field half-life value

was not available in the PPDB, we used the soil half-life from this database. If any half-life

value for a chemical was not available from the PPDB database, the aerobic half-life from the

California Department of Pesticide Regulation Status Reports for the Pesticide Contamination

Prevention Act [9] was used.

Fig 2. Crop acreage in the US on which neonicotinoid insecticides could legally be used based on 2007 data for acres planted. Data source: US Federal Register

notices, US Environmental Protection Agency 1992–2017 [32].

https://doi.org/10.1371/journal.pone.0220029.g002
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Acute toxicity loading for insects

Our approach provides a general measure of acute toxicity loading of insecticides on US agri-

cultural land and surrounding areas, assuming insects are exposed to pesticides released to the

environment through direct contact with contaminated surfaces, water, or food or through

ingestion of contaminated food or water. Different insects will have different exposures

depending on their habitat, behaviors, and food sources; however, across years, exposures for

different types of insects will be comparable. However, as noted previously, this analysis does

not include actual or estimated exposure doses, nor does it factor in timing and mode of pesti-

cide application. Therefore, the AITL method would best be described as a screening analysis

that can identify or predict potential environmental impacts.

Honey bee lethality is the measure of toxicity used to assess AITL. This analysis was devel-

oped for both contact toxicity (AITLc) and oral toxicity (AITLo). The AITLC calculation pro-

vides the number of toxicity loading units (TLU) applied to a crop for each pesticide by

dividing the mass of chemical applied (in μg) by the honey bee contact LD50 (in μg/bee) (the

first term in Eq 1 below) to give the number of honey bee LD50’s released to the environment.

This value is then modified by the half-life of the chemical (in days), assuming exposure con-

tinues as long as the chemical is present, with degradation governed by the half-life of the

chemical and the dose expressed as the area under the curve of concentration versus time (sec-

ond term in Eq 1). Because the AITL values obtained are on the order of 1012–1018, a scaling

factor of 10−15 is included to scale the values for plotting the results. The same method of calcu-

lation is applied for AITLo (Eq 2).

AITLC ¼
mg pesticide

Honey bee contact LD50 ðmg=beeÞ

� �

�
half � life ðdaysÞ

ln2
� 10� 15 scaling factorð Þ

in LD50� daysð Þ ð1Þ

AITLO ¼
mg pesticide

Honey bee oral LD50 ðmg=beeÞ

� �

�
half � life ðdaysÞ

ln2
� 10� 15 scaling factorð Þ

in LD50� daysð Þ ð2Þ

Toxic degradates are known for some pesticide active ingredients. However, because envi-

ronmental half-lives were not available for most of these compounds they were not included in

the analysis. Those degradates with known toxicity (e.g., malaoxon, the degradate of malathion)

Table 2. Guidelines used in selecting LD50 values from multiple sources of data.

Rule

Number

Available LD50 Data Application

1 Single "exact" value reported Used unmodified in analysis

2 Single value reported but qualified as

"approximate" or "greater than" (>)

Used unmodified in analysis

3 Multiple "exact" values reported Arithmetic mean of all values used in analysis unless the

difference between the lowest and highest values was

greater than 10-fold and then the geometric mean is used

4 Multiple values reported but all qualified

as "greater than" (>)

Highest value used in analysis

5 Values reported but qualified as "less

than" (<)

Not used in analysis

https://doi.org/10.1371/journal.pone.0220029.t002
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might contribute to overall acute toxicity, although we determined that most known degradates

would contribute only a negligible amount to the overall toxicity loading of the parent com-

pound. The one exception as noted previously is clothianidin, which is a metabolite of thia-

methoxam; our analysis accounts for this conversion in the environment because it contributes

a measurable level of toxicity relative to the parent compound.

We estimated pesticide loading on agricultural land and surrounding areas as the area

under the curve of degradation/dissipation of pesticides over time, assuming typical first-order

kinetics, as recommended by US EPA in its guidance [38]. While degradation rates vary

depending on a number of factors, the first-order assumption is widely used for estimating

pesticide concentrations in the environment over time, and this appears to be an appropriate

assumption for the neonicotinoid insecticides [39, 40]. An example theoretical degradation

curve for imidacloprid, with a half-life of 174 days, is shown in Fig 3. In this example, on Day

Zero (application day), the available dose is 150 honey bee LD50s. On Day One, 149 honey bee

LD50s still remain, with the potential for concomitant toxic effects to insects. On Day 174, 75

honey bee LD50s remain in the environment. Ninety-seven percent of the imidacloprid is

degraded at five half-lives (870 days or 2.4 years). The total integrated environmental toxicity

loading level over time can be calculated as the area under the curve. Therefore, we define

AITL as the area under the curve in number of honey bee LD50-days, representing the total

exposure potential for arthropods (both terrestrial and aquatic) over the degradation period.

For pesticides used as seed treatments, our analysis assumes that insect exposure from con-

tact with treated crops would include dust drift to field-side plants during seed planting

(which can be considerable) resulting in both contact and oral exposure, and oral exposure

from consuming pollen, nectar, guttation droplets, or plant tissue from the treated crop [12].

In addition, application of the seeds to soil would result in exposure of the soil entomofauna

and migration to waterways would result in exposures for aquatic insects. This is a simplifying

assumption, which may or may not overestimate actual insecticide doses received by honey

bees and other beneficial insects from seed treatments, depending on the specific circum-

stances. Based on a “residue per unit dose” estimation, it appears that seeding results in higher

Fig 3. Theoretical degradation curve for imidacloprid following first-order kinetics with a half-life of 174 days.

https://doi.org/10.1371/journal.pone.0220029.g003
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contamination of insects than an equivalent spray application but, due to the lower per hectare

(or acre) rates of application for seed treatments, a comparable level of contamination in non-

target arthropods can be expected [41]. Because the AITL is intended to be used as a screening

level assessment for comparative and surveillance purposes, the inclusion of seed treatment

applications is a reasonable approach. Further refinement of this method or other analyses

would be required before making policy or regulatory decisions based on seed insecticide

treatments alone.

Results

AITL calculations by chemical class

A comparison of AITLs calculated for different pesticide groupings demonstrates that insecti-

cides contribute nearly 100 percent of the acute toxicity loading on honey bees and other bene-

ficial insects of pesticides applied to agricultural land and surrounding areas in the US

compared to herbicides, fungicides, and others (results not shown). Based on these prelimi-

nary calculations, we determined that the insecticides as a class represent the primary acute

toxicity loading to insects in the environment. Therefore, no further analysis was conducted

on the other pesticide groups.

Acute contact toxicity. AITL values were calculated for insecticidal active ingredients

comprising several chemical classes for both acute contact (AITLC) and acute oral (AITLO)

toxicity on agricultural land and surrounding areas in the US. Fig 4 presents the relative

AITLC values from 1992 to 2014 for six chemical classes as well as a miscellaneous category for

contact acute toxicity (LD50s). From 1992, the first year included in our assessment, to 2014,

the acute toxicity loading of pesticides in US agricultural land and surrounding areas based on

AITLC increased by 3.8-fold.

In the first decade of analysis, between 1992 and 2003, the AITLC is the result of predom-

inantly four classes of chemicals, the organophosphorus (43.4 percent on average), pyre-

throid (28.5 percent on average), pyrazole (9.4 percent on average), and neonicotinoid (11.1

percent on average) insecticides. Although neonicotinoids had been introduced in 1994,

our analysis indicates that the relative loading of this group of insecticides into the environ-

ment began to increase dramatically starting in about 2004 when the relative loading of the

organophosphorus insecticides began to decrease. In 2004, the relative contribution of the

neonicotinoids (27.8 percent) based on AITLC surpassed that of the organophosphorus

insecticides (22.0 percent) for the first time. By 2014, the relative contribution of neonicoti-

noids on the environmental toxicity loading via contact was 6.5 times greater than that of

the organophosphorus insecticides. Pyrethroid insecticides contributed to the overall

AITLC relatively consistently from 1992 to 2014 (28.5 percent on average, range of 26.5 to

36.1 percent). Pyrazole insecticides (fipronil) contributed a smaller proportion of overall

acute contact toxicity loading between 1992 and 2014 (6.2 percent) with the largest contri-

bution occurring in a 12-year span from 1998 to 2010 (11.7 percent on average, range of 4.4

to 23.0 percent)[42], when its use on corn was cancelled [42]. The other insecticide classes

analyzed contributed relatively small amounts to the overall AITLC of insecticide use on the

environment.

Acute oral toxicity. On the basis of the acute oral toxicity loading (AITLO), the acute tox-

icity loading of insecticides in agricultural land and surrounding areas in the US was 48 times

higher in 2014 compared to 1992. The AITLO shows a vastly different trend in terms of relative

chemical classes over the same 23 year time period compared to AITLC (Fig 5). Although the

organophosphorus insecticides comprised the majority of the acute toxicity loading between

1992 and 1994 (69 percent on average), from 1995 to 2014 the neonicotinoids comprise the

Acute insecticide toxicity loading on US agricultural land
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majority (greater than 55 percent) of the overall AITLO on the environment. The pyrazoles

contributed on average 7 percent of the total AITLO between 1998 and 2010 (range of 27 per-

cent in 2002 to 1.7 percent in 2010), which is consistent with the analysis for acute contact tox-

icity (Fig 4). The relatively greater potential impact of the neonicotinoids on the environment

based on the oral toxicity data is due to the relatively long environmental persistence of these

chemicals and their high level of toxicity (i.e., relatively low LD50s) to honey bees and other

insects via the oral route (Table 1).

Overall toxicity. In terms of absolute toxicity loading, the combined AITLC for all chemi-

cal classes for acute contact toxicity increased by a factor of about 3.9 between 1992 and 2014

with the neonicotinoids contributing 60 percent of the total toxicity loading in 2014. However,

the potential impact of the neonicotinoids is far more dramatic when looking at the absolute

toxicity loading of all classes of insecticides based on the oral route of exposure. As noted

above, the combined AITLO for acute oral toxicity from all classes of insecticides increased by

Fig 4. Contact acute insecticide toxicity loading (AITLC) by chemical class, 1992–2014.

https://doi.org/10.1371/journal.pone.0220029.g004
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48-fold from 1992 to 2014, with the neonicotinoids representing nearly 99 percent of the total

acute oral toxicity loading in 2014.

AITL calculations for active ingredients

In order to determine which active ingredients contributed the majority of acute toxicity load-

ing on agricultural land and surrounding areas in the US between 1992 and 2014, we calcu-

lated AITLs for individual chemicals representing the most toxic, persistent, and heavily used

active ingredients in several chemical classes. AITLC and AITLO calculations for individual

chemicals are presented in Figs 6 and 7, respectively.

Acute contact toxicity. With respect to AITLC from 1992 to 2014, imidacloprid (20.0 per-

cent) and chlorpyrifos (18.6 percent) comprise the two individual active ingredients with the

most potential impact (Fig 6) over the 23-year period. Other individual insecticide active

ingredients contributing a large proportion to the overall acute contact toxicity loading

include: bifenthrin (11.2 percent), clothianidin (7.6 percent), cypermethrin (6.0 percent),

fipronil (5.5 percent), cyfluthrin (3.8 percent), permethrin (2.7 percent, not shown in Fig 6),

thiamethoxam (2.5 percent), spinosad (1.7 percent, not shown in Fig 6), and clothianidin from

thiamethoxam (1.5 percent). The remaining “other” insecticide active ingredients combined

comprise 11.6 percent of the total acute contact toxicity loading over the 23-year period.

Fig 5. Oral acute insecticide toxicity loading (AITLO) by chemical class, 1992–2014.

https://doi.org/10.1371/journal.pone.0220029.g005
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The AITLC for imidacloprid from 1995 to 2014 appears to demonstrate three defined time

periods where there is stepwise increase in relative AITLC contribution. Prior to 1995, imida-

cloprid does not contribute relevant TLU to the overall total. The first phase from 1995 to 2003

indicates that imidacloprid contributed an average of 1,595 ± 344 TLU per year for an average

contribution of 11.5 percent. The second phase from 2004 to 2009 indicates that imidacloprid

contributed an average of 3,441 ± 765 TLU per year for an average contribution of 18.5 per-

cent. Finally, the third phase of increased imidacloprid use (2010–2014) indicates that this

active ingredient contributed an average of 10,288 ± 1,140 TLU per year for an average contri-

bution of 32.6 percent. The other two neonicotinoids that contribute to the total AITLC (sum-

mation of TLU for all active ingredients for all years) in the 23-year period are thiamethoxam

and clothianidin (both as a registered active ingredient and as a degradation product). The

increasing trend in use and contribution to the total AITLC begins in about 2004 for both

chemicals, peaking in 2014 (the last year in our analysis) at 9.1 and 2.5 percent contribution to

the total, respectively. The post-2004 increases in TLU described above is consistent with the

increase in use of neonicotinoids for seed treatment at that time.

On the other hand, the chlorpyrifos AITLC remains relatively constant from year-to-year

over the 23 year time period with an average of 3,490 ± 810 TLU. However, when computing

the contribution of chlorpyrifos to the total AITLC from year-to-year, there is a steady

Fig 6. Contact acute insecticide toxicity loading (AITLC) by active ingredient, 1992–2014.

https://doi.org/10.1371/journal.pone.0220029.g006
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downward trend of relative contribution. The peak contribution of chlorpyrifos to the total

AITLC is in 1993 (42.3 percent) and the lowest relative contributions occur from 2011 to 2014

(approximately 8 percent per year), with a gradual decline over the 23 year period.

Fipronil, a pyrazole insecticide, contributed a large proportion to the overall AITLC from

1998 to 2005, with an average contribution of 14.5 ± 3.0 percent over this time period. After

2005, the use and contribution of fipronil declined rapidly because its conditional registration

for use on corn was cancelled in 2010 [42], so that by 2012, the contribution was minimal (less

than 0.5 percent). Four pyrethroid active ingredients bifenthrin, permethrin, zeta cyperme-

thrin, and cyfluthrin, also contribute to the overall AITLC, contributing 11.2, 2.7, 6.0, and 3.8

percent over the 23-year period respectively. Individually, these active ingredients show some

consistency of use and toxicity loading over the time period. Permethrin shows a steady down-

ward trend after 2001, whereas cyfluthrin and zeta cypermethrin remain somewhat consistent

from year-to-year. Bifenthrin, on the other hand, shows a large jump in use and toxicity load-

ing contribution after 2009, with average percent contributions from 1992 to 2009 of 6.3 ± 2.6

Fig 7. Oral acute insecticide toxicity loading (AITLO) by active ingredient, 1992–2014.

https://doi.org/10.1371/journal.pone.0220029.g007
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and from 2010 to 2014 of 17.0 ± 2.4. This increase is largely due to increases in use of bifen-

thrin on corn, cotton, and soybeans[5–7].

Acute oral toxicity. With respect to AITLO, chlorpyrifos follows a similar trend from

1992 to 2014 as seen for acute contact toxicity with a more dramatic decrease in relative contri-

bution over this time period (Fig 7). Over the 23-year period, the AITLO for chlorpyrifos aver-

aged 676 ± 157 TLU per year with more toxicity contribution from 1992 to 2000 (841 ± 94

TLU) per year than from 2001–2014 (569 ±76 TLU) per year. However, the relative AITLO

shows a steady decrease from the peak contribution of 28.6 percent in 1993 to the lowest con-

tributions of less than 0.5 percent from 2010 to 2014. After 2003, the relative contribution of

chlorpyrifos to the total AITLO averaged only 0.8 percent per year. For all 23 years combined,

chlorpyrifos contributed 1.4 percent (15,545 TLU) to the overall AITLO.

The trend in AITLO from 1992 to 2014 for the neonicotinoids (Fig 7) is more complicated

than seen for the AITLC (Fig 6). The contribution of imidacloprid begins in 1994 and contin-

ues through 2014, loading 502,699 TLU (46.0 percent of the total TLU loading for all insecti-

cides) into the ecosystem over this time period. In the 21-year period of imidacloprid use,

there is a steady and marked increase in the absolute contribution of this active ingredient

from year-to-year. In 1994, the AITLO was 750 TLU, by 2003 it was 10,124 TLU and in 2014 it

was 69,831 TLU. The relative contribution of imidacloprid to the total annual AITLO over the

same 21-year time period shows more variation. From 1995 through 2004, the average relative

contribution of imidacloprid to AITLO was 64.1 ±7.8 percent followed by a decrease in relative

contribution from 2005 to 2014 to 43 ± 6 percent.

The decline in the relative contribution of imidacloprid after 2004 is the result of the intro-

duction of two other neonicotinoids, thiamethoxam and clothianidin, after 2000 and 2003,

respectively. As the use of these two neonicotinoids increased, the relative contribution of imi-

dacloprid to the total AITLO decreased. However, it is important to understand that the abso-
lute contribution of the sum of these active ingredients has actually increased dramatically

over this time period, and the trend suggests that this increase in acute toxicity loading on US

agricultural land and surrounding areas will continue after 2014 as more acres of cropland and

additional crops are treated with these insecticides. The absolute AITLO of thiamethoxam

increased from 315 TLU in 2002, to 3,882 TLU in 2008, to 7,700 TLU in 2014. The absolute

toxicity loading of clothianidin is more pronounced, with a steady and sharp annual increase

observed from 2004 to 2014. Clothianidin as an active ingredient contributed 8,928 TLU in

2004, 23,352 in 2008, and 80,083 TLU in 2014. Total clothianidin toxicity loading (active ingre-

dient plus degradation product) is 10,632 TLU in 2004, 28,949 TLU in 2008, and 91,185 TLU

in 2014. The absolute contribution of thiamethoxam and clothianidin (total) to the total

AITLO of all insecticides from 1992 to 2014 was 500,527 TLU or 45.8 percent of the total.

The three neonicotinoid insecticide active ingredients combined accounted for 1,003,226

TLU from 1994 to 2014, and for the entire 23-year period, contributed 91.8 percent of the total

AITLO of all insecticides in the US. By contrast, fipronil, which is the next most widely used

insecticide active ingredient from 1992 to 2014, contributed 3.1 percent. As noted earlier,

chlorpyrifos, which is the fifth most widely used insecticide active ingredient, contributed only

1.4 percent of the total AITLO in the US over the 23-year period.

AITL calculations on the basis of agricultural crops

The primary crops responsible for the preponderance of AITLC summed over the 23-year

period are corn (33.3 percent) and soybeans (15.2 percent), followed by cotton (13.9 percent),

vegetables and fruit (12.9 percent), orchards and grapes (11.4 percent), alfalfa (4.5 percent),

and wheat (4.0 percent) (Fig 8). Comparably, for AITLO, the primary crops of importance are
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corn (43 percent) and soybeans (19.3 percent), followed by vegetables and fruit (13.3 percent),

cotton (9.0 percent), orchards and grapes (9.0 percent), and wheat (3.9 percent) (Fig 9). Collec-

tively, crops other than those listed above (“other” crops) comprise 4.7 and 2.6 percent of the

AITLC and AITLO, respectively. Although there is some consistency in the relative contribu-

tions of the crops to the acute contact and oral toxicity loading, the absolute toxicity loading is

much greater for oral acute toxicity. Overall, the total AITLO for crops is 1,094,226 TLU

whereas for AITLC the total is 383,456 TLU, or approximately one-third of the AITLO, which

is likely due to the greater toxicity of these insecticides via the oral route.

The USGS data set includes pesticides used as foliar sprays, seed treatments, and soil appli-

cations, but does not provide a breakdown of pounds used via different application methods.

For corn, soy, and cotton, seed treatments are a primary route of application and comprise the

largest contribution to increasing use [33]. Foliar uses are increasing. In 2014, there were 33

registered pesticide products containing imidacloprid for use on corn in the US; four of them

approved for foliar uses [32]. For soybeans, there were 85 currently registered imidacloprid

products with 54 approved for foliar uses. For cotton, there were 93 currently registered imida-

cloprid products with 63 approved for foliar uses.

According to the USGS, between 1998 and 2003, the survey methods used to collect the raw

data for pesticide use on crops did not include a field for collecting data on insecticide applica-

tion to soybean crops. Therefore, the data between 1998 and 2003 for soybeans are for

Fig 8. Contact acute insecticide toxicity loading (AITLC) by crop, 1992–2014.

https://doi.org/10.1371/journal.pone.0220029.g008
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herbicide application only. In 2004, USGS resumed surveying insecticide use on soybeans

because it became a higher priority. The impact of this data gap is not known, but it likely

would lead to a quantifiable underestimate of the relative total toxicity loading of insecticide

use on soybean crops from 1992 to 2014. Interpolating the missing data is beyond the scope of

our work.

Discussion and conclusions

Potential impacts of insecticide loading

A decline of pollinating insects is occurring worldwide [43], with negative effects for pollina-

tion of many domestic crops [44]. Several interacting factors appear to be involved, including

declines in natural and diverse habitat and food supplies resulting from agricultural land use

intensification, the prevalence of parasites and pathogens, exposure to chemical pesticides

used predominantly in agriculture, and environmental impacts due to changes in climate [43,

45]. The impact of pesticides, in particular the neonicotinoids, on pollinator declines has

received the most attention recently. For example, researchers in Great Britain used a compa-

rable methodology to ours to show that potential honey bee deaths (the total number of LD50

doses applied to arable farmland) has increased six-fold to approximately 3 x 1016 bees over

the past two decades in that country [27]. The authors attributed this result to the increasing

use of neonicotinoids from 1994 to 2016. Likewise, despite its simplicity, the AITL analysis

Fig 9. Oral acute insecticide toxicity loading (AITLO) by crop, 1992–2014.

https://doi.org/10.1371/journal.pone.0220029.g009
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presented in this paper provides additional information in support of the hypothesis that the

use of neonicotinoids on agricultural land and surrounding areas may play a primary role in

the decline of insects in the US.

The AITL calculations might also be used as an analytic tool to predict future impacts of

newly registered pesticide products by inputting anticipated pesticide use and toxicity to

insects, then accounting for the half-life to estimate the relative potential increase in toxic load-

ing to beneficial insects and other non-target species in the ecosystem before the product is

registered. As a predictive tool, the AITL could be helpful in identifying regrettable substitu-

tions before products are registered. In agriculture, a regrettable substitution might occur

when a new pesticide product, which is developed to replace a presumably more toxic and

more risky product already on the market, actually causes greater harm to the environment

and non-target species than the product it is meant to replace. The AITL analysis presented

here introduces the concern that the increased use of the neonicotinoid class of insecticides,

presumably to replace the organophosphorus, carbamate, and pyrethroid classes of insecticides

could be a case of regrettable substitution in relation to the health of beneficial insects at least

and potentially to other non-target species in the environment as well. In other words, this tox-

icity loading analysis indicates that the neonicotinoids are potentially more harmful to pollina-

tors and other beneficial insects than originally predicted relative to the insecticides it they are

presumably replacing.

We have shown that the introduction and increasing use of the neonicotinoids from 1992

to 2014 is the primary reason for the dramatic increase in toxicity loading, in relation to polli-

nators and other beneficial insects and non-target arthropod species on US agricultural lands

and surrounding areas. This is the result of a combination of increased use, relative toxicity,

and greater persistence of neonicotinoids compared to chemical active ingredients used two

decades ago. For example, in the US, imidacloprid is registered for use to control sucking

insects, some chewing insects including termites, soil insects, and fleas on pets [46]. It may be

applied to structures, crops, soil, and as a seed treatment as well as a topical treatment for ani-

mals. In 2016, there were 134 approved residue tolerances for imidacloprid, including crops

and other applications [47]. In the 21-year period of imidacloprid use (starting in 1994), there

is a steady and marked increase in the absolute contribution of this active ingredient from

year-to-year reflecting its increased use over this time span (see Results). In 1994, the AITLO

was 750 TLU, by 2003 it was 10,124 TLU and in 2014 it was 69,831 TLU. If the use of neonico-

tinoids continues to increase as the use of other chemical insecticides decreases, then the abso-

lute acute toxicity loading of imidacloprid would likely also continue to increase beyond 2014,

particularly if there is approval of new crop uses of these insecticides.

Although acute insecticide toxicity loading from topical expoures (AITLC) presents a

potential threat to beneficial insects and other nontarget species, the acute insect toxicity load-

ing from oral exposures (AITLO) might present an even greater potential threat. This is due to

the higher level of toxicity (i.e., lower LD50s), increased persistence (i.e., longer half-lives), and

the potential for greater relative exposure via the oral route. In absolute terms, over the time

period from 1992 to 2014, the total AITLC is 383,456 TLU, whereas the total AITLO is

1,094,226 TLU, which is nearly three times greater than the AITLC. We found that three neoni-

cotinoid insecticide active ingredients (imidacloprid, thiamethoxam, and clothianidin) com-

bine to contribute 91.8 percent of the total AITLO of all insecticides in the US. As noted

earlier, chlorpyrifos, which is the fifth most widely used insecticide active ingredient, contrib-

uted only 1.4 percent of the total AITLO in the US from 1992–2014.
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Limitations of the AITL method

Pesticide use by pounds (kilograms) applied or acres treated does not provide a comprehensive

estimate of toxicity loading to an ecosystem. Factors such as persistence, toxicity, application

methods and timing, exposure routes, and mechanisms of dissipation from the application site

all influence the net toxicity experienced by insects in the ecosystem. The data needed to do an

analysis that incorporates all of these factors is largely unavailable.

As noted previously, the AITL analysis does not account for trends in pesticide application

in seed treatments nor does it quantify the actual or estimated exposure dose of an insecticide

after seed treatment. In a risk-based approach, omitting these factors may result in an overesti-

mation of hazard potential to pollinators and other non-target species from exposure to insec-

ticides applied as seed treatments. Therefore, a more refined approach would be required to

estimate actual hazard impacts from seed treatments, in particular for the use of neonicoti-

noids. This level of refinement is difficult but it would provide a more accurate assessment of

the impact of these insecticides on US agricultural land and surrounding areas. Furthermore,

other factors that contribute to toxicity loading, such as the application method and the change

in the types of application methods used over time, were not evaluated in this analysis. Differ-

ent pesticide application methods (e.g., spray, soil drench, granules, coated seeds) result in dif-

ferent exposure potential for aquatic versus terrestrial ecosystems, which is not assessed in this

analysis. Because our analysis does not account for the timing of insecticide application, the

AITL does not identify “peaks” and “ebbs” in toxicity over time relative to the exact time and

mode of application. Instead, our analysis assumes a steady state from one application to

another. This simplifying assumption does not affect comparisons of insecticide toxicity load-

ing from year-to-year but it does diminish the method’s ability to identify specific time periods

when toxicity loading might be the most damaging to the ecosystem in US agricultural land

and surrounding areas.

As is, on the one hand the AITL analysis likely overestimates acute toxicity hazard to polli-

nators and other beneficial insects because of the simplifying assumptions used. On the other

hand, the AITL analysis likely underestimates actual toxicity hazard because it does not

account for sublethal effects, movement of pesticides offsite, or potential synergistic impacts of

pesticides used in combination in the field. Nevertheless, as a screening tool, the results of an

AITL can assist regulators in identifying chemicals of concern for further evaluation.

Other toxicity concerns

Sublethal toxicity. We were limited to using acute lethal toxicity (LD50) as an endpoint in

our AITL analysis because sublethal toxicity studies of pesticides in honey bees are currently

not required for registration in the US, although US EPA has published guidance [48]. There-

fore, the LD50 dataset on honey bees is the only insect toxicity data available for a large number

of pesticides registered for use in the US, which allowed us to compare historical trends for all

relevant insecticide classes. Lethality is at the extreme end of the toxicity spectrum and using

mortality as the endpoint for the AITL analysis or for risk assessment is a blunt instrument for

evaluating the impact of pesticides on the ecosystem. Because actual toxicity risks to pollinators

and other non-target species would be higher using sublethal toxicity doses, the impacts of pes-

ticides on beneficial insect populations and other non-target species is underestimated when

limited to using lethal doses.

The AITL analysis can be modified for the input of sublethal toxicity doses when data exist.

For some of the neonicotinoids, the dataset for sublethal effects is adequate to allow for a com-

parison of the toxic effects of these insecticides at high dose levels to the more sensitive suble-

thal effects at lower doses. However, the availability of a robust database for pesticide active
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ingredients is the exception, not the rule. Very few studies are available regarding the sublethal

effects of organophosphorus, carbamate, and organochlorine pesticides on insects, so it is diffi-

cult to do a comparative analysis with these chemicals.

In the case of honey bees, reported sublethal effects from neonicotinoid exposure in labora-

tory and field studies include impaired reproduction, altered immune function, inability to

navigate effectively, and behavioral changes in essential colony activities leading to decreased

colony health and survival [4]. We present a listing of sublethal toxicity values (in units of ng/

bee) taken from representative laboratory and field studies in the published literature of neoni-

cotinoids in honey bees in the supporting materials that accompany this paper (S2 Appendix).

The dose levels reported for lethality (LD50) when compared to the lowest observed effect con-

centration (LOEC) for sublethal toxicity are noticeably higher (Table 3). For imidacloprid, the

most heavily used of this class of insecticides, the lethal dose for the oral route is 37 times the

sublethal LOEC and for contact toxicity the lethal dose is 320 times the sublethal LOEC. In

addition, imidacloprid is also one of the more environmentally persistent pesticide active

ingredients used today, enhancing the potential for sublethal exposures.

The results of an insecticide toxicity loading analysis of sublethal toxicity would likely demon-

strate that the absolute sublethal TLU for the neonicotinoids would be noticeably higher than the

AITL, indicating a greater overall toxicity loading on agricultural land and surrounding areas

when compared to the acute TLU calculated from using the LD50 values. The relative toxicity

loading contribution of the different neonicotinoids might also change, although it would be dif-

ficult to predict the outcome without doing the calculations. When sublethal toxicity data exist,

the calculation of the toxicity loading using these values rather than LD50s would be informative.

Pesticide movement offsite. One of the limitations of our AITL analysis is that, while we

account for total pesticides applied to agricultural land using pesticide use estimates published

by USGS (see Methods), we cannot quantify insecticide toxicity loading in the impact zone

beyond the boundaries of agricultural land or indeed the greater likelihood of in-field exposure

to highly systemic and persistent insecticides such as neonicotinoids. This omission will tend

to underestimate the toxicity loading of pesticides on land surrounding agricultural fields and

in surface water and other waterways distal to the fields. Including persistence in this evalua-

tion of overall toxicity is important because persistent pesticides have a greater potential and

tendency to move offsite unchanged into surrounding fields, land, surface water, and other

waterways outside of the agricultural fields where they are directly applied [12, 49].

Insects in an ecosystem can be exposed to insecticides through a number of different routes.

Pesticides run off into surface waters with precipitation or irrigation, leach into groundwater,

and drift as dusts or on soil particulates from the application site in the air, affecting insects

Table 3. Comparison of honey bee LD50’s with sublethal lowest observed effect concentrations (LOEC) for neonicotinoids and related compounds.

Active Ingredient Field/Soil Half-life (days) LD50 Contact (μg/bee) LD50 Oral (μg/bee) LOEC Contact (μg/bee) LOEC Oral (μg/bee)

Acetamiprid 3 8.1 15 0.1� 0.1�

Clothianidin 121 0.044 0.0079 0.0022� 0.0005–0.0009

Dinotefuran 75 0.03 0.04 0.0075� NA

Imidacloprid 174 0.032 0.0037 0.0001� 0.0001–0.0015

Sulfoxaflor 2.2 0.38 0.15 NA NA

Thiacloprid 18 26 18 NA 0.0013�

Thiamethoxam 39 0.02 0.005 0.0001–0.004 0.0004–0.002

Half-life and LD50 data transferred from S1 Appendix, and LOEC data from S2 Appendix.

� No range available.

NA Not available

https://doi.org/10.1371/journal.pone.0220029.t003
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both on and near the application site. Direct insecticide application exposes insects on the

crop being treated as well as those in near-field vegetation [50] waterways [16, 17], and pooled

surface water [51]. Soil-borne larvae or adult insects can be exposed through direct sprays,

granular or soil-drench applications, or through migration of residues remaining in the soil

from the planting of coated seeds. Insects consuming pollen or nectar, or sucking or chewing

insects consuming plants both on and near the application site are exposed through oral con-

sumption. Aquatic species living a substantial distance from the application site can be exposed

through drift and runoff from treated fields that contaminates waterways [52].

While the toxic effects of an insecticide are highest at the application site where the concen-

trations are highest, dissipation pathways such as irrigation or rainwater runoff to surface

waters can carry toxicologically significant amounts of pesticides into waterways. For example,

surface water contamination has been shown to negatively impact beneficial insects and other

non-target species [14, 53]. Because the neonicotinoid insecticides are highly water soluble

and persistent, their potential for off-site impacts on aquatic organisms is high.

Pesticides in airborne field dust, which is generated during and shortly after application to

agricultural fields, also presents a potentially important source of exposure to beneficial insects.

In particular, neonicotinoid-treated seeds (e.g., soybean) contain high concentrations of neoni-

cotinoids, which when mixed with field dust, can move offsite in the air depositing on sur-

rounding land, flowers, and other vegetation potentially exposing pollinators and other non-

target insects [52, 54, 55]. Additionally, soils in fields treated with long half-life insecticides year

after year may increase in toxicity over time, as the insecticide accumulates in the soil [56].

Synergistic effects. This analysis is also limited by the fact that virtually all environmental

toxicology data on pesticide active ingredients are for a single chemical only and not for a com-

bination of chemicals. However, pesticide products applied to agricultural fields in the US are

frequently used in combination with other products and chemicals with the potential for con-

current and/or sequential exposure to more than one chemical on a regular basis. Further-

more, environmental exposures to chemicals occur via a variety of pathways (e.g., contact with

wildflowers and other vegetation, water, soil, air, and bioaccumulation in the food chain),

often with multiple exposure routes (e.g., oral and contact). Generally, beneficial insects such

as honey bees are exposed to combinations of pesticide products when they contact pollen and

nectar and other vegetation in the fields [57, 58].

Combinations of active ingredients and other chemicals (the so-called “inerts”) in pesticide

products have been measured in honey bees, hive wax, wildflowers, and pollen in the US and

Europe [59–63]. From these and other studies it has been shown that mixtures of neonicoti-

noids in combination with a broad range of other pesticide active ingredients and other chemi-

cals have been reported in bees, beehive matrices (pollen, nectar, honey, wax), and food

sources, in some cases with as many as 121 to 150 different chemicals. There is also growing

evidence that mixtures of chemicals such as insecticides, interactions of bee pathogens and

parasites, and combinations of these stressors can interact together in additive or in a synergis-

tic manner to increase morbidity and mortality in bees [63–74].

Generally, the outcome of mixing chemicals and/or biological agents together is nearly

impossible to predict with the limitations in capability and throughput of the currently avail-

able toxicity testing methods. The lack of information and knowledge about the behavior and

toxicity of chemical mixtures in biological systems is important to acknowledge, as is the spe-

cific impact of these synergistic relationships to overall bee and colony health as well as other

beneficial insects and non-target species. The AITL assessment presented here is based on the

chemical and toxicological properties of individual chemical active ingredients and does not

account for chemical mixtures. Therefore, any interactions of chemicals in a mixture, beyond

perhaps simple additivity, would be underrepresented in our estimates.
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Conclusions

Based on our analysis of the Acute Insecticide Toxicity Loading (AITL) of pesticides applied to

US agricultural lands and surrounding areas from 1992 through 2014, using honey bees as an

indicator species to assess toxicity to a wide range of terrestrial insects, we conclude:

1. The toxicity loading of insecticides on agricultural land and surrounding areas has

increased by approximately 50-fold over the last two decades producing both direct and

indirect effects on associated ecosystems. Although current-use pesticides are applied at

lower application rates per acre, they are more toxic to insects and persist in the environ-

ment for up to several weeks or longer, thus creating a persistent toxicity load in plants,

soils, and surface waters that is substantially higher than that experienced by insects 20 or

more years ago.

2. The neonicotinoid insecticides, in particular imidacloprid, clothianidin, and thia-

methoxam, are primarily responsible for this increased toxicity loading, accounting for

61percent (via contact toxicity) to 99 percent (via oral toxicity) of the total toxicity loading

of all insecticides in 2014. Oral exposures appear to be of greater concern because of the rel-

atively higher toxicity (i.e. low LD50s) and greater likelihood for exposure from residues in

pollen, nectar, guttation water, and other environmental media. However, because the

AITL does not incorporate quantified exposures, a statistical comparison of toxicity loading

via different exposures routes is beyond the scope of this paper.

3. The crops most responsible for the increase in AITL are corn and soybeans, with particu-

larly large increases in relative soybean contributions to AITL between 2010 and 2014.

4. The total oral AITL of all insecticides applied over the 23-year period is an order of magni-

tude greater than the total contact AITL.

5. This increase in toxicity loading is consistent with the reduction in beneficial insect and

insectivorous bird populations observed in recent years. However, a more refined analysis

of risk, including quantified exposures and factoring of application methods would be

required to demonstrate a clear association.

6. The introduction and increased use of the neonicotinoids in the late 1990s appears to be an

example, in hindsight, of a regrettable substitution that might have been avoided had proper

predictive analytical tools been available and applied prior to the approval of the registra-

tion of these pesticide products.

7. FIFRA mandates that an applicant for the registration (licensing) of a new pesticide product

must show that the use of a pesticide as specified “will not generally cause unreasonable

adverse effects on the environment” [75]. Based on our screening level analysis of toxicity

loading of insecticides on US agricultural land and surrounding areas, it is our scientific

opinion that existing regulations for the registration of new pesticide active ingredients in

the US are not yet adequate to effectively prevent the introduction of new chemicals that

are detrimental to beneficial insect species such as the pollinators and other non-target

species.

8. Using methodology such as the AITL screening analysis early in the registration process of

new active ingredients or in approving new agricultural uses would provide useful metrics

with which to predict catastrophic harm to the environment resulting from the application

of chemical pesticides on agricultural land. Expansion of the testing requirement to include

sublethal toxicity testing in honey bees (or other surrogate arthropods) would provide a
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more refined estimate of the true risk of the introduction of new pesticide chemicals. Fur-

thermore, implementation of a comprehensive surveillance and use reporting system for

pesticides that have the potential to disrupt the ecosystems on agricultural lands and sur-

rounding areas, including pesticide use as seed coatings would additionally enhance regula-

tors’ abilities to assess and prevent potential adverse effects before ecosystems are damaged.
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