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As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their
accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the
clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then
discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and
aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus
accelerate the translation of cell therapy into clinical practice.

1. Introduction

Mesenchymal stromal cells (MSCs) are plastic-adherent
fibroblast-like cells [1] that have self-renewal and multidiffer-
entiation potential and strong proliferative ability [2–4].
Bone marrow mesenchymal stromal cells (BMMSCs) are
widely recognized in tissue regeneration. However, there
are several challenges to obtaining BMMSCs, including pain,
morbidity, and low harvested cell number. Thus, alternative
sources for BMMSCs must be identified [5, 6]. Dental-
derived MSCs have unique clinical advantages, such as easy
access and remarkable tissue reparative/regenerative poten-
tial, and they have been proposed as ideal candidates for
MSCs-based tissue regeneration [7–9].

Tissue regeneration and maintenance are dependent on
MSCs [10]. However, a barrier to realize the therapeutic
potential of MSCs is their intrinsic heterogeneity, which is
also observed for dental-derived MSCs [11–13]. Cell subpop-
ulations within heterogeneous MSCs cultures vary in their
regenerative potential, including proliferation potential
[14], differentiation [15], and immunomodulatory ability
[16]. In MSCs therapy, cells are the active substances in med-
icines. Although variation is inevitable, our limited ability to

detect and control heterogeneity poses challenges for the pro-
duction of MSCs therapies. Heterogeneity has been cited as a
possible factor contributing to the variability in treatment
outcomes of MSCs therapies in clinical trials [17–19]. Varia-
tion in the regenerative potential among cell subsets in MSCs
cultures may confound trial results and slow or arrest the
translation of MSCs therapy into clinical practice [20].

Cell-to-cell variation in MSCs function is initiated in vivo
in the MSCs niche [21], is evident within single-cell-derived
MSCs colonies, and is exacerbated by replicative stress dur-
ing in vitro cultivation [22]. A focus of ongoing research on
dental-derived MSCs heterogeneity is to elucidate key
markers. Cellular key markers can be used to noninvasively
and nondestructively isolate specific cell subpopulations
from MSCs cultures for clinical applications and research
[23]. It may also help to regulate the regenerative potential
of dental-derived MSCs. Besides, recent studies suggest that
epigenetic alterations in cells occur in response to intrinsic
cellular inheritance and external environmental stimuli to
maintain the homeostasis of cells and niche cells [24, 25].
Epigenetic modification stimulates potentially reversible
changes to gene expression, thus presenting exciting oppor-
tunities for clinical dental-derived MSCs interventions. Here,
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we first reviewed the heterogeneity of dental-derived MSCs.
Then, we discussed the key markers and epigenetic modifica-
tions that support regeneration potential.

2. Dental-Derived MSCs and
Their Heterogeneity

The oral region contains a variety of distinct MSCs popula-
tions, including mesenchymal stromal cells of dental pulp
(DPSCs) [26], mesenchymal stromal cells of apical papilla
(SCAPs) [27], mesenchymal stromal cells of human exfoli-
ated deciduous teeth (SHEDs) [28], mesenchymal stromal
cells of periodontal ligament (PDLSCs) [29], dental follicle
cells (DFCs) [30], mesenchymal stromal cells of gingiva
(GMSCs) [31], and mesenchymal stromal cells of human
tooth germ (TGSCs) [32]. These dental-derived MSCs have

less cytoplasm and are spindle-shaped, and they are positive
for CD13, CD29, CD44, CD73, CD90, CD105, CD106,
CD146, CD166, and CD271 but negative for CD3, CD8,
CD11b (or CD14), CD15, CD19 (or CD79α), CD33, CD34,
CD45, CD71, CD117, and HLA-DR [26, 27, 29, 33–35]. Since
oral tissues develop from migrating cranial cells, dental-
derived MSCs display ready availability and high prolifera-
tion ability [36, 37]. Moreover, they possess multidifferentia-
tion potential and can differentiate into adipocytes [32, 38],
chondrocytes [39, 40], osteoblasts [41, 42], neuronal cells
[43–45], and endothelial cells [46, 47] (Table 1).

Issues related to cell heterogeneity are getting more and
more attention in the field of MSCs research. A more com-
prehensive understanding of the variability of transplantable
populations will help maximize the potential of any MSCs
therapy [48]. According to the International Society for

Table 1: Characteristics of dental-derived MSCs.

Cell type Origin Multipotentiality (in vitro) Application References

DPSCs Dental pulp tissue

Osteo/odontogenic Immunoregulation

[213–217]

Adipogenic Angiogenesis

Chondrogenic
Nerve injure treatment

Vascular

Neurogenic Dentin/pulp complex formation

SHEDs
Human exfoliated
deciduous teeth

Osteo/odontogenic Angiogenesis

[46, 218–220]
Adipogenic

Dental/pulp complex formationChondrogenic

Neurogenic

SCAPs Apical papilla

Osteo/odontogenic Dentin/pulp complex formation,
spinal injure treatment

Angiogenesis
[221, 222]Adipogenic

Neurogenic

PDLSCs Periodontal ligament

Osteo/cementogenic Immunosuppressive effects

[8, 223–225]
Adipogenic

Periodontal diseaseChondrogenic

Neurogenic

DFCs Dental follicle

Osteo/cementogenic Periodontal tissue

[54, 226, 227]

Odontogenic Angiogenesis

Adipogenic

Pulp tissue formationChondrogenic

Neurogenic

TGSCs
Apical papilla in the
developing tooth germ

Adipogenic

Liver disease
Dental defects

[32, 228, 229]

Osteogenic

Neurogenic

Adipogenic

Chondrogenic

Endothelial

GMSCs Gingiva

Osteogenic
Nerve regeneration,
mandibular defects [31, 43, 230]

Chondrogenic

Neurogenic

Adipogenic Immunomodulatory properties
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Cellular Therapy, dental-derivedMSCs meet all the minimum
criteria that defineMSCs [49]. Even so, this definition does not
necessarily identify a homogeneous population of MSCs.
Instead, it describes a group of heterogeneous cells that exhibit
variability at the level among tissues of origin, individual
donors, clonal subpopulations, and single cells [12, 50, 51].

2.1. Tissue and Donor Heterogeneity and Functional
Variation. Every tissue or organ has its evolutionary origin.
The composition of a tissue, in terms of cell types, stands
behind the overall functionality. The heterogeneity of cell
types increases throughout the evolution in every functional
entity [52]. A large amount of evidence shows that MSCs
from different tissues have differences in marker profiles,
gene expression patterns, and tendency to differentiate into
specific cell types [38, 53–55]. GMSCs were isolated and
characterized as 90% derived from neural crest cells (cranial
neural crest cell-derived GMSCs, N-GMSCs) and 10%
derived from the mesoderm (mesoderm GMSCs, M-
GMSCs). N-GMSCs express a high level of Fas-ligand (FasL),
which induces T cell apoptosis and immune tolerance [56].
In comparison with M-GMSCs, N-GMSCs are more likely
to differentiate into chondrocytes and neural cells in vitro
and induce T-cell apoptosis [57]. Moreover, N-GMSCs can
be induced into neural crest stem-like cells via the activation
of RhoA-ROCK/Yes-associated protein 1 (YAP1) signaling
[58]. These results indicate that N-GMSCs possess a superior
capacity for immune regulation and differentiation than M-
GMSCs. Indeed, there is mounting evidence that cultured
cells retain a “memory” of their previous environments
[59–61]. The highly heterogeneous nature of DPSCs is
believed to be due to multiple progenitor cell populations
existing in different locations of the dental pulp that may
have different proliferation and differentiation abilities [62].
Different niches have been found in situ associated with the
vasculature, within the pulpal stroma, in the subodontoblast
layer, and among peripheral nerve-associated glial cells [63].

In addition, even from the same tissue source, dental-
derived MSCs show tremendous variability between donors
[13, 64, 65]. Similarly, as donor age increases, MSCs availabil-
ity, self-renewal capacity, and differentiation potential have
been reported to decline. Many animal and human studies
have established the effects of increasing donor chronological
age on the impairment of dental-derived MSCs regenerative
capabilities [66–69]. In studies that involved small numbers
of clones obtained from multiple donors, differences in gene
expression among clones obtained from multiple donors
might have reflected the different genetic backgrounds of
the donors, rather than phenotypic differences between mul-
tipotent MSCs and committed progenitor cells [70]. Analysis
of gene expression profiles among clones obtained from a
single donor may allow researchers to eliminate the differ-
ences in genetic backgrounds that are associated with the
use of multiple donors [71].

2.2. Clonal Heterogeneity and Functional Variation. Further
study revealed that the clonal variation of dental-derived
MSCs superimposes the difference among tissue- and donor-
dependent differences. For example, DPSCs from multiple

colonies can reach more than 120 population doublings
(PDs), while single-colony-derived DPSCs can proliferate only
up to 10-20 PDs [13]. Approximately two-thirds of DPSCs
derived from single colonies can form the same amount of
dentin as multicolony DPSCs. The other one-third generated
only a limited amount of dentin. Studies have demonstrated
that each colony is originally derived from the clonal expan-
sion of a single progenitor cell [72]. However, there is growing
appreciation that cellular phenotype can be highly variable,
even within a clone [22]. Within the same colony, DPSCs of
different cell shapes and sizes may be observed. If seeded on
dentin, some DPSCs will be transformed into odontoblast-
like cells with polarized cell bodies and a cell process extending
into the existing dentinal tubules [73, 74]. When SHEDs
clones derived from a single colony are transplanted into
immunodeficient mice, only a quarter of the clones have the
same potential to generate ectopic dentin-like tissue equivalent
to that produced by multicolony-derived SHEDs clones [28].
Thus, cell-to-cell variation exists at every level, where the het-
erogeneity between clones has been noticed, and this must be
taken into account when using this cell type in any basic scien-
tific research or clinical application [22].

Functional variation at multiple levels extends to the
molecular and epigenetic status of MSCs [71, 75]. Young
et al. reported the ability of murine DPSCs clones derived
from single cells to differentiate into immature neuron-like
cells and oligodendrocyte-like cells in vitro. Significantly,
only DPSCs clones with high nestin mRNA expression levels
successfully differentiated into microtubule-associated pro-
tein 2 (Map2) and neurofilament- (NF-) positive neuron-
like cells [50]. Alraies et al. identified differences between
high (A3) and low (A1 and A2) proliferative capacity DPSCs
populations, even from the same pulpal tissue sample [76].
They found that high proliferative capacity DPSCs exhibited
longer telomeres but lacked CD271. It suggested that prolif-
erative and regenerative heterogeneity is related to contrast-
ing telomere lengths and CD271 expression between
DPSCs populations. A highly dynamic histone modification
response was evident in mineralizing DFCs, but not in
DPSCs, and the latter cell type expressed higher levels of
the pluripotency-associated genes octamer-binding tran-
scription factor- (OCT-) 4 and NANOG [77]. The authors
concluded that the two neural crest-derived MSCs popula-
tions were distinguished by epigenetic repression of dentino-
genic genes and the dynamic histone enrichment in DFCs
during mineralization. It highlighted the essential role of epi-
genetic mechanisms in the terminal differentiation of dental-
derived MSCs and lineage commitment.

Such functional variability may provide an opportunity
to identify MSCs subpopulations that are most suitable to
drive a series of tissue restoration [75]. Moreover, it moti-
vates ongoing work to reveal molecular or epigenetic markers
of MSCs differentiation potential, as discussed later in this
review.

3. Key Markers of Dental-Derived MSCs

For the application of dental-derived MSCs in tissue engi-
neering and regenerative medicine, it is important to

3Stem Cells International



optimize their isolation and preserve their phenotypic prop-
erties. The presence of key markers in the MSCs niche will
help to break down the heterogeneous barrier of dental-
derived MSCs [20, 78]. This section summarizes the key mol-
ecules that regulate dental-derived MSCs proliferation, dif-
ferentiation, immunomodulation, and aging in the MSCs
niche. This study will provide key targets and a certain theo-
retical basis for maintaining MSCs characteristics and pro-
moting MSCs-mediated tissue regeneration. Table 2 lists
some key markers in the field of dental-derived MSCs.

3.1. Key Markers of Proliferation Potential. Dental-derived
MSCs are a reliable cell resource for tissue regeneration,
and they need to be expanded largely in vitro, which requires
cells to have superior proliferation and self-renewal potential
[79]. It is necessary to explore the key markers related to pro-
liferation to provide useful information for obtaining high-
quality MSCs.

STRO-1 is a marker that recognizes a trypsin-insensitive
epitope on perivascular cells, and it has been used to isolate
MSCs populations from human and rat dental pulp and has
shown enhanced proliferation potential [80]. Ranga Rao
et al. found a gradual decrease in STRO-1 and transcription
factor expression (OCT4, NANOG, and nestin) with an
increase in the passage number of GMSCs [14]. A previous
study showed that the STRO-1+/CD146+ SCAPs demon-
strated higher colony-forming unit (CFU) efficiency and
much higher expression of several embryonic and neural
markers (stage-specific embryonic antigen-3 (SSEA-3);
Nanog; OCT3/4; and nestin) than nonsorted SCAPs and
the STRO-1-/CD146+ subpopulation [81]. Moreover,
STRO-1+ selected DPSCs show effective hard tissue forma-
tion when seeded into a calcium phosphate ceramic scaffold
[82, 83]. These results suggested that STRO-1+ cells may rep-
resent a very promising adult MSCs source with enhanced
multipotent MSCs properties.

Alkaline phosphatase (ALP) is abundantly expressed in
undifferentiated cells, such as induced pluripotent stromal
(iPS) cells/embryonic stromal (ES) cells, preimplantation
embryos (2-cell embryos to blastocysts (inner cell mass))
and embryonic ectoderm at the egg-cylinder stage, primor-
dial germ cells (PGCs), and immature spermatogenic cells
[84]. ALP is also a marker of neuronal progenitor cells,
human myogenic progenitor cells (also called “pericytes”),
and BMMSCs [85–87]. Inada et al. found that among the
five primarily isolated SHEDs, two exhibited higher degrees
of ALP activity and higher OCT-3/4 expression. Further-
more, these two lines proliferated faster than the other
three lines and were easier to program into iPS cells [88].
Moreover, Yu et al. found that the ALP+ subpopulation of
PDLSCs had higher levels of STRO-1 and CD146 than
ALP- cells, even after a high number of passages. ALP+ cells
expressed significantly higher levels of stemness-associated
genes, NANOG, OCT-4, and sex-determining region Y-
box- (SOX-) 2 than ALP- cells [89]. In summary, ALP+

cells may represent a population with a higher proliferation
rate than ALP- cells. Further studies are needed to under-
stand the roles of ALP in stemness in other dental
subpopulations.

Nuclear factor I-C (NFIC) is regarded as a key regulator
of tooth development. NFIC deficiency causes aberrant
odontoblasts and abnormal dentin and periodontium forma-
tion, and it ultimately leads to short molar roots [90]. Zhang
et al. found that overexpression of NFIC increases cell prolif-
eration in SCAPs [91]. NFIC silencing could prolong the G1
phase of the cell cycle in SCAPs [92]. Moreover, Zhang et al.
demonstrated that NFIC can markedly promote the prolifer-
ation of rat DFCs [93].

3.2. Key Markers of Differentiation Potential. The multipo-
tent properties of dental-derived MSCs make them a valuable
cell source for regeneration [6]. Osteogenic differentiation,
chondrogenic differentiation, and adipogenic differentiation
are the minimum requirements for the differentiation ability
of MSCs. In addition, vascularity and innervation are two
properties that cannot be sacrificed when considering tissue
regeneration. In particular, a limitation of the apical foramen
is that it requires the ingrowth of nerve fibers and blood ves-
sels from apical tissues when regenerating parts of the tooth
[94].

CD146 is a cell adhesion molecule and an integral mem-
brane glycoprotein at the intercellular junction. It was origi-
nally identified as a tumor marker for melanoma [95].
Additionally, CD146 is aMSCs marker that is associated with
angiogenic, neurogenic, and mineralization abilities [96].
CD146+ BMMSCs possess high migration ability and are
stromal cells that support hematopoiesis [97]. Matsui et al.
found that CD146+ DPSCs have higher mineralization ability
than nonseparated cells, CD146- cells, and CD146+/- cells.
Moreover, transplanted CD146+ cells generated clear den-
tin/pulp-like structures in immunocompromised beige mice.
Immunohistochemical studies detected dentin matrix
protein-1 (DMP1), dentin sialophosphoprotein (DSPP),
and human mitochondria in transplanted DPSCs [98]. This
result suggests that CD146+ cells may exhibit a high osteo-
blastic potential, which is consistent with previous studies
[99].

CD271 or p75 neurotrophin receptor (NTR) is a well-
conserved transmembrane pro-neurotrophin/neurotrophin
receptor that plays critical roles in the maintenance of nerve
cell viability [100]. CD271 has been proposed to be a neural
MSCs marker that defines a cell population with neurogenic
potential in the adult brain subventricular zone (SVZ) [101]
and subgranular zone (SGZ) [102]. CD271 is expressed at
low levels (<10%) in DPSCs. CD271+ DPSCs have higher
expression levels of SOX1 (neural precursor cell marker),
SOX2 (cell pluripotency marker), and nestin (neural stem
cell marker) than CD271- DPSCs. This result suggests that
CD271+ DPSCs may denote a subpopulation with greater
neurogenic potential [103]. In addition, Alvarez et al. used
a combination of the three surface markers CD51/CD140α,
CD271, and STRO-1/CD146 to isolate homogenous popula-
tions of PDLSCs. CD271+ cells had a higher dental/osteo-
genic potential and led to the greatest upregulation of
osteogenic marker genes, like distal-less homeobox 5
(DLX5), runt-related transcription factor 2 (RUNX2), and
bone gamma-carboxyglutamate protein (BGLAP) during
the induction process [15].
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CD34 is a transmembrane phosphoglycoprotein that was
discovered for the first time in hematopoietic stromal cells
(SCs). Clinically, it is related to the selection and enrichment
of hematopoietic SCs during bone marrow transplantation
[104, 105]. In addition, CD34 is assumed to act as a negative
marker for MSCs [49]. Pisciotta et al. found that STRO-1+/c-
Kit+/CD34+ DPSCs showed a much higher efficiency of com-
mitment compared to STRO-1+/c-Kit+/CD34- DPSCs, which
was demonstrated by the expression of β-III tubulin and the
shift to a neuron-like shape following the induction [106].
Moreover, Carnevale et al. demonstrated that STRO-1+/c-
Kit+/CD34+ DPSCs expressed Schwann cell markers, such
as p75NTR, glial fibrillary acidic protein (GFAP), and S100
calcium binding protein B (S100B), after incubation in
appropriate induction media. The integration of the graft of
the DPSCs-collagen scaffold complex into a sciatic nerve
defect in rats contributed directly to nerve fiber regeneration
and myelination in vivo [107].

Wnt inhibitory factor 1 (WIF1) belongs to a family of
secreted modulators of Wnt proteins. A recent study sug-
gested that WIF1 may enhance the dentinogenic differentia-
tion potential in SCAPs via its regulation of OSX. Moreover,
in vivo transplantation experiments revealed that dentino-
genesis in SCAPs was enhanced by WIF1 overexpression
[108]. Other members of the Wnt modulator family, includ-
ing secreted frizzled-related proteins (sFRPs), play different
roles in Wnt signaling depending on the cell subtype and
model used [109–112]. Guanine nucleotide binding proteins
(GNAIs) are a family of regulatory proteins responsible for
molecular signal transduction of extracellular signals to the
intracellular environment [113]. GNAI3 has been demon-
strated to play a role in regulating various cellular processes,
including proliferation, cytokinesis, apoptosis, migration,
and invasion [114–116]. GNAI3 is primarily expressed in
Hertwig’s epithelial root sheath (HERS) and the surrounding
mesenchyme in mice. Moreover, knockdown of GNAI3
could inhibit the proliferation, migration, and odonto/osteo-
genic differentiation of CD90+/CD44+/CD45-/CD14- SCAPs
by inactivating c-Jun N-terminal kinase (JNK) and
extracellular-signal regulated kinase (ERK) signaling path-
ways [117].

3.3. Immunomodulatory Key Markers. MSCs-based immu-
nomodulation may play an essential role in the regeneration
of different tissues. The immunomodulatory and tropic
capacity of transplanted MSCs contributes to the creation
of a microenvironment that promotes the activation of
endogenous tissue repair mechanisms, and it is now consid-
ered to be the major mechanism underlying the therapeutic
effects of these cells in vivo [118]. Similar to MSCs from other
tissues, dental-derived MSCs possess a strong immunomod-
ulatory ability [6, 119, 120]. Potential mechanisms underly-
ing the immunomodulatory effects of MSCs include
enzyme expression, soluble factor production, and cell-to-
cell contact [121].

STRO-1+ cells in MSCs have significantly enhanced
inhibitory effects on lymphocyte proliferation compared with
STRO-1- cells; thus, STRO-1+ cells impart stronger immuno-
regulatory effects than STRO-1- cells [122, 123]. A previous

study showed that the STRO-1+ CD146+ subpopulation of
PDLSCs inhibit T cell proliferation by suppressing the
expression of the nonclassical major histocompatibility
complex-like glycoprotein CD1b on dendritic cells [124].
The priming of dental-derived MSCs with interferon-gamma
(IFN-γ), tumor necrosis factor- (TNF-) α, and interleukin-
(IL-) 1β usually enhances their immunosuppressive ability
and could be considered a feedback mechanism that dampens
exacerbated immune responses [121]. A recent study of
human DPSCs showed that their ability to inhibit peripheral
blood mononuclear cell (PBMC) proliferation and B cell
immunoglobulin production was significantly enhanced by
IFN-γ and inhibited by anti-IFN-γ antibodies [125].

3.4. Key Markers of Cellular Aging. MSCs aging is a negative
process from the perspective of cell-based therapies because
all advantageous functions may become limited with age.
Dental-derived MSCs show clear losses in proliferation
capacity with increasing donor age, and they also show donor
age-related decreases in maximal life span and proliferation
rate [126]. Under standard cell culture conditions, DFCs
exhibit cellular senescence after being expanded by more
than 14 cell passages [127]. With aging, the proliferation
and osteogenic/adipogenic/chondrogenic differentiation
potential of PDLSCs decreased while the apoptosis of
PDLSCs increased. Moreover, the immunosuppressive abil-
ity of PDLSCs decreased with aging [128].

Signs of senescent cells include cell growth arrest, DNA
damage foci, and senescence-associated β-galactosidase
expression, and identifying these markers represents a reli-
able method for detecting senescent cells [129]. Horibe
et al. isolated DPSCs subsets based on their migratory
response to granulocyte colony stimulating factor (G-CSF)
(MDPSCs) from young and aged donors. In long-term cul-
ture, MDPSCs showed a small age-dependent increase in
senescence-associated β-galactosidase (SA-β-gal) production
and senescence markers, including p16, p21, IL-1β, IL-6, IL-
8, and Groα. The regenerative potential of aged MDPSCs was
similar to that of young MDPSCs in an ischemic hindlimb
model and an ectopic tooth root model [130]. Autologous
transplantation of MDPSCs with G-CSF in pulp-ectomized
teeth in dogs augmented the regeneration of pulp tissue. Fur-
thermore, MDPSCs from aged donors were as potent as those
from young donors [131]. Notably, MDPSCs showed no sig-
nificant age-related changes in biological properties, such as
stability, regenerative potential, and senescence marker
expression.

The Hippo pathway is a newly discovered signaling net-
work that is evolutionarily and functionally conserved and
has been shown to play a critical role in controlling organ size
by regulating both cell proliferation and apoptosis [132, 133].
As a Hippo signaling transcriptional coactivator, YAP plays
pivotal roles in MSCs fate and organ size control [134]. Jia
et al. discovered that activated YAP promotes proliferation,
accelerates the cell cycle, inhibits apoptosis, and delays senes-
cence in human PDLSCs [135]. Knockdown of YAP inhibits
the proliferation activity and induces apoptosis of human
PDLSCs with the involvement of the Hippo pathway and
shows crosstalk with the Erk and Bcl-2 signaling pathways
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[136]. Transforming growth factor- (TGF-) β1 is a potent
stimulator of tissue regeneration and is abundant in the bone
matrix [137]. Salkin et al. found that TGF-β1 transfection has
a positive effect on proliferation and the cell cycle and pre-
vents cellular senescence and apoptosis. They suggested that
TGF-β1 overexpression with gene transfer may improve the
biological potential of DPSCs and could represent an option
instead of transmission of recombinant protein into cells
from the outside [40]. However, the effects of TGF-β1 associ-
ated with cell senescence are controversial. A previous study
demonstrated that treatment with TGF-β1 induced PDLSCs
senescence, which is characterized by increasing in
senescence-associated β-galactosidase activity and both p16
and p21 expression. Furthermore, TGF-β1 treatment dem-
onstrated the capacity to induce the production of reactive
oxygen species (ROS). Of note, the addition of a ROS scaven-
ger successfully rescued TGF-β1-induced PDLSCs senes-
cence [138]. These results indicated that the regulatory
mechanism of TGF-β1 in cell senescence is quite different
in various cells.

4. Epigenetic Modifications in Dental-
Derived MSCs

Epigenetic modifications regulate gene expression without
changing the DNA sequence and affect cell development
and differentiation. DNA methylation, histone posttransla-
tional modification, and noncoding RNA play primary roles
in epigenetic mechanisms [139]. The rescuing potential of
MSCs is under the control of different kinds of signals,
including the environment, which epigenetically regulate
their differentiation processes [140]. Recently, the epigenetic
modifications that regulate dental-derived MSCs were
revealed; thus, the use of epigenetics to improve the thera-
peutic potential of dental-derived MSCs has been
highlighted. Therefore, summarizing these multiple epige-
netic modifications associated with the differentiation pro-
cess and determining how these modifications could be
reversed are of paramount importance. Table 3 lists some
epigenetic biological targets in the field of dental-derived
MSCs.

4.1. DNA Methylation. DNA methylation is an essential epi-
genetic mechanism that plays a vital role in the development
and differentiation of early embryos by regulating gene
expression patterns. The global DNAmethylation landscapes
of early-life human tissues, such as oocytes, blastocysts, or
placenta, are characterized by specific genome-wide hypome-
thylation compared to differentiated tissue postimplantation
[141]. A previous study found that SHEDs have partially
methylated domains (PMDs) that are close to the inner cell
mass (ICM) and placental methylome. The methylation sta-
tus of related genes changes under inflammation. For exam-
ple, 44% of normal dental pulp tissues show complete
methylation, while 93% of inflamed dental pulp tissue sam-
ples contain IFN-γ genes that are only partially methylated
or unmethylated. In addition, IFN-γ transcription does not
occur in the pulp tissue that shows per-methylation [142].

DNA methylation refers to the process in which methyl
groups are transferred to cytosine bases of DNA and con-
verted into 5-methylcytosine [143]. This process is catalyzed
by DNA methyltransferases (DNMTs). The DNA methyl-
transferase family includes DNMT1, DNMT2, DNMT3a,
DNMT3b, and DNMT3L. Several studies suggest that DNA
demethylation levels are correlated with the osteogenesis
capacity of MSCs and that DNMT inhibitors could downreg-
ulate DNA methylation to improve osteogenesis [144, 145].
5-Azacytidine (5-aza), a DNMT inhibitor, works by integrat-
ing into the DNA structure to prevent DNA from interacting
with DNMTs, and it also stimulates DNMT degradation
[146]. Liu et al. found that high glucose conditions increased
the DNA methylation levels of PDLSCs and blocked osteo-
genic differentiation ability. 5-Aza-2′-deoxycytidine (5-aza-
dC) could rescue the osteogenic differentiation capacity of
PDLSCs through activation of the canonical Wnt signaling
pathway and the upregulation of osteogenesis-related genes
(ALP, OCN, osteopontin (OPN), and OSX) [147]. Upon
treatment with 5-aza-2′-deoxycytidine (5-aza-CdR), the
odontogenic differentiation capacity of DPSCs is enhanced.
5-Aza-CdR upregulates odontogenic markers (DSPP and
DMP1) and transcription factors (RUNX2, DLX5, and
OSX), increases ALP activity, and accelerates calcified nodule
formation [148]. In addition, myogenic differentiation is also
improved after treatment with 5-aza. Nakatsuka et al. used 5-
aza to investigate the myogenic differentiation potential of
mouse DPSCs. DNA demethylation induced by 5-aza and
forced expression of myogenic differentiation 1 (Myod1)
upregulated muscle-specific transcription factors, such as
myogenin and paired box 7 (Pax7) [149].

The ten-eleven translocation (Tet) family is a group of
recently identified demethylases capable of modifying DNA
by hydroxylating 5-methylcytosine (5-mC) to 5-
hydroxymethylcytosine (5-hmC) [150]. Three Tet family
members (Tet1, Tet2, and Tet3) show distinct expression
patterns depending on the cell or tissue type and develop-
mental stage [151, 152]. This discovery revealed a new mech-
anism by which the Tet enzyme regulates DNA
demethylation. Yu et al. found that downregulation of Tet1
and Tet2 led to the hypermethylation of the Dickkopf
WNT signaling pathway inhibitor 1 (DKK-1) promoter, acti-
vated the WNT signaling pathway, and increased the expres-
sion of FasL, and it also improved the immune regulation
ability of PDLSCs. Importantly, Tet1/Tet2-downregulated
PDLSCs showed a significantly increased therapeutic effect
on DSS-induced colitis mice [153]. This result indicated that
the Tet/DKK-1/FasL cascade may serve as a promising target
for enhancing PDLSCs-based immune therapy.

4.2. Histone Posttranslational Modifications. The posttransla-
tional modification of histones mainly occurs at the N-end of
the tail protruding from the nucleosome core, and this mod-
ification plays an essential role in chromatin remodeling and
gene expression regulation. In detail, distinct histone amino-
terminal modifications can generate synergistic or antagonis-
tic interaction affinity for chromatin-associated proteins,
which in turn dictate dynamic transitions between transcrip-
tionally active or transcriptionally silent chromatin states
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[154]. The more common histone modifications include
methylation, acetylation, phosphorylation, and ubiquitina-
tion. Among them, histone acetylation has been widely stud-
ied in the field of dental-derived MSCs [155]. Acetylation is
the only modification that directly causes a structural relaxa-
tion of chromatin by neutralizing the charge of histones
[156]. The balance of the acetylation process depends on
the role of histone acetyltransferases (HATs) and histone
deacetylases (HDACs). HATs cause histidine acetyltransfer-
ases to add negatively charged acetyl groups, which weaken
the interaction between DNA and histone residues, while
HDACs remove acetyl groups [157].

The vital role of the acetylation process in maintaining
the balance between osteoblastic bone formation and osteo-
clastic bone resorption is crucial for bone tissue homeostasis
[158]. The acetylation of H3K14 (histone H3, lysine 14) and
H3K9 (histone H3, lysine 9) can promote osteogenic differ-
entiation of dental-derived MSCs [159]. HDACs are down-
regulated during the osteogenic differentiation of dental-
derived MSCs [160, 161]. The use of HDAC inhibitors effec-
tively increases the acetylation of H3K9K14 (histone H3,
lysines 9 and 14) and promotes the expression of bone-
related genes [162, 163]. Valproic acid (VPA), a short-chain
fatty acid, can inhibit class II HDACs. Paino et al. demon-
strated that HDAC2 silencing in DPSCs leads to increased
expression of OPN and bone sialoprotein (BSP) and downre-
gulates the mRNA levels of osteocalcin (OCN), which resem-
bles the effect of VPA [164]. This result suggests that the
specific inhibition of an individual HDAC by RNA interfer-
ence could only enhance a single aspect of osteoblast differ-
entiation, resulting in selective effects. It has been reported
that the glucocorticoid receptor (GR) plays a key role in this
regulation. HDAC2 binds to GR and inhibits its transloca-
tion into the nucleus; however, when HDAC2 is inhibited
by VPA, GR can enter the nucleus, thereby affecting the
expression of OCN [165].

Histone deacetylase 6 (HDAC6) is a class IIb HDAC with
a unique duplicated deacetylase domain and ubiquitin-
binding domain [166]. Interestingly, HDAC6, as a critical
regulator of PDLSCs aging, can deacetylate p27Kip1. Loss-
of-function experiments suggested that pharmacologic inhi-
bition of the deacetylase activity of HDAC6 accelerated
PDLSCs senescence and impaired MSCs activities, which
showed reduced osteogenic differentiation and diminished
migration capacities; thus, HDAC6 may be a new target for
intervention in the aging process of PDLSCs [167].

4.3. Noncoding RNAs. Noncoding RNAs (ncRNAs) play an
essential role in histone modification, gene silencing, and tar-
geting DNA methylation. They are divided into short
ncRNAs, with lengths of less than 30 nucleotides, and long
ncRNAs, with more than 200 nucleotides [168]. ncRNAs reg-
ulate gene expression through transcription and posttran-
scriptional control. The overall activity and functional
balance of gene networks are maintained by lncRNA/miR-
NA/mRNA regulatory interactions [169]. For example, a
total of 89 lncRNAs, 1,636 mRNAs, and 113 miRNAs were
differentially expressed after DPSCs differentiation. Simulta-
neously, an array of signaling pathways, including

phosphoinositide-3-kinase–protein kinase B, TGF-β, and
Wnt, were also affected. The lncRNA SNHG7 was shown to
inhibit the odonto/osteogenic differentiation of DPSCs when
silenced [170].

MicroRNAs (miRNAs) are vital regulators that promote
the intrinsic properties of MSCs, such as their self-renewal,
pluripotency, and differentiation capacities, and miRNAs
have a length of approximately 20-22 nucleotides. MiRNAs
extensively regulate cell functions by affecting the abundance
and translation efficiency of homologous mRNAs. Single
miRNAs can target numerous gene sites on mRNA tran-
scripts. In contrast, targeting multiple miRNAs can jointly
target a single mRNA [171–173]. MiRNAs are believed to
be novel regulators in the differentiation of dental MSCs by
targeting related genes. During osteogenic differentiation,
the expression of 116 miRNAs was altered significantly in
PDLSCs. The upregulated miRNAs were miR-654-3p and
miR-4288 and the downregulated miRNAs were miR-34c-
5p, miR-218-5p, miR-663a, and miR-874-3p. The prediction
of target genes suggested that these significantly altered miR-
NAs may impact the osteogenic differentiation of PDLSCs by
targeting osteogenesis-related genes [174].

Long noncoding RNAs (lncRNAs) (>200 nucleotides)
are the largest ncRNA transcript family in the human
genome and participate in transcription and posttranscrip-
tional and epigenetic regulation of genes [175]. lncRNAs
can fold into complex secondary or higher-order structures,
and they show greater potential and versatility for gene regu-
lation than miRNAs [176]. lncRNAs can act as RNA decoys
and miRNA target site decoys. They bind to specific combi-
nations of regulatory proteins and play essential roles in
chromatin modification and processing of mRNA targets. A
recent study showed that lncRNAs can cross-talk with
mRNAs through competition for shared miRNA-response
elements. In this circumstance, lncRNAs function as compet-
itive endogenous RNAs (ceRNAs), which correspond to
miRNA sponges or antagomirs, to affect the expression levels
and activities of miRNAs, thereby repressing miRNA targets
and causing an additional level of posttranscriptional regula-
tion [177]. Previous studies have shown that lncRNAs regu-
late gene expression and function by competing with
miRNAs for binding to target mRNAs [178]. Two thousand
and one hundred sixty-two lncRNAs were differentially
expressed between PDLSCs and GMSCs. These lncRNAs
could be potential regulators, especially those with higher
fold change (FC), such as lncRNA-n336841, lncRNA-
n341766, and lncRNA-n333720 [179].

Circular RNAs (circRNAs) are widely distributed in
organisms and represent a type of ncRNA with a cyclic cova-
lent structure that has a high degree of evolutionary conser-
vation and tissue cell expression specificity [180, 181].
circRNAs are more stable than linear RNAs due to their
resistance to ribonuclease digestion [182]. Chen et al.
revealed the circRNA expression profile in DPSCs during
odontogenic differentiation. 43 upregulated circRNAs and
144 downregulated circRNAs were found in the process of
dental differentiation. These differentially expressed genes
are rich in signaling pathways that regulate the pluripotency
of MSCs, such as the Wnt signaling pathway and the TGF
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signaling pathway [183]. Recently, circRNAs were also
shown to function as ceRNAs to regulate the effect of miR-
NAs on their target genes during cell differentiation. Previous
studies have found that circRNA cerebellar degeneration-
related protein 1 (CDR1) competitively inhibits miR-7 and
stimulates the expression of growth differentiation factor-
(GDF-) 5, thereby promoting the osteogenic differentiation
of PDLSCs. This process activates the Smad1/5/8 and p38
MAPK differentiation pathways [184]. In addition, CDR1as
acted as a miR-7 sponge to activate the ERK signaling path-
way and thus mediated the inhibitory effect of lipopolysac-
charide (LPS) on cell proliferation. Knockdown of CDR1as
promotes the inhibition of PDLSCs proliferation induced
by LPS [185].

5. Conclusions

Among the regenerative strategies, dental-derived MSCs-
based techniques have demonstrated particular promise
[186, 187]. Several preclinical studies and clinical trials have
been performed using dental-derivedMSCs for the treatment
of dental and nondental diseases, such as neurodegenerative
diseases and autoimmune and orthopedic disorders [188–
191]. Moreover, no adverse events that may be related to cell
transplantation have been reported [192, 193]. These suggest
the efficacy and safety of dental-derived MSCs-based ther-
apy. However, previous studies have illustrated the difficulty
in generating a consistent population of cells for therapeutic
use. Even with tissue from a single donor, controlled culture
conditions, and the expansion of single cells, each clone pro-
duces a distinct population with widely different morphol-
ogy, growth kinetics, gene expression profile, and epigenetic
status [194–196]. Based on this, we could consider that it
may be necessary in the future to establish MSCs banks based
on the heterogeneity of dental-derived MSCs, in case of a
need to screen for cells prior to clinical use [12].

In addition, clonal cultures serve as an extremely useful
research tool to identify desirable properties of cells within
mixed populations. In future studies, screening of single cell-
derived clones on a larger scale to that described in this report
will serve to further understand cell heterogeneity and its
impact on the development of MSCs-based therapies [50].
We recommend that, whenever possible, studies performed
at the population level should be validated in terms of the
principal findings using clonally expanded populations. This
would clarify whether the response is common to all MSCs,
or only to selected subpopulations [22]. Moreover, functional
diversity within a MSCs colony must be considered in the
design of experiments and trials for even nonclonal MSCs
populations and can be mitigated or even exploited when the
mechanisms of onset are better understood.

Cell therapy entails the administration of living cells that
have been purified, propagated, or differentiated to create a
cell product for a specific therapeutic need [197]. Identifying
key markers that support cell functions is a significant aspect
of the development of dental-derived MSCs therapies. It
allows the optimization of population selection by selectively
screening and isolating better quality dental-derived MSCs
for in vitro expansion and assessment, aiding the transla-

tional development of more effective MSCs-based therapies
for clinical evaluation and application [76]. Strategies to iso-
late, purify, and propagate subpopulations of adult MSCs
may, therefore, contribute to the development of cell therapy
products with enhanced clinical benefit in the future. More-
over, cell reprogramming and the induction of pluripotency
depend critically on the control of the epigenetic tags linked
to cell differentiation [198]. Therefore, the study of these
multiple epigenetic modifications associated with the differ-
entiation process, and how these could be reversed, is of par-
amount importance [25, 140, 199]. The ideal situation is
when key markers of dental-derived MSCs could be analyzed
and used to identify different cell types or subpopulations in
the complex tissue [200]. The epigenome information from
the same set of single cells could be used subsequently to
investigate how different epigenetic layers regulate transcrip-
tion [201]. Finally, to build a causal relationship between
genotype and phenotype, it will be ideal to knock out key
component genes for MSCs in vivo using gene-editing tech-
nologies [202, 203]. This control over dental-derived MSCs
composition and function will accelerate the translation of
cell therapy into clinical practice.

Although the results of the present research on dental-
derived MSCs are promising, many of the key markers and
epigenetic modifications discussed here have yet to be vali-
dated in an animal model [81, 89, 204]. There are currently
less clinical research reports on dental-derived MSCs. A key
challenge in therapeutic application of MSCs appears to be
that the surface markers commonly related to in vitro func-
tionality are not necessarily associated with the correspond-
ing activity in vivo [205]. Based on this, we encourage
verifying first in animal models and then in clinical trials all
the promising surface markers and epigenetic modifications
that have been identified based on the in vitro function of
MSCs. Key molecules that are predictive of clinical outcome
are candidates to use as quality attributes for robust and
reproducible manufacturing of MSCs therapies [20, 206,
207]. Moreover, clinicians need to be encouraged to pay
more attention to the research progress of dental-derived
MSCs and develop new methods for clinical application.
Small advances in the clinical application of dental-derived
MSCs will bring great encouragement to researchers [208–
210]. Similarly, the development of basic research will accel-
erate the clinical application of dental-derived MSCs [211,
212].
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